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Functional connectivity during frustration: a preliminary study
of predictive modeling of irritability in youth
Dustin Scheinost 1, Javid Dadashkarimi2, Emily S. Finn3, Caroline G. Wambach4,7, Caroline MacGillivray4,8, Alexandra L. Roule4,9,
Tara A. Niendam5, Daniel S. Pine4, Melissa A. Brotman4, Ellen Leibenluft4 and Wan-Ling Tseng 6

Irritability cuts across many pediatric disorders and is a common presenting complaint in child psychiatry; however, its neural
mechanisms remain unclear. One core pathophysiological deficit of irritability is aberrant responses to frustrative nonreward. Here,
we conducted a preliminary fMRI study to examine the ability of functional connectivity during frustrative nonreward to predict
irritability in a transdiagnostic sample. This study included 69 youths (mean age= 14.55 years) with varying levels of irritability
across diagnostic groups: disruptive mood dysregulation disorder (n= 20), attention-deficit/hyperactivity disorder (n= 14), anxiety
disorder (n= 12), and controls (n= 23). During fMRI, participants completed a frustrating cognitive flexibility task. Frustration was
evoked by manipulating task difficulty such that, on trials requiring cognitive flexibility, “frustration” blocks had a 50% error rate and
some rigged feedback, while “nonfrustration” blocks had a 10% error rate. Frustration and nonfrustration blocks were randomly
interspersed. Child and parent reports of the affective reactivity index were used as dimensional measures of irritability.
Connectome-based predictive modeling, a machine learning approach, with tenfold cross-validation was conducted to identify
networks predicting irritability. Connectivity during frustration (but not nonfrustration) blocks predicted child-reported irritability (ρ
= 0.24, root mean square error= 2.02, p= 0.03, permutation testing, 1000 iterations, one-tailed). Results were adjusted for age, sex,
medications, motion, ADHD, and anxiety symptoms. The predictive networks of irritability were primarily within motor-sensory
networks; among motor-sensory, subcortical, and salience networks; and between these networks and frontoparietal and medial
frontal networks. This study provides preliminary evidence that individual differences in irritability may be associated with
functional connectivity during frustration, a phenotype-relevant state.

Neuropsychopharmacology (2021) 46:1300–1306; https://doi.org/10.1038/s41386-020-00954-8

INTRODUCTION
Irritability, defined as increased proneness to anger and frustration
compared to peers [1], is a common presenting problem in child
psychiatry [2]. Severe irritability in youth causes significant impair-
ment in multiple domains and high rates of service use, hospitaliza-
tion, and school suspensions [3]. Longitudinally, childhood irritability
predicts adult anxiety and depressive disorders [4–6] and suicidality
[7]. The highly impairing nature and long-lasting adverse outcomes
of childhood irritability underscore a critical need to identify its
etiology and pathophysiology, which remain unclear due to limited
research. A better understanding of the brain mechanisms under-
lying irritability could facilitate the development of novel, neurobio-
logically informed treatments.
A recent translational model of irritability posits that a core

pathophysiological deficit of irritability is aberrant responses
to frustrative nonreward mediated by amygdala–frontostriatal
dysfunction [1]. Frustrative nonreward, defined as the psycholo-
gical state induced when an expected reward is withheld [8],
is a construct in the negative valence systems within the

research domain criteria matrix. In animals and humans, frustrative
nonreward is associated with increased motor activity, aggression,
and approach behavior [9, 10]. Neuroimaging paradigms that
induce frustration in youth in a laboratory setting thus support a
translational neuroscience approach that extends clinical observa-
tions on the central role of aberrant responses to frustration in
irritability.
Using a frustration paradigm, a recent functional magnetic

