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Abstract 9 

A stimulus with light is clearly visual; a stimulus with sound is clearly auditory. But what makes 10 

a stimulus “social”, and how do judgments of socialness differ across people? Here, we 11 

characterize both group-level and individual thresholds for perceiving the presence and nature of 12 

a social interaction. We take advantage of the fact that humans are primed to see social 13 

interactions—e.g., chasing, playing, fighting—even in very un-lifelike stimuli such as 14 

animations of geometric shapes. Unlike prior work using these stimuli, we exploit their most 15 

advantageous property, which is that their visual features are fully parameterizable. We use this 16 

property to construct psychophysics-inspired “social tuning curves” for individual subjects. 17 

Social tuning curves are stable within individuals, unique across individuals, and show some 18 

relationship to socio-affective traits. Results support the view that social information processing 19 

begins early in the perceptual hierarchy. Further, our approach lays the foundation for a 20 

generative account of social perception in single subjects.  21 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 19, 2025. ; https://doi.org/10.1101/2025.01.19.633772doi: bioRxiv preprint 

https://doi.org/10.1101/2025.01.19.633772
http://creativecommons.org/licenses/by-nc-nd/4.0/


Introduction 22 

A hallmark of the human species is our extraordinary sociality, which depends on reading and 23 

responding to others’ behavior in ways that are largely effortless and shared across the 24 

population. Yet despite this shared general framework, there are substantial idiosyncrasies in 25 

how people perceive, interpret, and react to social information1–5. Many of these individual 26 

differences simply reflect variation in personality traits and social styles. Yet, extreme deviations 27 

from typical social processing are also central to developmental conditions such as autism6–10, as 28 

well as mental illnesses such as schizophrenia11,12, paranoia13 and depression14–17.  29 

Social information can take many forms, including linguistic cues, facial cues, and 30 

whole-body motion cues. While humans get nuanced information from linguistic and facial cues, 31 

motion cues are necessary for some of our most basic evolutionary social behaviors that are 32 

conserved across species: e.g., pursuing, evading, playing, fighting, and courting18,19. Humans 33 

are primed to perceive these types of interactions even in very un-lifelike stimuli: for example, 34 

when faced with videos of simple geometric shapes moving around the screen, even without 35 

prompting, most neurotypical people will construct narratives to explain the shapes’ movements 36 

in terms of goals, beliefs, and desires. This highly robust observation dates back at least to 37 

Heider and Simmel20 and has since been leveraged to study social perception in a wide variety of 38 

contexts and populations21–24. The effect holds across cultures, suggesting a biological origin18 . 39 

Along with related phenomena such as pareidolia25—the tendency to perceive faces in inanimate 40 

objects—this suggests an automaticity to social information processing that belies its typical 41 

conceptualization as a high-level cognitive process. Indeed, recent work supports the notion that 42 

core components of a social interaction can be extracted by the human visual system using fast, 43 

bottom-up processes26, which is likely evolutionarily adaptive for a species that depends heavily 44 

on its sociality for survival27,28.  45 

While using simple geometric-shape animations as experimental stimuli has yielded 46 

important insights into behavioral, cognitive, and neural aspects of social perception, most past 47 

work using these stimuli has substantial limitations. Studies typically use a small number of 48 

manually generated animations handcrafted by human experimenters to be either obviously 49 

social or obviously non-social, with no systematic variation or control over visual features3,29,30. 50 

Subjects’ responses are then classified as accurate or inaccurate with respect to these “ground 51 
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truth” experimenter labels. Furthermore, even given a stimulus deemed “social” by most people, 52 

different individuals may be perceiving different types of social interactions in that same 53 

stimulus; the nature of the perceived interaction is rarely probed (and if it is, it is usually 54 

assumed to have a ground truth label —e.g., helping versus hindering—for which the 55 

experimenters again have clear “ground truth” labels in mind)31–33. Together, these practices 56 

often produce ceiling effects and compress individual variability in behavior (at least in 57 

normative populations), which is unrealistic given that most real-world social scenarios are 58 

complex and may engender different interpretations across people.  59 

Here, we exploit a highly advantageous yet hitherto under-used property of such 60 

animations—namely, that they are algorithmically controllable and amenable to principles of 61 

visual psychophysics—to characterize people's socio-perceptual tendencies at both the group and 62 

individual level. We study two processes: (1) how people detect the presence of an interaction 63 

and (2) how people discriminate between types of interactions. By parametrically varying motion 64 

attributes22, we programmatically generate a large set of animations and use participants’ 65 

subjectively reported percepts to construct “social tuning curves” capturing shared trends and 66 

individual differences. Throughout, we adopt the perspective that socialness is in the eye of the 67 

beholder: in other words, there is no “correct” and “incorrect”; whatever percept is reported is 68 

the ground truth for that trial for that participant. We embrace ambiguous stimuli—i.e., those that 69 

yield high variability in reported percepts—as a feature rather than a bug, as these offer an 70 

opportunity to probe the limits of what makes a stimulus social, and how these limits differ for 71 

different individuals. We use this framework to show that robust individual differences in socio-72 

perceptual tendencies exist atop group-level trends, that these individual differences are reliable 73 

over a period of months, and that they may be related (albeit likely in complex, nonlinear ways) 74 

to traits indexing real-world social and affective function.  75 

  76 
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Methods 77 

Table 1: Summary of the experiments  78 

Experiment type Social detection Social discrimination 

Task Presence vs. absence of social 
interactions 

Valence discrimination: play vs. 
fight 

Parametrized motion 
attribute 

Chase directness Charge speed 

 
 
 
 
 
 
Sample 
size 

Pilot 
experiments 
(free-text 
responses) 

 
N = 60 

 
N =103, with cover story 
N =102, without cover story 

Main 
experiments  

N = 312, session 1  
(N = 240 returned for session 
2) 

N = 319, session 1 
(N = 269 returned for session 2) 

Supplementary 
experiments 
(controlled for 
correlated 
motion) 

 
 
N = 308 

 

Within-subject 
mixed-task 
design 

 
N = 279  

Participants 79 

All data collection and analysis procedures were approved by the Committee for the Protection 80 

of Human Subjects of Dartmouth College. All data were collected online 81 

(http://www.prolific.com/). We used the following selection criteria: Participants had to (1) be 82 

fluent in English, (2) have their location set as the USA or UK and (3) not have participated in 83 

our previous studies with similar stimuli. For consistency in data quality, all studies – except for 84 

the retest sessions where participants (identified using their 24-character Prolific IDs) were 85 

invited to complete a second session – were typically launched at 9am Eastern US time on 86 

Prolific and closed when the desired sample size was reached (usually about 2pm Eastern US 87 

time). The retest sessions were launched 2 months (Mean=71.0 days, SD=5.6 days; detection 88 
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task) or 1 month (Mean=32.8 days, SD=7.7 days; discrimination task) after their respective first 89 

sessions and were left open for about 6 weeks until no participants signed up for the task in at 90 

least 1 week, with the goal to encourage as many participants as possible to return. Note that the 91 

aim of the second sessions was to test the retest reliability (i.e., how similar behavior was on two 92 

independent sessions), so the exact time gap between the sessions did not need to be the same, 93 

we only required that the session not be so close that we would see effects of perceptual learning 94 

or task-specific memory. 95 

Stimuli 96 

Stimuli were simple animations generated using a custom JavaScript-based software called 97 

psyanim (https://github.com/thefinnlab/psyanim-2). Each animation had two circular agents 98 

(radius 12 px): one black and one gray, set against a white background in a world of size 800px x 99 

600px (see Fig 1a and all the stimuli here; exact stimuli for the individual experiments will be 100 

linked in-text near the description of that behavior). At the start of an animation, the agents were 101 

on either side of the center of the screen (coordinates: 400, 300): left (coordinates: 250, 300) and 102 

right (coordinates: 550, 300). In each experiment, the black agent started on the left (gray on the 103 

right) in half of the animations, and vice versa in the other half. The animations were 6s 104 

(detection task) or 8s (discrimination task) long with a frame rate of 60 Hz. A key difference 105 

between this study and most past work on social perception using animations is that we 106 

generated our animations purely programmatically using quantifiable, parameterizable motion 107 

attributes (Fig 1a). Each experiment consisted of 7 levels of stimuli where one motion attribute 108 

of interest varied linearly while all other attributes were held constant. These attributes were 109 

chosen such that people’s perception of a social scene on a scale from the most non-social to 110 

most social (detection task) or from most playful to most aggressive (discrimination task) varied 111 

along the attribute of interest. In the following sub-sections, we describe these motion attributes 112 

as well as the animations in more detail. 113 

 114 

Detection task 115 

To manipulate percepts as to the presence versus absence of a social interaction (detection task), 116 

we relied on the motion attribute chase directness, which governs the fidelity with which one 117 

agent (the “predator”) chases the other agent (the “prey”). This attribute was originally described 118 
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by Gao et al.22, where it was called “chase subtlety” and was found to robustly influence people’s 119 

ability to detect social interactions (in particular, chases). Chase subtlety was originally defined 120 

in angles, i.e., by how many degrees a predator could deviate from a perfect heat-seeking path 121 

between itself and the prey at each time step. Thus, a chase subtlety of 0° would indicate a very 122 

direct chase, a chase subtlety of 90° would indicate a somewhat noisy chase where the predator 123 

can go off-path by up to 90° clockwise or 90° counterclockwise, and chase subtleties > 90° 124 

would indicate very noisy chasing behaviors where the predator can occasionally even move 125 

away from the prey. Here, we reversed and normalized the subtlety angle to derive chase 126 

directness (
��������	
��
�	
�

���
), such that the higher the directness, the more obvious (detectible) 127 

the chase. Details on how this was implemented in psyanim is below. 128 

 129 

Chase animations 130 

In the animations we generated, one agent is the predator and the other is the prey. Predator/prey 131 

assignment was counterbalanced across stimuli in terms of both start position (left/right of the 132 

center) and color (gray/black). The predator was programed to chase the prey at varying levels of 133 

chase directness and the prey was programmed to flee from the predator when it was within a 134 

certain radius. When the predator agent was beyond its field of view (or the distance between 135 

them was greater than the “safety distance”), the prey agent simply wandered around the screen. 136 