resonance imaging (fMRI) study in a large transdiagnostic sample
with varying degrees of irritability found that, following frustra-
tion, higher levels of irritability (i.e., an average of parent and
child reports) were related to greater frontal-striatal activation in
regions including the dorsolateral prefrontal cortex, anterior
cingulate cortex (ACC), inferior frontal gyrus (IFG), and caudate
[11]. A few other studies using frustration paradigms in youth
with irritability also report neural dysfunction in the same regions
along with the amygdala and parietal cortex [12–14]. Much less is
known about functional connectivity during frustration and its
association with irritability. Functional connectivity may provide
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information about brain organization that is unique and
complementary to regional activation, thus further facilitating
discovery of brain–behavior associations [15].
Here, we examined the ability of functional connectivity across

multiple networks in the brain to predict irritability using a
machine learning approach, i.e., connectome-based predictive
modeling (CPM) [16]. As a machine learning approach, CPM has
built-in k-fold cross-validation that limits overfitting and increases
generalizability of the findings [16]. CPM uses whole-brain
functional connections and their associations with observed
behaviors to build predictive models from this functional
connectivity information and predict behavioral scores in novel
subjects. CPM has been applied to psychological and psychiatric
research to predict attention [17], opioid and cocaine use [18], and
attention-deficit/hyperactivity disorder (ADHD) and autism symp-
toms [19]. This is the first study to use CPM to identify whole-brain
patterns of disrupted networks underlying irritability using a
frustrative nonreward paradigm.
The limited studies that examined functional connectivity

during frustration reported decreased connectivity between IFG
and periaqueductal gray extending to culmen in irritable youth
[11] and increased connectivity between amygdala and ACC in
healthy children and adults [20]. Other task-based data (without a
frustration component) in irritable children showed that, during
processing of social threat, higher irritability (plus anxiety) were
related to decreased amygdala-medial prefrontal cortex (mPFC)
connectivity [21]. During reward processing, especially omission of
rewards, higher early childhood irritability was associated with
altered amygdala–frontostriatal circuitry [22]. A few more studies
used resting state, rather than task-based data, to reveal
associations between functional connectivity and irritability. For
example, children with severe temper outbursts, relative to
healthy children or children with ADHD without temper outbursts,
exhibited reduced resting state connectivity within ACC and
increased connectivity between the mid-ACC and precuneus [23].
However, in a study with youths with severe mood dysregulation
(the majority of whom met criteria for disruptive mood
dysregulation disorder [DMDD]), amygdala-based resting connec-
tivity did not differ between those with severe irritability and
healthy controls [24].
Although these past studies provide preliminary evidence

for neural connectivity abnormalities associated with irritability,
all have utilized a seed-based approach by investigating
amygdala-, ACC-, or IFG-based connectivity [11, 21, 23, 24]. Little
is known about the patterns of disrupted networks underlying
irritability across multiple networks in the brain. Moreover, only
two studies examined functional connectivity using tasks
probing frustrative nonreward [11, 20], a construct central to
irritability [1]. It has been argued that tasks that tax individuals
along a phenotype-relevant function, analogous to a cardiac
stress test that identifies symptoms not observable at rest, may
amplify individual differences in neural circuitry mediating the
particular phenotype and thus improve the detection of
brain–behavior associations [25, 26]. As such, it is important to
test whether tasks involving frustrative nonreward are better
suited to elicit individual differences in network abnormalities
associated with irritability, compared to resting state or other
tasks without a frustration component. In this study, we utilize a
modified change-signal task [27] with rigged feedback to probe
cognitive flexibility (i.e., the ability to adapt one’s thinking and
behavior in response to changing environmental conditions/
demands) [28] under frustrative nonreward. This task is novel
and unique, relative to previous tasks probing frustrative
nonreward [11, 20], in the following aspects: (a) it probes both
motor inhibition and cognitive flexibility, two processes critical
for emotion regulation, whereas previous studies probed
attention orienting [11] and inhibitory control [20] in separate
lines of work and (b) the frustration and nonfrustration blocks

are interspersed randomly, whereas the order was fixed in
previous tasks [11, 20].
This preliminary study aimed to address the aforementioned

gaps in the literature by examining functional connectivity
for multiple networks across the whole brain, rather than a
single seed-defined functional network, during frustrating vs.
nonfrustrating states using CPM [16]. Specifically, we tested the
ability of functional connectivity to predict irritability symptoms
in a transdiagnostic sample of 69 youths with varying levels of
irritability. We used CPM to associate connectivity with dimensional
measures of irritability, rather than categories, at a subject-by-
subject level to maximize the information available to characterize
individual differences in brain–behavior relations. Given the past
literature, we hypothesized that functional connectivity during a
frustrating, but not nonfrustrating, state would be associated with
individual differences in irritability and that networks involving the
amygdala, striatum, ACC, and prefrontal cortex would be the most
predictive of irritability.

MATERIALS AND METHODS
Participants
This study included 69 youths with varying levels of irritability
across four diagnostic groups: 20 DMDD, 14 ADHD, 12 anxiety
disorder, and 23 healthy controls with no history of DSM-5
diagnosis (see Table 1 for sample characteristics). Participants
were recruited by the National Institute of Mental Health (NIMH)
Intramural Research Program. This study was approved by the
NIMH IRB, and written consent/assent was obtained from parents/
children. See Supplementary Information for detailed diagnostic/
clinical assessments and exclusion criteria.

Measures
Irritability was measured using the parent report and child report
of the Affective Reactivity Index (ARI) scale [29]. The ARI is a six-
item short scale assessing the frequency, duration, and threshold
of irritability [29], providing a measure of trait irritability. It has

Table 1. Sample characteristics.

n (%) or mean (SD) Range

Age, mean (SD), years 14.55 (2.85) 8–22

Gender, n (%)a 38 (55.10) ─
IQ, mean (SD)b 111.75 (11.45) 87–133

SES, mean (SD)c 38.34 (19.99) 20–114

Motion, mean (SD)d 0.07 (0.03) 0.02–0.16

Irritability measures, mean (SD)

Child-reported ARI 1.79 (2.04) 0–9

Parent-reported ARIe 2.80 (3.35) 0–10

Primary diagnosis, n (%)

DMDD 20 (28.99) ─
ADHD 14 (20.29) ─
Anxiety 12 (17.39) ─
No diagnosis 23 (33.33) ─

ADHD attention-deficit/hyperactivity disorder, ARI affective reactivity index,
DMDD disruptive mood dysregulation disorder, SES socioeconomic status.
aCoded as 0 (male) and 1 (female); n (%) is for the male.
bMeasured by the Wechsler abbreviated scale of intelligence. Missing data
for one participant.
cMeasured by the Hollingshead two-factor index. Missing data for eight
participants.
dCalculated as the mean Euclidean distance of framewise volume shift after
censoring.
eMissing data for five participants.
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good internal consistency (α ≥ 0.80), discriminant validity, and
test–retest reliability [29, 30]. The internal consistency in this
sample is 0.92 for the parent report and 0.79 for the child report.
Items were rated on a 0–2 scale and yielded a total score of 0–12.
For >95% of the sample, these measures were collected within
1 month of scanning (>65% collected within a week of scanning).

fMRI task
Participants completed a modified change-signal task [27] during
fMRI data collection. The task consisted of two trial types: go
(60%) and change (40%). See Fig. 1 for the trial timing and
structure. The task was divided into six functional runs (each
lasted ~6 min) and consisted of two blocks: a “frustration” block
(50% error rate on change trials plus 20% rigged feedback on
correct go trials) and a “nonfrustration” block (10% error rate on
change trials), the order of which was randomized within run. This
task thus evokes frustrative nonreward (i.e., the psychological
state induced when an expected reward is withheld) [8] via
manipulation of the error rate and inclusion of rigged feedback.
Of note, frustrative nonreward is closely related to negative
prediction error, i.e., when a reward is worse or less than
predicted [31]. Given our focus on “psychological/brain state”
under frustration, we use the term frustrative nonreward, rather
than negative prediction error, throughout the paper. The scan
length of 36 min provides a good amount of data to estimate
functional connectivity [32]. At the end of each block, participants
self-reported their feelings of frustration using a nine-point
Likert scale, providing a measure of state irritability. Overall,
participants reported feeling more frustrated during frustration
than nonfrustration blocks, supporting the task’s validity as a
frustrative nonreward paradigm, which did not vary as a function
of age. See Supplementary Information for task details and
behavioral analyses/results.