We included the wandering behavior so as to prevent the fleeing behavior from looking too 137 

obvious, so that people did not make decisions purely based on the prey. All variable attributes 138 

other than chase directness governing the motions of the predator and prey were held constant 139 

over all animations (i.e., over all levels of chase directness). The relevant attributes are described 140 

below: 141 

Chase directness: Every 350ms (set by an attribute called subtlety lag explained in the 142 

next paragraph), the predator picks a value from a uniform distribution that ranges from  143 

[–chaseSubtlety, chaseSubtlety], where chaseSubtlety ∈ {0°, 30°, 60°, 90°, 120°,150°}. (i.e., 144 

chase directness ∈ {1, 0.833, 0.667, 0.5, 0.333, 0.167} ). These behaviors are illustrated in Fig 145 

1a. To get a feel for what these values mean, we encourage readers to watch some of the 146 

animations, available on GitHub (the stimuli used for session 1 chase detection experiments here, 147 

and those for session 2 experiments are here).  148 
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Other attributes: All attributes besides chase directness were set to be constant across 149 

animations. Some of the relevant attributes that influenced how the animations were perceived 150 

were optimized by manual piloting during stimulus development. These were, for the predator: 151 

(i) maximum chase speed = 1.5px/frame (frame rate = 60), (ii) maximum chase acceleration = 152 

0.1px/frame2 and (iii) subtlety lag = 350ms (how often the agent recomputes its chase direction; 153 

lower values will make the animation more jittery). For the prey: (i)  flee subtlety = 30° (the 154 

angle which an agent can deviate from the true direction away from the predator — this 155 

parameter helps to avoid fleeing looking very obvious), (ii) safety distance = 100px (distance 156 

below which the agent flees from the predator; above this, it wanders), (iii) maximum flee speed 157 

= 1.8px/frame, (iv) maximum flee acceleration: 0.15px/frame2, (v) maximum wander speed = 158 

1.5px/frame, maximum wander acceleration = 0.1px/frame2, (vi) maximum seek speed = 159 

3.5px/frame and (viii) maximum seek acceleration = 0.05px/frame2 (the seek behavior is 160 

included in the prey algorithm to keep it away from the boundaries/walls/edges of the world so 161 

that it does not get stuck in a corner). The flee speed and acceleration of the prey were set to be 162 

slightly higher than those of the predator to ensure that the predator never actually catches the 163 

prey. 164 

 165 

“Invisible chase” control condition 166 

With this control, we sought to rule out an alternative possibility for how chase directness might 167 

influence socialness perception that is less related to a chase per se and more related to general 168 

motion contingency between the two agents. Specifically, observers may notice that the predator 169 

and prey trajectories are linked more tightly in time at higher chase directness (where 170 

immediately after the prey changes direction, the predator too will change direction) than at 171 

lower chase directness (where the predator will not change direction as quickly and obviously 172 

upon the prey changing direction). Participants may simply be using this heuristic—i.e., whether 173 

the prey changing direction prompts the predator to change direction—instead of the actual chase 174 

between the predator and prey. To test for this possibility, inspired by Gao et al.22,  in a subset of 175 

behavioral experiments we included an additional set of control stimuli, where the actual prey 176 

was initialized at a randomly chosen location on the screen for each animation but was made 177 

invisible. The predator and a visible “mimicking” agent each started at one of the two regular 178 

starting locations (left and right of center as described at the start of the Stimuli section). The 179 
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mimicking agent copies the true prey’s trajectory but with a 180° rotation (i.e., if the invisible 180 

prey moves up and to the right, the mimicking agent will move down and to the left). The 181 

animations used for this study are here. For illustrative purposes, the invisible (true) prey is 182 

shown in yellow in these exemplars (participants never saw the yellow dots!). There were only 2 183 

relevant parameters for the mimicking agent in psyanim: (i) name or ID of the agent to mimic 184 

(i.e., the invisible true prey), (ii) angleOffset = 180° (how much to offset the movement in 185 

angles). 186 

 187 

Wander behavior 188 

We also generated animations where both the agents were wandering independently, meaning 189 

that there was no programmed contingency between their motion patterns. The speed and 190 

acceleration of the two wandering agents matched that of the predator and prey agents in the 191 

main chase animations (pseudo-predator and pseudo-prey agents, respectively) to make these 192 

animations as close as possible to the chase animations. These animations serve as an additional 193 

check as to whether participants use the speed of an agent as a heuristic to help identify the 194 

predator (since, in chase animations, the predator always moved slightly slower than the prey so 195 

as to avoid catching it as described above). Although these animations were generated differently 196 

to the chase animations described above (where one of the agents is designed to chase the other, 197 

however inefficiently), they are conceptually equivalent to a chase with chase directness = 0 198 

(subtlety 180°; i.e., where the predator is equally likely to move in any direction irrespective of 199 

the prey’s position). Hence, we use these as our experimental stimuli for chase directness = 0 in 200 

the social detection experiments. These stimuli can be seen here. 201 

The relevant parameters for these animations in psyanim were: (i) maximum wander 202 

speed (for the pseudo-predator agent = 1.5px/frame,  pseudo-prey agent = 1.8px/frame) , (ii) 203 

maximum wander acceleration (for the pseudo-predator agent =  0.1px/frame2, for the pseudo-204 

prey agent = 0.15px/frame2), (iii) maximum angle change per frame = 35° (how much the 205 

movement direction can change from one frame to the next), (iv) minimum screen boundary 206 

distance = 50px (the distance agents try to maintain from the screen boundary). 207 

 208 
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Discrimination task 209 

To study how people discriminate between positive and negative social interactions, we varied 210 

the attribute charge speed in a novel social interaction scene that is different from the chase 211 

detection task discussed above. This scene was inspired by the presence of physical contact in 212 

the real world for common positive as well as negative interactions (e.g., hugs, high-fives, 213 

physical fights)34 and how speed can be a clue to valence, with slower movements being usually 214 

perceived as more peaceful/positive, and faster movements as more aggressive/negative19. 215 

When generating these animations, both agents were set to have the same goal: to wander 216 

for a certain period and then charge at the other agent at the predetermined charge speed which 217 

varies between 1.5px/frame and 9px/frame (stimuli in Fig 1a and here). Once one agent initiates 218 

a charge, the other agent will respond after a short delay; following contact, both agents will 219 

return to wandering.  220 

As with the detection task, several features were kept at constant values after extensive 221 

in-lab piloting. These were: (i) minTargetDistanceForCharge = 200px, 222 

maxTargetDistanceForCharge = 500px (the between-agent distance range within which 223 

collisions would be initiated), (ii) mean charge delay =200ms, jitter =100ms (how long the 224 

second agent waits after the first agent charges at it), (iii) mean break duration: 2000ms, 225 

jitter=200ms (the duration for which two agents wander between consecutive charges), (iv) 226 

maximum wander speed: 1.5px/frame, (v) maximum wander acceleration=0.1px/frame2, (iii) 227 

wander panic distance=800px (minimum distance at which a wandering agent will charge back 228 

at another agent). 229 

 230 

Quality-checking stimuli 231 

We quality checked all generated animations for both the detection and the discrimination tasks. 232 

Animations were manually checked by at least two lab members and were removed if they 233 

contained glitchy/flickery movement patterns, if the agents got stuck in the corners or stuck to 234 

each other for extended periods, and/or if one or both agents went offscreen. At all stages, bad 235 

animations were replaced with new ones of the same type (e.g., same chase directness value, 236 

predator color and start position) to obtain the targeted number of animations. For the detection 237 

task, our final stimulus set included 84 chase animations (12 animations at each of 7 chase 238 

directness levels, including animations generated via the wander algorithm which served as 239 
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chase directness=0) and 84 ‘invisible chase’ animations (control; 12 animations at each of the 240 

chase directness levels used in the chase animations plus animations generated via the wander 241 

algorithm which served as chase directness = 0). Within these sets, the starting position (left 242 

versus right of center) and the role of predator versus prey was counterbalanced between the gray 243 

and black agent across animations, so that when participants were presented with an animation, 244 

there was no expectation of what they would see next based on the position or the color of the 245 

predator.  246 

For charge speed (discrimination) stimuli, we removed bad animations according to 247 

similar criteria as described for the detection stimuli. In addition, we ensured that all animations 248 

in the final set had the same number of actual collisions (two), since differences in the number of 249 

collisions could have influenced percepts independently of charge speed, which was the main 250 

motion attribute of interest. The final set of discrimination stimuli contained 20 animations at 251 

each of 7 charge speed levels for a total of 140 animations. Within this set, the initial position of 252 

the gray and black agents was counterbalanced across animations. 253 

 254 

255 

Fig 1: Social detection and discrimination tasks. (a) Static schematics of the animation stimuli 256 

for the detection (left) and discrimination (right) tasks to illustrate the effect of varying motion 257 

attributes (chase directness and charge speed, respectively) on agents’ trajectories. (b) The 258 

response screen that was presented following each animation in the main experiments. Both 259 

tasks required participants to rate their percept of the preceding animation on a continuous bar, 260 

and the detection task (left) additionally asked participants to identify the agent that was doing 261 

ay 

of 

f 

 

r, 
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the chasing. In both experiments, the positions of the slider labels (“Moving independently”/ 262 

“Chasing” or “Playing”/“Fighting”) on the left versus right were counterbalanced across 263 

participants. 264 

 265 

Animacy cover story 266 

Attributing intentions to moving shapes entails judgments of two related yet distinct features – 267 

animacy and socialness. Animacy is a widely used concept that applies to entities that are 268 

considered alive35. These entities exhibit signs of self-propelled, non-Newtonian motion by 269 

seeming to engage in goal-directed behavior36 and responding to their surroundings (e.g., 270 

changing speed or direction to avoid an obstacle). In our view, animacy is necessary but not 271 

sufficient for socialness: animacy can be detected in displays of single agents, in which by 272 

definition there is no social interaction present, but in multi-agent displays, to the extent that 273 

agents are perceived to be socially interacting, they must also be perceived as animate (i.e., as 274 

possessing a mind that would be motivated to engage in social behavior). Our goal here was to 275 

isolate the concept of socialness above and beyond animacy. Because differences in percepts of 276 

animacy might confound judgments of socialness, to encourage uniform perception of animacy 277 

across both animations and participants to the extent possible, we provided a cover story that the 278 

agents (dots) represented children in a public park. This was the exact story participants 279 

received: “We recently videotaped a public park where nearby children go, with the goal of 280 

capturing the essence of children's behaviors within a familiar park setting. To protect the 281 

identities of these young people, we used an algorithm that represents a pair of children as two 282 

dots, each tracing the path of an individual child.” We used this cover story to set the context in 283 

all of our experiments except in the early pilot experiments, since the goal of the latter was to 284 

evaluate how participants spontaneously interpret the animations even without any context. 285 

 286 

Pilot experiments (open-ended responses) 287 

All pilot and main experiments were programmed and run using the jsPsych platform37 with a 288 

custom plugin (https://github.com/thefinnlab/psyanim-2) to present the psyanim animations. 289 
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Pilot experiment design 290 

We first conducted a set of small-scale studies where participants could freely describe the 291 

animations. Before imposing explicit, constrained rating scales, our goal was to verify that these 292 

animations do in fact spontaneously evoke percepts that fall approximately along the intended 293 

axes from non-social to social (detection task) or playful to aggressive (discrimination task). 294 

In these experiments, each participant was presented with 7 animations (1 animation for 295 

each level of the motion attribute as described under Stimuli). For the detection task, we did not 296 

use the cover story. For the discrimination task we ran two versions – one without and one with 297 

the cover story. In what follows, unless otherwise noted, we present data from the version with 298 

the cover story. After watching each animation, participants responded to the following prompt 299 

to indicate what the dots could have represented: “Briefly describe what the dots were doing. 300 

Guess if you do not know.” (In the discrimination task with the cover story, the text varied 301 

slightly: “Describe what the dots were doing using a word or a short phrase”). The task lasted 302 

~5-10 min overall. 303 

Pilot experiment data analysis 304 

We analyzed the free-response data using techniques from natural language processing. In each 305 

experiment (detection and discrimination tasks), we derived the average “meaning” of 306 

descriptions at each stimulus level using semantic embeddings. Specifically, we used 307 

Bidirectional Encoder Representations from Transformers (BERT)38 language models as 308 

implemented in the Python library SentenceTransformers (https://huggingface.co/sentence-309 

transformers/all-MiniLM-L6-v2). For each description, we get a 384-dimensional vector 310 

embedding. We then averaged across all embeddings at each stimulus level (detection task: 12 311 

unique stimuli per level of chase directness x 5 observers per stimulus = 60 observations per 312 

level of chase directness; discrimination task: 20 stimuli per level of charge speed x 5 observers 313 

per stimulus = 100 observations per level of charge speed). 314 

In an initial exploratory/data-driven analysis, we compared this mean vector to the 315 

embeddings of all 8432 English verbs from the natural language toolkit (nltk; 316 

https://www.nltk.org/howto/wordnet.html) to identify the 5 verbs whose embeddings it was 317 

closest to. To more clearly isolate the differences in percepts across levels, we then removed 318 

words that appeared in at least 6 of the 7 motion attribute levels within each experiment. 319 
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In a follow-up, more hypothesis-driven analysis, we quantified the change in percepts 320 

across stimulus levels by computing the similarity of mean embeddings at each level to our 321 

expected percepts at either ends of the response scale (detection task: “chasing”, “moving 322 

independently”; discrimination task: “playing”, “fighting”). We expected that, as the motion 323 

attribute value increased, descriptions’ similarity to one extreme (“chasing” or “fighting”) would 324 

increase and similarity to the other extreme (“moving independently” or “playing”) would 325 

decrease. To quantify this, we took the difference between embeddings’ similarity scores to both 326 

extrema (����������_	�
�� �  	�
��_�
�	��� –  	�
��_�
���� _������������� for the 327 

detection task and ����������_	�
�� � 	�
��_���
���� –  	�
��_ ������� for the 328 

discrimination task), giving us one difference_score per trial. Later, scores were compared using 329 

a linear mixed effects model (LME; pymer4 package39): 330 

����������_	�
�� ~ �
��
�_����� !�� " #1|	! &'( , where for the detection and 331 

discrimination tasks, �
��
�_����� !�� referred to chase directness and charge speed, 332 

respectively. 333 

Finally, for the discrimination task only, we quantified how the valence, or “sentiment”, 334 

of the descriptions varied across attribute levels. We used a RoBERTa-base model40 335 

(https://huggingface.co/cardiffnlp/twitter-roberta-base-sentiment-latest/tree/main) to 336 

automatically quantify sentiment, which yields a positive, negative, and neutral score for each 337 

description. Our dependent variable  ����������_	�
�� was the difference between the negative 338 

and positive sentiment scores for each description. Similar to the approach to semantic similarity 339 

described in the previous analysis, the effect of the motion attribute (namely, charge speed) on 340 

these values was computed using the LME:  ����������_	�
�� ~ �
���� 	���� "341 

 #1|	! &'( " #1|	���&'(. 342 

We noted that free-text descriptions were overall biased toward positive sentiment (Fig 343 

S1c, left). This could likely be because of our cover story about the dots representing children in 344 

a park, which carries a strong prior toward playful interactions. To check this, we ran an 345 

additional small pilot batch without a cover story too (all else remained the same).  346 

Results from the analyses of free text responses in these pilot experiments showed 347 

evidence favoring our hypotheses that (1) in the detection study, as chase directness increases, 348 

animations are seen as more social, and (2) in the discrimination study, as charge speed 349 

increases, interactions are seen as more aggressive and negatively valenced. Together, the pilot 350 
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experiments confirmed that the stimuli we generated algorithmically could spontaneously—i.e., 351 

without prompting with explicit choices of possible interactions—evoke percepts along the 352 

intended axes, and this gave us the confidence to move forward with our main experiments using 353 

these axes to structure responses, described in the next section. 354 

Main experiments 355 

 356 

Main experiment design 357 

Our first two main experiments consisted of only detection or only discrimination trials, 358 

respectively, while the third main experiment was a mixed-task design in which the same 359 

participants performed both the detection and discrimination tasks. We used the same cover story 360 

described above (about the dots being children in a public park) in all the main experiments.  361 

For the detection study, there were 84 trials per participant (12 trials per chase directness 362 

level x 7 levels) with 7 optional breaks (one every 12 trials). In the supplementary experiments 363 

that also included the invisible chase control condition, there were 6 stimuli at each motion 364 

attribute level (2 conditions x 7 stimulus levels x 6 trials per level). After each trial, participants 365 

gave two responses: (1) they rated, on a continuous scale, to what degree one of the two dots was 366 

chasing the other versus moving independently (with the location of the labels on the left versus 367 

right extremes of the scale kept constant within participant, but counterbalanced across 368 

participants), (2) they identified the dot that was chasing the other, in a two-alternative forced 369 

choice. Both questions were presented on the same page, and the page timed out in 10s. The 370 

instruction specific to this task (after the cover story was presented) was as follows: “Some 371 

videos depict a situation in which one dot is chasing the other; other videos depict a situation in 372 

which the dots are moving independently. You will be asked to rate how much you think the 373 

dots are interacting (meaning one dot is chasing the other) versus moving independently. For 374 

all videos, you will also be asked to determine which dot was chasing the other. If there was no 375 

chase in a particular video, just make a guess.”. Participants performed one practice trial before 376 

the experiment began. 377 

For the discrimination study, there were 70 trials per participant (10 trials per charge 378 

speed level x 7 levels) with 7 self-timed breaks (one every 10 trials). After each trial, participants 379 

rated on a continuous scale to what degree the dots were engaged in a positive (playing) versus 380 

negative (fighting) interaction (as with the detection task, the label positions were 381 
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counterbalanced across participants). This response page also timed out in 10s. The instruction 382 

specific to this task (after the cover story was presented) was as follows: “Some videos depict a 383 

situation in which the children are engaged in a positive interaction (e.g., playing); other videos 384 

depict a situation in which the children are engaged in a negative interaction (e.g., fighting). 385 

After each video, you will be asked to rate to what extent the children (dots) were engaged in a 386 

positive or negative interaction on a continuous bar. There are no right or wrong answers here, 387 

so if you are unsure, just guess!”. Participants performed two practice trials before the 388 

experiment. 389 

In the third main experiment (mixed-task design study), detection and discrimination 390 

animations were presented in six interleaved blocks: block sequence with 14 trials each (121212 391 

or 212121, where 1=detection task and 2=discrimination task; one of the two block sequences 392 

was randomly selected for each participant. Here too, there were 84 trials in total: 42 detection 393 

trials (6 at each level of chase directness) and 42 discrimination trials (6 at each level of charge 394 

speed). The 42 animations from each task (detection or discrimination) were randomized across 395 

the 3 blocks of the task. Participants performed two practice trials each for the detection and 396 

discrimination experiments at the start of the experiment. 397 

The primary task portion of all three experiments (detection, discrimination, or mixed-398 

task design) lasted ~15-20 min. At the end of the primary task portion, we presented participants 399 

with the trait questionnaires described below under Trait measures. The sequence of the 400 

questionnaires was counterbalanced across participants. 401 

Quality checks during data acquisition. We performed a few data quality checks during 402 

data acquisition to exclude poor participants within the first few minutes of the study. First, after 403 

the instructions, including the cover story about the dots representing children in a park, but 404 

before the start of the main experiment, we presented participants with a multiple-choice 405 

question as to what the dots represented. The options were “animals”, “balls”, “adults”, 406 

“children”, “magnets”. The correct answer was “children” (as mentioned clearly in the cover 407 

story). If participants responded incorrectly, they were given one chance to correct their answer, 408 

and if their second response was also incorrect, they were immediately excluded from the study. 409 

(Note that this same question was asked again after the main task and used for a second quality-410 

check analysis, see below). Participants were also warned that they may not be compensated if 411 

they missed (i.e., timed out on) more than 10% of trials. We also excluded participants who 412 
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opened other tabs or had bad internet connections by including a demo animation on the very 413 

first page and checking playback duration in real time. If the duration of this page was much 414 

higher than 6 or 8s (actual duration of the animations), this meant that the animation did not play 415 

as normal, and either paused (because of other open tabs and the participant not paying attention) 416 

or played very slowly (possibly because of a slow internet connection). Participants who stayed 417 

on the demo animation page for longer than a liberal threshold of 20s were immediately 418 

excluded from the study. Besides these online quality checks during the experiments, we 419 

conducted further quality checks at the data analysis stage to exclude poor participants. 420 

Main experiment analysis  421 

Data analysis was similar across all main experiments unless specified otherwise.  422 

 423 

Exclusion criteria 424 

First, we excluded participants with bad or unreliable data, as defined by meeting one or more of 425 

the following criteria: (i) missing responses (i.e., timing out) on more than 5% of all trials; (ii) 426 

incorrect responses in the post-main-experiment debrief question asking them to identify what 427 

the dots represented shown (note that this question is identical to the question asked at the 428 

beginning of the main experiment, but the rationale here is that if by the end of the main 429 

experiment participants had forgotten what the dots represented, their perception and ratings 430 

could have been affected by whatever they assumed the dots to represent by the end); (iii) (for 431 

the detection task alone) incorrectly identifying the predator in more than one third of animations 432 

with directness=1 (rationale: the chase/predator identity is very obvious in these animations, so 433 

incorrect answers here are most likely failures of attention); (iv) lingering on the animation page 434 

for more than 20s in at least 5% of trials (each animation was only programmed to last 6 or 8s, 435 

and so the page should have lasted for a similar duration; any longer indicates that they may have 436 

clicked away from the experiment tab and/or had a slow internet connection); (v) failing to 437 

respond to ≥ 10% of items on one or more trait questionnaires; or (vi) missing at least one (out of 438 

five) attention-check items in the trait questionnaires. Trait questionnaires are described in detail 439 

in the Trait measures section. 440 

 441 

 442 
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Separate detection and discrimination experiments 443 

Group-level analyses: We first analyzed data at the group level to ascertain shared tendencies in 444 

how motion attributes affect social percepts. Participants’ ratings were coded on a 0–1 scale: (i) 445 

detection task: moving independently = 0, chasing = 1; (ii) discrimination task: playing = 0 and 446 

fighting = 1. For the detection task, we used the response to the predator identification question 447 

to compute accuracy (0 or 1 on each trial). We used linear mixed-effects analyses to quantify the 448 

effect of each motion attribute while controlling for confounding variables using the following 449 

model: ������ ~ �
��
�_����� !��_����� "  ����_��	� "  �����_�!� �� " #1|	! &'( "450 

 #1|	���&'(. Here ������ refers to participant responses indicating the level of 451 

	
������		 (degree of chasing) or �����		�����		 (degree of fighting). The term 452 

�
��
�_����� !��_����� refers to degree of either �
�	� ��������		 (detection) or 453 

�
���� 	���� (discrimination) and could take one of 7 levels. Additional terms are: (i) 454 

����_��	�, the distance between the two agents averaged across all frames; we included this 455 

term because past work has shown that agents that are closer together are more likely to be 456 

perceived as interacting6; (ii) trial number, indicating serial order over the course of the 457 

experiment (to check for any drift in ratings over time); and random-effects terms for (iii) subject 458 

identity and (iv) specific animation identity (exemplar). For the predator-identification question 459 

in the detection task, we ran a logistic regression model with ���!���� (0/1) as the dependent 460 

variable and the same main- and random-effects predictor terms as above. 461 

 462 

Individual-level analyses: We next analyzed data at the individual level to determine the extent 463 

to which participants differed in their socio-perceptual tendencies, how robust these differences 464 

were across sessions, and how detection and discrimination tendencies covary with one another 465 

and with other socio-affective traits. Our primary approach to analyzing individual-level data 466 

was to compute single-subject “tuning curves” for detection and/or discrimination behavior. We 467 

averaged each participant’s responses at each motion attribute level (chase directness or charge 468 

speed level for detection and discrimination tasks, respectively). For each participant, we plotted 469 

motion attribute level (normalized to a 0-1 range; x-axis) against average rating across 470 

animations at that level (y-axis). Similar to the group-level results shown in Fig 3, visual 471 

inspection suggested that individual detection ratings followed a sigmoid shape, while 472 

discrimination ratings followed a more linear trend. We empirically tested both sigmoid and 473 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 19, 2025. ; https://doi.org/10.1101/2025.01.19.633772doi: bioRxiv preprint 

https://doi.org/10.1101/2025.01.19.633772
http://creativecommons.org/licenses/by-nc-nd/4.0/


linear fits to evaluate which one better fit each type of data and verified this pattern: the Akaike 474 

Information Criterion (AIC) – which indicates which of two models fits the data better (lower 475 

AIC indicates better fits) – was lower for the sigmoid fits in the detection task (mean difference 476 

sigmoid – linear fits ≤ –7.84, p <.001 based on paired t-test in all the detection experiments) and 477 

higher for the sigmoid fits in the discrimination task (mean difference sigmoid – linear fits ≥ 478 

3.47, p <.001 in all the discrimination experiments, Fig S2). Hence, we used sigmoid fits to 479 

characterize each participant’s response data in the detection task and linear fits to characterize 480 

responses in the discrimination task. 481 

The sigmoid curve-fitting equation was : )#*(  � + " #1 , + , -( 
�

��	
�
�����
�

 , where * = 482 

the value of the motion attribute (chase directness or charge speed); + and - = the lower/upper 483 

asymptote of the curve; ., 0  = center, slope. The linear equation was: 1#*(  � � " � 2 * , 484 

where * = the motion attribute (chase directness or charge speed); c = the lower intercept of the 485 

line; m = slope. For both functions, we calculated several key parameters from the fitted curve of 486 

each participant: 487 

Shifts from extremes: Lower bias �  and upper bias !  (lower and upper intercepts, 488 

respectively) reflect ratings at the lowest and highest levels of the motion attribute — in other 489 

words, how close to the extremes of the rating scale a participant is willing to go. For linear fits, 490 

�  = intercept c. 491 

Bias: This parameter was derived from the above-mentioned bias terms (�  and ! ) as a 492 

comprehensive summary of people’s bias that also factors in apparent biases due to differences 493 

in overall confidence or perceptual vividness. The bias term thus measures to what degree people 494 

avoid the lowest end of the scale relative to how much they avoid the two ends of the scale in 495 

general (which could reflect lower confidence overall or a less intense effect of stimuli overall). 496 

We quantified this as 
��

�����
. A bias of 0.5 means that there is no bias towards one end of the 497 

scale, bias < 0.5 means that people are more biased towards the lower end, and bias > 0.5 means 498 

that people are more biased towards the upper end. In the detection task, bias > 0.5 can be 499 

interpreted as a predisposition to see things as social (“chasing”) more than non-social (“moving 500 

independently”); in the discrimination task, bias > 0.5 can be interpreted as a predisposition 501 

toward seeing things as more like “fighting” than “playing”. 502 
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Midpoints: Two types of midpoints can be derived from each curve: an objective 503 

midpoint (*��� � ���#)#*( � 0.5() and a subjective midpoint (subj_center, .). The objective 504 

midpoint is the motion attribute value at which the participant’s rating crosses the absolute 505 

midpoint of the rating scale (0.5 for all participants). The subjective midpoint is the motion 506 

attribute value at which the participant’s rating crosses the halfway point of their own behavioral 507 

curve (e.g., for a participant whose ratings vary between from 0.4 and 0.8, their mid-point would 508 

be the motion attribute level at which the tuning curve crosses 0.6). Here we mostly focus here 509 

on the objective midpoint, which we call the point of subjective equivalence (PSE) because it is 510 

similar in spirit to PSE as defined in traditional visual psychophysics work (i.e., the stimulus 511 

feature level at which options A and B are equally likely in a two-alternative forced-choice 512 

discrimination task 41).  513 

Range: The distance between the lowest and highest ratings on the Y-axis. This 514 

parameter can be interpreted in multiple ways: it quantifies how much of the total response scale 515 

participants use, how much participants differentiate between stimuli at extreme (lowest and 516 

highest end) motion attribute levels, and except in cases of strong response biases, might reflect 517 

how confident people are in their percepts (especially at the lowest and highest motion attribute 518 

values). This is defined as  1 ,  � , ! .  519 

Sigma (σ; sigmoid fit only): Sigma or the inverse of the slope (
�

�
) determines the steepness 520 

of the sigmoid curve during its transition from perceiving something as “moving independently” 521 

(at lower chase directness levels) to “chasing” (at higher chase directness levels) in the detection 522 

task. A smaller sigma (or a higher slope) indicates that participants perceive something as more 523 

social (Δrating) with the smallest change in the sensory evidence (change in chase directness   or 524 

Δchase directness) ⎯ this can be interpreted as people exhibiting higher confidence when rating the 525 

intermediate, ambiguous stimuli. A higher sigma (or lower slope) indicates that participants need 526 

a lot more sensory evidence (Δchase directness) to rate something as more social (Δrating) ⎯ this may reflect 527 

lower confidence and/or a more gradual evidence-based shift in the perceptual intensity of 528 

stimuli at the ambiguous middle levels. 529 

We plotted covariance matrices (Pearson r) between the various parameters within the 530 

detection and discrimination tasks. Based on these covariances as well as test-retest reliability of 531 

the curve fit parameters (described in detail below), in what follows, we focus on three main 532 
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curve-fit parameters that are both relatively reliable and not highly collinear with one another: 533 

PSE, range and bias. These terms are illustrated in Fig 2. Since PSE covaries tightly with range 534 

and bias in the linear fits specifically and it is not possible to change PSE without changing 535 

either the range or the bias, we only use range and bias for the discrimination task. 536 

 537 

 538 

Fig 2: Fitting social tuning curves to individuals’ reported percepts. (a) We fit sigmoid 539 

(detection experiments; top) or linear (discrimination experiments; bottom) curves to individual-540 

participant rating data and used the resulting curve parameters to characterize individual 541 

participants. (b) Schematics of how each parameter can vary across participants. The upper 542 

rows show sigmoid fits as used for the detection task, and the lower rows show the linear fits 543 

used for the discrimination task. Each plot shows curves for three different hypothetical 544 

participants. 545 

 546 

We tested the robustness of each person’s tuning curve by using parameters calculated on 547 

data from their first session to fit the same participant’s data in their second session 1–2 months 548 

later (and vice versa) and calculating the residual normalized root-mean squared error (NRMSE) 549 

between the curve and the true data points. We used a paired t-test to compare the NRMSE from 550 

this within-participant fit to the NRMSE from the mean across-participant fit (calculated by 551 

averaging the curve-fit parameter values across all other participants in the same session. This 552 
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quantified the extent to which an individual’s tuning curve offered a better prediction of their 553 

own held-out data than generic tuning curves based on group data. Further, we calculated the 554 

intra-class correlation coefficient (ICC) of each curve-fit parameter of interest to measure test-555 

retest reliability across the two sessions (ICC2, single random raters, as implemented by the 556 

Python package pingouin). 557 

 558 

Mixed-task experiments 559 

In these experiments, the same participants performed both the detection and discrimination 560 

tasks. Data extraction and curve-fitting was performed similarly to the separate detection and 561 

discrimination experiments described above. For each participant, we obtained tuning curves for 562 

both detection and discrimination. We studied how socio-perceptual tendencies in the two tasks 563 

relate by calculating the Pearson correlation coefficient between all possible pairs of curve-fit 564 

parameters across the detection and discrimination tasks. Here, we restricted our analyses to only 565 

the most robust curve-fit parameters: bias, range and PSE for the detection task, and bias and 566 

range for the discrimination task (5 total).  567 

Traits were scored as described under Trait measures, giving us 14 dimensions in total 568 

(5 for AQ, 2 for PANAS, 5 for NEO-FFI, 1 for loneliness and 1 for number of friends). As a 569 

first-level exploratory analysis, we first performed trait-behavior correlations (Pearson r) 570 

between each trait dimension and curve fit parameter (14 x 5 = 70 total correlations). We report 571 

both uncorrected results and results after correcting for multiple comparisons using the 572 

Benjamini-Hochberg procedure. 573 

We next performed inter-subject representational similarity analysis (IS-RSA)42 to test 574 

the second-order hypothesis that pairs of subjects who are more similar in their curve-fit 575 

parameters are also more similar in their pattern of trait scores. Specifically, we computed a set 576 

of subject-by-subject representational dissimilarity matrices (RDMs) reflecting the Euclidean 577 

distance between each pair of subjects’: (i) pattern of trait scores (14x1 vectors), (ii) detection 578 

tuning curve parameters (3x1 vectors), (iii) discrimination tuning curve parameters (2x1 vectors), 579 

or (iv) combined tuning curve parameters across both tasks (5x1 vectors). We then correlated 580 

(Pearson r) the vectorized upper triangles of the trait RDM with each of the three curve-581 

parameter RDMs. We assessed the significance of each IS-RSA r value non-parametrically using 582 

a Mantel test, in which subject-vector assignment is randomly shuffled in one of the two RDMs 583 
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5,000 times to generate a null distribution of r values expected by chance. The true r value is 584 

compared against this null distribution to derive a p value using the formula:  585 

p �
�# ���������� ! �"#��$� % ���� &�'�� � �(

�# ���������� ! � �(
.  586 

Trait measures 587 

We chose individual-difference measures of interest based on past findings that behavior on 588 

social perception and cognition tasks often differs between populations (e.g., neurotypical versus 589 

autistic, patients with depression versus healthy controls) and/or covaries in the normative 590 

population with socio-affective and personality traits. Past work has shown that people higher on 591 

autism-like phenotypes are less likely to detect intentions and interactions in social animation 592 

displays6–10, while people with higher internalizing symptom scores (related to anxiety and social 593 

withdrawal) and a higher desire for social connection are more likely to detect intentions and 594 

interactions5,43–46. Other studies have associated depression with impaired emotion recognition of 595 

social stimuli (hypersensitivity to negative cues, hyposensitivity to positive cues)14–17. We 596 

assessed autism-like traits with the autism quotient (AQ) questionnaire47, loneliness with the 597 

UCLA loneliness scale48, and general affect with the Positive and Negative Affect Schedule 598 

(PANAS)49. We also administered the NEO five-factor inventory for multidimensional 599 

personality (NEO-FFI; more popularly known as the “Big five”)50. Finally, we asked participants 600 

to state the number of close friends they had, since this metric provides additional information 601 

about participants’ real-world social tendencies.  602 

Our final battery thus consisted of five entities: (i) AQ, (ii) PANAS, (iii) NEO-FFI, (iv) 603 

UCLA loneliness scale and (v) the self-reported number of friends. Details of each questionnaire 604 

are given below. 605 

The AQ consists of 50 total items measuring five subdomains: social skill deficits, 606 

communication deficits, attention-switching deficits, heightened attention to details and 607 

imagination deficits. For each item, participants had four response choices ("Definitely 608 

disagree", "Slightly disagree", "Slightly agree", "Definitely agree"). We reverse-scored the items 609 

that were intended to be as per the instructions from the creators; however, when assigning a 610 

score on each item, we assigned responses scores between 0 and 3 (where 3 → less neurotypical 611 

and more autistic) in place of binarizing responses (assigning 0 to the first two levels and 1 to the 612 
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last two levels). Higher scores on each subdomain indicate more autism-like phenotypes (e.g., 613 

greater social skill deficits).  614 

PANAS consists of 20 total items, 10 measuring positive affect and 10 measuring 615 

negative affect. Participants responded on a five-point scale ("Very slightly or not at all ", "A 616 

little", "Moderately", "Quite a bit", "Extremely"). Each response was coded between 0 and 4, and 617 

there were no reverse-scored items. This scale results in separate scores for positive and negative 618 

affect. 619 

NEO-FFI consists of 60 total items measuring five dimensions: openness, extraversion, 620 

neuroticism, conscientiousness, agreeableness. Participants responded on a five-point scale 621 

("Strongly disagree", "Disagree", "Neutral", "Agree", "Strongly agree") coded between 1 and 5. 622 

This scale yields a summary score for each of the five dimensions. 623 

The UCLA loneliness scale consists of 20 total items that measure a single dimension. 624 

Participants responded on a 4-point scale ("Never", "Rarely", "Sometimes", "Always") scored 625 

between 1 and 4. Higher scores indicate higher loneliness. Lastly, participants also responded to 626 

the following question with an integer value: “Please estimate the number of close friends that 627 

you have, where "close friends" are people that you feel at ease with and can talk to about 628 

private matters.” 629 

Within each questionnaire we also added one attention check question (e.g., for AQ, the 630 

question was this: "If you are doing your best to complete this survey honestly, choose 631 

‘Definitely agree’.") to confirm that participants were paying attention to the questions. The 632 

accuracy on these questions was used as a quality check criterion during data pre-processing 633 

(described under Main experiment analysis). 634 

Code and data availability 635 

All stimuli, data and code will be available upon publication at: 636 

https://github.com/thefinnlab/psyanim_behav_paper1 637 

  638 
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Results 639 

We systematically studied how people perceive the presence and nature of a social interaction 640 

using sets of algorithmically generated fully parameterized animations. Each animation consisted 641 

of two agents—one gray and one black circle—that were programmed to move in certain ways 642 

with respect to one another. Critically, the animations varied parametrically along one motion 643 

attribute and were controlled for all other low-level visual features. We conducted three sets of 644 

experiments: (1) detection studies, in which participants rated the extent to which the agents 645 

appeared to be interacting (i.e., one agent chasing another) versus moving independently, (2) 646 

discrimination studies, in which participants rated the extent to which the agents appeared to be 647 

fighting versus playing, and (3) a mixed-task study where participants performed both the 648 

detection and discrimination experiments (see stimuli here and details in Fig 1). Below, we 649 

describe group-level and individual behavioral patterns for both social detection and 650 

discrimination, as well as how these two behaviors compare to one other and to self-reported 651 

social and affective traits. 652 

 653 

Simple motion attributes influence the detection of both the presence and 654 

nature of social interactions 655 

Varying simple motion attributes reliably affects social percepts at the group 656 

level       657 

For detection experiments, we varied the attribute chase directness, which determines the fidelity 658 

with which the movement of one agent (the predator) is contingent on the other agent (the prey): 659 

more direct chases should look more obviously social, less direct chases should look more like 660 

agents moving independently. For discrimination experiments, in which the two agents come 661 

together and move apart in succession, we varied the attribute charge speed, which determines 662 

how fast the agents approach one another: slower should look more playful, faster should look 663 

more aggressive/fight-like. 664 
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Pilot experiments 665 

We first performed pilot experiments to test that these animations could spontaneously evoke 666 

percepts along the intended continua without any explicit prompting. In these experiments, 667 

participants watched animations and gave free-response text descriptions, which we quantified 668 

using tools from natural language processing. Indeed, we found that varying chase directness 669 

elicited percepts along a continuum from moving independently (non-social) to chasing (social), 670 

while varying charge speed elicited percepts along a continuum from positive/playing to 671 

negative/fighting (see Supplementary Results and Fig S1). These results gave us confidence to 672 

move forward to our main experiments, in which we replaced free responses with these continua 673 

as predetermined rating scales. 674 

 675 

Detection experiments 676 

In our main social detection experiments (see Table 1 for sample sizes and other relevant 677 

information), after watching each animation, participants (1) rated how social it was on a 678 

continuous scale ranging from “moving independently” to “chasing” (henceforth referred to as 679 

“socialness rating”), and (2) identified the predator agent by color. In line with our expectations 680 

and past work 22, we found that as chase directness increased, ratings shifted towards “chasing” 681 

(b=0.805, p<.001; Fig 3a). Social perception did not seem to change with time (indexed as the 682 

trial number; b=–0.001, p=.779), suggesting that there was no measurable “drift” in ratings 683 

toward more social or more non-social over the course of the experiment. We also observed that, 684 

similar to subjective ratings, predator identification accuracy increased as chases became more 685 

direct (logistic regression b=4.735, p<.001; Fig S3a); this result further confirmed that 686 

participants were, on average, experiencing the chase in the expected way based on the 687 

generating algorithm (i.e., they correctly perceived its directionality, especially in the case of the 688 

more direct chases). 689 

Participants might have been using visual features other than chase directness to form 690 

their judgments of socialness. For example, past work has shown that agents that are closer 691 

together are more likely to be perceived as interacting6. That more-direct chases also resulted in a 692 

narrowing of the distance between the two agents over time was an unavoidable consequence of 693 

our animation-generation algorithm (where the predator was programmed to chase after the 694 

prey); indeed, in our stimulus set, chase directness and mean distance between agents over the 695 
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course of the animation were correlated across animations (Pearson r=–0.69, p<.001). Hence, to 696 

account for other visual features beyond chase directness that participants may have been using, 697 

we ran additional models including mean distance between agents as a covariate. While this term 698 

was also a significant predictor of socialness ratings (b=–0.432, p<.001) and this model fit the 699 

data better (AIC=–12325 compared to the AIC of the model without mean distance, –12293; 700 

lower AIC indicates a better fit), chase directness captured additional unique variance in 701 

socialness percepts (b=0.603, p<.001). Further, mean distance was not a predictor of the predator 702 

identification accuracy (b=–0.716, p=.179) and also did not meaningfully improve the model fit 703 

for accuracy (AIC without and with mean distance = –7986 and –7984, respectively). 704 

Lastly, participants may have been relying on other heuristics to form socialness 705 

judgments. Since a chase typically results in correlated movement patterns between two agents 706 

(when the prey changes direction, the predator is likely to do so a moment later), this correlation 707 

will be stronger for more direct chases than less direct chases. However, agents can also show 708 

correlated motion without necessarily having one chase the other—i.e., one agent could change 709 

direction every time the other one does but be equally likely to turn away from (or orthogonal to) 710 

the path of the other. To test whether participants are simply relying on nonspecific correlated 711 

motion as a heuristic, also inspired by Gao et al.22, we ran a separate experiment in an 712 

independent set of participants where we replaced half of the directness 0.167 to 1 chases (6 713 

levels) with a non-social “invisible chase” control. In these trials, the predator was chasing a true 714 

prey agent that was made invisible to observers, while a visible “fake” prey mimicked the true 715 

prey’s trajectory reflected over a 180° rotation. In this way, correlated motion between the two 716 

agents was preserved—when the true prey changed direction, so did both visible agents (the 717 

predator and the mimicking agent)—but not necessarily in a manner consistent with chasing. In 718 

line with our prediction, we saw that while in the true chase condition, socialness ratings 719 

increased with chase directness (b=0.471, p<.001), in the invisible chase condition, if anything, 720 

there was a slight trend in the opposite direction (socialness ratings decreased as directness 721 

increased; b=–0.146, p<.001; Fig S3b). This suggests that the increase in socialness with chase 722 

directness is not merely because of correlated motion in general, but rather correlated motion that 723 

is specifically consistent with pursuit behavior. In sum, in line with Gao et al.22, these 724 

experiments show that the motion attribute chase directness influences how social stimuli are 725 

perceived to be at the group level. 726 
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Discrimination task 727 

Once a social interaction is detected, the next step is to discriminate the nature of that 728 

interaction; past work20,30 and real-life experience suggest that given the same sensory input, 729 

there may be even more variability across people in their percepts of how agents are interacting 730 

than simply if they are interacting. Interactions can be characterized along several dimensions, 731 

but a fundamental one is valence—i.e., how positive or negative is the interaction?51 Using our 732 

parametric approach, we explored changes in the valence of social percepts between "playing" 733 

and “fighting”.  Playing and fighting, which are preserved throughout much of the animal 734 

kingdom, involve two agents moving apart and coming back together in quick succession. We 735 

manipulated the speed with which our agents approached each other (charge speed) to determine 736 

whether this simple motion cue could reliably affect percepts of an interaction’s valence, with 737 

slower speeds looking more friendly (like “playing”) and higher speeds looking more aggressive 738 

(like “fighting”). 739 

In these experiments (see Table 1), participants watched each animation and rated it on a 740 

continuous scale from “playing” to “fighting”. We found that as the charge speed increased, 741 

interactions were perceived as more aggressive (b = 0.622, p < .001; Fig 3b). The effect of 742 

charge speed persisted when controlling for the mean distance between the two agents (which 743 

also affected ratings such that higher mean distances predicted slightly less aggressive ratings; 744 

b=–0.057, p=.008)) and trial number as an index of time (for which we found that percepts of 745 

aggressiveness also weakly increased over the course of the experiment; b=0.024, p<.001). 746 

Together, results indicate that social percepts⎯both the presence and nature of an 747 

interaction⎯can be manipulated by simple motion attributes in ways that are generally shared 748 

across people. Despite these commonalities, to what extent are there stable and meaningful 749 

individual differences in these socio-perceptual tendencies? We probe this question next. 750 
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751 
Fig 3: Group-level behavior on the detection and discrimination tasks. (a) As chases become 752 

more direct, observers were more likely to report percepts closer to the “chasing” (social 753 

interaction) end of the scale. At less direct chases, ratings were lower (i.e., closer to “moving 754 

independently [“moving ind.”]). (b) As the charge speed (speed at which agents charge at each 755 

other) increased, interactions were perceived to be more aggressive (closer to the “fighting” end 756 

of the scale). At lower charge speeds, ratings were closer to “playing”. N= 312 and 319 in 757 

panels (a) and (b), respectively. Errorbars represent the 95% confidence interval. 758 

Robust individual differences in social perception exist atop group-level 759 

tendencies 760 

Even given these shared general tendencies, individuals often vary in their percepts of social 761 

interactions, especially when faced with ambiguous scenarios. To quantify this across-subject 762 

variability, inspired by psychophysics approaches, we fit individual participants’ rating data with 763 

a sigmoid (detection experiments) or linear function (discrimination experiments; see Methods) 764 

to derive individual “social tuning curves”. For detection curves, we focused on three main 765 

parameters: (i) point of subjective equality (PSE), the value of chase directness at which the 766 

participant’s percept crosses the midpoint of the rating scale (0.5); higher values indicate that 767 

more evidence is needed to declare something “social”; (ii) range, the difference between ratings 768 

at the lowest (0) and highest (1) levels of chase directness; higher values may reflect higher 769 

perceptual vividness, certainty or diversity in percepts; and (iii) bias, the extent to which ratings 770 

are skewed toward one end of the scale; higher values (> 0.5) indicate a bias toward social 771 

(“chasing”) while lower values (< 0.05) indicate a bias toward nonsocial (“moving 772 
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independently”). For discrimination curves, we focused on two main parameters: (i) range, the 773 

difference between ratings at the lowest (0) and highest (1) levels of charge speed; higher values 774 

may reflect higher perceptual vividness, certainty or diversity in percepts; and (ii) bias, the extent 775 

to which ratings are skewed toward one end of the scale; higher values (> 0.5) indicate a bias 776 

toward “fighting” while lower values (< 0.5) indicate a bias toward “playing”. See Fig 2 for a 777 

schematic of these parameters. 778 

While the vast majority of subjects showed the same general directionality as the group-779 

level trends, fine-grained properties of tuning curves differed between subjects (see Fig 4a for 780 

sample participants [all data in Fig S4 and S5] and Fig 4b for full distributions of parameters of 781 

interest). To test the stability of these tuning curves within participants, we had participants 782 

return for a second session 1–2 months later, in which the task design was identical to the first 783 

session except that we used previously unseen animations (generated using the same algorithms). 784 

Visual inspection showed that idiosyncrasies in behavior and tuning curves were largely 785 

preserved across sessions (e.g., Fig 4a).  786 

We quantified the stability and uniqueness of tuning curves in two ways. First, we used 787 

parameters calculated on data from a participant’s first session to fit the same participant’s data 788 

in their second session (or vice versa). To test the extent to which curve parameters were both 789 

stable within people and distinct across people, we compared this within-participant fit to the 790 

mean across-participant fit calculated by using each participant’s curve to fit data from all other 791 

participants in the same session. Participants’ ratings were generally better predicted by their 792 

own curves from a different session than the average of everyone else’s curves in the same 793 

sessions (Fig 4c, middle and right violin plots within each subplot; outliers omitted for clarity; 794 

detection task: mean difference (MD)=0.04 and 0.05 when fitting session 2 data to session 1 and 795 

vice versa, both p<.001; discrimination task: MD=0.07 (p=.006) and 0.08 (p=.06) when fitting 796 

session 2 data to session 1 and vice versa). Second, we calculated the intra-class correlation 797 

coefficient between parameters fit to data within each session for each parameter of interest. In 798 

the detection task (sigmoid fit), PSE, range and bias showed moderate to good reliability; in the 799 

discrimination task (linear fit), slope and bias showed generally moderate reliability (Fig 4d; see 800 

Fig S6a-b for data on other parameters that were less reliable and/or redundant with the main 801 

curve-fit parameters of interest and Fig S6c for the covariance between all curve-fit parameters). 802 

Overall, then, individual tuning curves for both social detection and discrimination were both 803 
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stable within subjects (reliable across sessions) and unique between subjects, suggesting a trait-804 

like component. 805 

 806 

 807 

Fig 4: Individual differences in social tuning curves. (a) Tuning curves for sample participants 808 

in two distinct sessions. Dots represent mean ratings at each motion attribute level, and the line 809 

shows the best fitting sigmoid (detection) or linear curve (discrimination). For the full versions, 810 

see Fig S4 and S5. (b) Histograms showing the full distributions of the main curve-fit parameters 811 

of interest from all subjects in session 1 (left, detection experiment; right, discrimination 812 

experiment). PSE, point of subjective equality. (c) Predicting individuals’ single-session ratings 813 

using curve parameters fit to their own data from the same session (left), their own data from a 814 

different session (middle), or the average parameters from all other participants in the same 815 

session (right). NRMSE=normalized root mean square error; lower values indicate better fits. 816 

(d) Test-retest reliability between sessions 1 and 2 of the main curve-fit parameters of interest. 817 
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Each dot represents a participant. Test-retest reliability for other parameters is shown in Fig S6. 818 

***= p < .001, **= p < .01, .= p<.1. 819 

 820 

Individual social detection and discrimination tendencies are only weakly 821 

related 822 

Social detection and discrimination both exhibit shared tendencies as well as robust individual 823 

differences, but how do behaviors relate across the two tasks? In other words, are individuals’ 824 

discrimination tendencies predictable from their detection tendencies (and vice versa)? For 825 

example, people who are more prone to seeing social interactions in the first place might also be 826 

more prone to seeing them in a more positive (or negative) light. To study this, we conducted a 827 

third experiment in which a new set of participants performed both the detection and 828 

discrimination tasks in interleaved blocks in a single session. We successfully replicated the 829 

group-level behavioral trends (Fig 3) in this new group of people (see Fig S7). We then fit 830 

sigmoid and linear curves to each individual’s detection and discrimination data, respectively. As 831 

a sanity check, we verified that the covariances across curve-fit parameters within each task 832 

(detection task: PSE, range, bias; discrimination task: range, bias) were comparable to earlier 833 

experiments (Fig 5). 834 

Next, we correlated curve-fit parameters across participants both within and across tasks. 835 

Focusing on between-task correlations (highlighted part of the matrix in Fig 5), the majority of 836 

pairwise correlations were weak, suggesting that detection and discrimination behavior are 837 

overall relatively independent. We did, however, find two significant relationships. First, the 838 

“range” parameter correlated moderately across tasks (r=0.44, q<.05). This indicates that people 839 

who distinguished social (“chasing”) from non-social (“moving independently”) more strongly 840 

also distinguished negative interactions (“fighting”) more from positive interactions (“playing”) 841 

more strongly. This could reflect people’s general confidence/willingness to use extremes 842 

(people who are more confident may have used a wider range of the rating scale in both tasks) 843 

and/or the extent to which their percepts are sensitive to sensory evidence (people whose 844 

percepts vary more strongly with sensory evidence would have a higher range in both tasks). The 845 

second result was that people who showed a higher bias toward socialness (“chasing”) in the 846 

detection task also showed a higher range (more distance between extremes) in the 847 

discrimination task (r=.39, q<.05). This suggests that people who are more predisposed to 848 
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detecting social interactions may also be more sensitive to motion cues and/or more certain when 849 

discriminating between different types of interactions. Still, on the whole, social discrimination 850 

tendencies were largely not directly predictable from detection tendencies and vice versa.  This 851 

suggests that behavior on the two tasks may be complementary in revealing individual 852 

differences in social perception, and combining information about detection and discrimination 853 

tuning curves likely better characterizes individuals’ socio-perceptual tendencies than one task 854 

alone. 855 

 856 

 857 

Fig 5: Correlation between the main curve-fit parameters of interest from the social detection 858 

and discrimination tasks in the mixed-design experiment (within-subject design). Across tasks 859 

(black box), only two moderate pairwise correlations emerged, suggesting that each task 860 

provides non-redundant information on individuals’ socio-perceptual tendencies. Significant 861 

correlations (FDR q < .05) are displayed in bold text.  862 

 863 

Combining individuals’ social detection and discrimination behavior best 864 

relates to trait differences  865 

How do socio-perceptual tendencies as measured by behavior on our detection and 866 

discrimination tasks relate to real-world variability in social function? In past work, behavior on 867 

related tasks has been found to differ in various clinical and subclinical conditions including 868 

autism6–10, internalizing symptoms5, depression14–17 and loneliness44,45. In our final set of 869 

analyses, we studied if and how properties of individuals’ social tuning curves covaried with 870 
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social, affective, and personality traits as measured by established self-report scales (see 871 

Methods for details).  872 

We first performed exploratory correlations between all trait scores (14 total) with all 5 (3 873 

for detection, 2 for discrimination) curve-fit parameters. Although some significant correlations 874 

emerged, none survived multiple comparison corrections (Fig 6a). The uncorrected correlations 875 

suggested that: (1) more extraverted (E) individuals had lower social thresholds (PSE) in the 876 

detection task; (2) individuals with higher communication deficits (comm) had less of a bias 877 

toward “social” responses, and individuals with (3) higher openness (O) and (4) lower negative 878 

affect (neg) showed higher uncertainty (lower range) in discriminating between positive and 879 

negative interactions. The first two of these were in line with past work and our a priori 880 

hypothesis that individuals with social interaction deficits might have higher thresholds (i.e., 881 

need more evidence) to detect social information. 882 

One possibility is that, rather than first-order relationships between single tuning-curve 883 

parameters and single trait dimensions, relationships between traits and social detection/ 884 

discrimination behavior are more complex—perhaps multivariate and/or nonlinear. To explore 885 

this possibility, we used inter-subject representational similarity analysis (IS-RSA42) to test for a 886 

second-order relationship: in other words, to test the hypothesis that individuals with more 887 

similar tuning curves in one or both tasks are also more similar in their pattern of trait scores. 888 

Results showed that indeed, we could recover such a second-order relationship, but the effect 889 

was significant only when combining information about tuning curves from both detection and 890 

discrimination tasks (Fig 6b). Thus, features of individuals’ social detection and discrimination 891 

behavior in our controlled experimental setting may carry a meaningful, albeit weak, signal as to 892 

self-reported real-world social functioning. Taken alongside the relatively weak correlations 893 

between detection and discrimination tuning curves seen in the previous section, these results 894 

suggest that social detection and discrimination behavior each carry unique information about an 895 

individual’s socio-perceptual tendencies. 896 

 897 
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 898 

Fig 6: (a) Exploratory pairwise Pearson correlations between each trait score and each curve fit 899 

parameter in both the detection and discrimination tasks (exploratory analysis). Correlations 900 

that are significant at p < 0.05 (uncorrected for multiple comparisons) are shown in darker 901 

red/blue. (b) Results from an inter-subject representational similarity analysis (IS-RSA) testing 902 

the second-order hypothesis that pairs of participants with more similar socio-perceptual 903 

tendencies on our task(s) also have more similar patterns of trait scores. This relationship is 904 

significant only when combining parameters from both detection and discrimination tasks 905 

(purple), not when using parameters from a single task alone (blue and red). Abbreviations: 906 

Autism Quotient (AQ) questionnaire subscales – 'soc': social skill deficits, 'attn': attention-907 

switching deficits, 'img': imagination deficits, 'det': heightened attention-to-detail and 'comm': 908 

communication deficits; Positive and Negative Affect Schedule (PANAS) subscales – ‘pos': 909 

positive affect and 'neg’: negative affect; Big 5 (NEO-FFI) subscales – 'N': neuroticism, 'E': 910 
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extraversion, 'O': openness, 'A': agreeableness and 'C': conscientiousness; ‘UCLA’: UCLA 911 

loneliness scale; ‘# fr.’: number of friends. 912 

Discussion 913 

Here, we used a psychophysics-inspired approach to characterize both group-level tendencies 914 

and individual differences in social perception. We found both strong commonalities in how 915 

people use relatively low-level motion attributes to arrive at percepts of the presence (detection 916 

experiments) and nature (discrimination experiments) of a social interaction, and robust 917 

individual differences that were replicable over a period of months and showed some—albeit 918 

weak and complex—relationships to trait phenotypes.  919 

      Our approach lends a level of rigor and precision to the study of social perception. 920 

While some notable past work has used parametric stimulus manipulations22,52–56, here, we 921 

extend this approach to individual-subject data to recover single-person social tuning curves that 922 

are both reliable and unique. Generating stimuli algorithmically makes our approach 923 

simultaneously more objective and more subjective: more objective because we can create 924 

parametric manipulations using quantitatively defined features (rather than relying on 925 

handcrafted stimuli created and labeled via experimenter intuition30) and thereby generalize 926 

beyond item-level effects, and more subjective because we are eschewing any notions of a 927 

ground truth and classifying behavior according to observers’ own reports57, which better reflects 928 

what happens in the real world—where different people can and do interpret the same social 929 

situation differently. 930 

          Social cognition is traditionally considered a high-level abstract cognitive process, 931 

but more recent work has found evidence that recognizing and processing social information 932 

begins earlier in the perceptual hierarchy than previously thought26,56,58–60, and artificial 933 

intelligence can extract basic cues as to the presence and nature of social information using fast, 934 

automatic, visually-based processes56. The recently proposed “third visual pathway” in the brain, 935 

which runs along the lateral surface from early visual regions into the superior temporal sulcus 936 

and is specialized for extracting social information from dynamic cues, embodies the theory that 937 

our visual system might be especially attuned to social information, given its evolutionary 938 

importance59. Our work adds to this growing body of work by showing that parametrically 939 
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varying meaningful “mid-level” visual motion attributes61 even in very stripped-down, simplified 940 

stimuli can directly modulate social percepts at both the group and individual level, thus 941 

confirming that social perception involves visual evidence accumulation with both an objective 942 

and subjective component. Of note, autism is a condition marked by deficits with social 943 

cognition, but also altered basic visual processing62,63; the idea that perception is the fundamental 944 

starting point for social cognition might lead us to discover hierarchical links between 945 

aberrations in these two domains. 946 

While the motion attributes we used here, chase directness and charge speed, were 947 

sufficient to evoke varying social detection and discrimination percepts respectively, we also 948 

acknowledge that social percepts are governed by many more dimensions than these two. We 949 

propose the idea of individual social perception “landscapes” that can be conceptualized as a 950 

multidimensional space spanned by objectively defined axes (e.g., motion attributes such as our 951 

chase directness and charge speed, plus many others) where the dimensions themselves are 952 

fixed, but sensitivity to these dimensions varies across people and can be expressed in terms of 953 

tuning curve parameters. In Fig 7, we show a two-dimensional schematic of what these 954 

landscapes might look like and how they might vary. In this example, the horizontal axis 955 

represents an attribute that influences if a social interaction is perceived (detection; e.g., chase 956 

directness) and the vertical axis represents an attribute that influences how a social interaction is 957 

perceived (discrimination; e.g., charge speed). A healthy neurotypical individual (Fig 7a) might 958 

show moderate sensitivity to objective evidence for socialness (indicated by the saturation 959 

gradient along the horizontal axis); once information is generally deemed social, percepts of the 960 

nature of that information are generally balanced between positive and negative interactions 961 

(even vertical distribution of pink and blue). On the other hand, someone with an autism-like 962 

phenotype (Fig 7b) might have lower sensitivity to social information—in other words, they 963 

might require higher doses of objective evidence to detect a social interaction. For someone with 964 

a depression-like phenotype (Fig 7c), detection sensitivity may be largely normal, but 965 

discrimination might be skewed toward negative percepts. Lastly, someone with 966 

psychosis/paranoia-like traits (Fig 7d) might show both heightened sensitivity to socialness and a 967 

bias towards negative percepts—in other words, a proneness to read social intentions, 968 

particularly nefarious ones, into scenarios that others might perceive as non-social or, at most, 969 

social yet neutral. While we explored only two possible dimensions here, and did not include 970 
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clinical populations, we see the present set of experiments as a first step toward discovering and 971 

characterizing these landscapes—which, because they are based on more implicit behavioral 972 

readouts, are possibly less prone to overt bias than self-report measures and therefore a useful 973 

complement to existing trait scales. Importantly, our results showed that relationships with 974 

classical traits emerged only when combining the two tasks (detection and discrimination), 975 

indicating that each axis carries unique variance; adding more dimensions (i.e., using more 976 

complex, yet still parameterized stimuli) will likely enhance our ability to characterize real-world 977 

social and affective function. 978 

 979 

` 980 

Fig 7. 2D projection of social perception landscapes with detection (not social ⟷ social) and 981 

discrimination (positive ⟷ negative) along the horizontal and vertical axes, respectively. How 982 

subjective percepts of the presence and nature of social interactions may present in (a) a 983 

neurotypical individual versus individuals with (b) autistic, (c) depressive or (d) psychotic traits 984 

who show, respectively, reduced progression towards social with sensory evidence (large faded 985 

area), increased biases towards negative percepts (large blue zone even at typically neutral or 986 

positive evidence), and an increased social sensitivity as well as bias towards negative (leftward 987 

saturation combined with expanded blue territory), respectively.  988 

 989 
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Future work can combine our psychophysics-inspired task framework with additional 990 

readouts such as reaction times, eye-tracking, physiological measures and/or neuroimaging to 991 

yield a more comprehensive picture of the evidence accumulation and decision-making 992 

strategies, attentional processes, and other computations underlying individuals’ social-993 

perceptual judgments. There may be a role for generative AI in bridging the gap between the 994 

highly impoverished stimuli used here and the full complexity of real-world social information—995 

i.e., we may be able to use generative AI to create more naturalistic-feeling stimuli that are 996 

nevertheless still parameterized along known axes. In closing, we note that while the vast 997 

majority of past work on social perception and cognition has focused on passive (third person) 998 

perception of others’ interactions—which is indeed an important part of social cognition—many 999 

of our most salient and important social experiences are ones in which we are an active (first-1000 

person) participant. One final advantage of our framework is that it can be easily adapted to a 1001 

first-person context, in which participants themselves are controlling one of the agents and the 1002 

other agents are programmed to behave in a certain way toward them. This opens the door to 1003 

generating and comparing social tuning curves between passive and active scenarios, as well as 1004 

extracting more latent behavioral readouts such as participants’ movement trajectories, which we 1005 

anticipate will provide an even richer and more useful picture of social perception at both the 1006 

group and individual levels. 1007 
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