Data acquisition and preprocessing
Neuroimaging data were acquired on a 3-T General Electric
scanner using a 32-channel head coil. Data were preprocessed
using the Analysis of Functional NeuroImages with standard
preprocessing procedures (e.g., despiking, slice timing correction,
coregistration). See Supplementary Information for details regard-
ing scan parameters, preprocessing, and head motion. Several
covariates of no interest were regressed out from the data
including the 12 motion parameters (six rigid body motion
parameters and six temporal derivatives), mean white matter
signal, mean cerebrospinal fluid signal, mean global signal, and
the linear, quadratic, and cubic drifts. Global signal regression was
performed as it strengthens the association between functional
connectivity and behavior, leading to better performing and
generalizing predictive models [33].

Connectivity matrices
Whole-brain functional connectivity was assessed as described
previously [25, 26]. Briefly, network nodes were defined using the
Shen 268-node functional brain atlas that includes the cortex,
subcortex, and cerebellum [34, 35]. 1The atlas was warped from
MNI space into single-subject space. Task connectivity was
calculated on the basis of the “raw” task time courses, without
removal of task-evoked activity, as validated in previous studies
[25, 26]. In addition, as the task blocks are long (~3 min), this
approach is similar to the one used in [17] and approximates a
continuous performance task. We have previously shown that
calculating connectivity matrices in this manner emphasizes
individual differences in connectivity [25] and increases CPM
performance [26]. For every node, a mean time course was
calculated by averaging the time courses of all of its constituent
voxels. Pairwise correlations were computed between all pairs of
nodes, and Pearson correlation coefficients were Fisher z-
transformed to yield symmetric 268 × 268 connectivity matrices,
as is standard in the field.

Connectome-based predictive modeling
CPM was conducted to predict child- and parent-reported ARI
scores using previously validated custom MATLAB scripts [16].
2CPM uses connectivity matrices and phenotypic data from
individuals as input to generate a predictive model of the
behavioral data from connectivity matrices. Positive networks are
networks for which increased edge weights (increased connectiv-
ity) are associated with the variable of interest, and negative
networks are those for which decreased edge weights (decreased
connectivity) are associated with the variable of interest. See
Supplementary Information for details and a schematic of CPM
(Fig. S1). One hundred iterations of tenfold cross-validation were
used to train and evaluate models.

Localization of predictive networks
Predictive networks identified using CPM are complex and
composed of multiple brain regions and networks. Similar to
previous CPM studies, predictive networks were summarized at
multiple levels of data reduction including at the edge, node, and
network level [36]. Macroscale brain regions (e.g., prefrontal
cortex, cerebellum) and canonical functional network localizations
(e.g., frontoparietal, motor sensory) based on previous work [35]
were presented. In addition, for each node, the network theory
measure degree was calculated as the sum of the number of
edges for each node that belonged to the predictive networks.
Visualizations of predictive edges were created using BioImage
Suite Web. 3See details in Supplementary Information.

Statistical analysis
The correspondence between predicted and actual values, or
model performance, was assessed using Spearman’s rank correla-
tion (ρ; to avoid strong distribution assumptions) and root
mean square error (defined as: RMSEðpredicted; actualÞ ¼pð1=nPn

fi¼1gðactuali � predictediÞ2Þ). Model performance of the
median performing model from the 100 iterations of tenfold cross-
validation is reported. When using cross-validation, analyses in the
left-out folds are not independent, and the number of degrees of
freedom is thus overestimated for parametric p values. Instead of
parametric testing, we therefore performed permutation testing.
To generate null distributions for significance testing, we
randomly shuffled the correspondence between behavioral
variables and connectivity matrices 1000 times and re-ran the

Fig. 1 Trial timing and structure during the modified change-
signal task. ITI intertrial interval.

1https://www.nitrc.org/projects/bioimagesuite/
2https://github.com/YaleMRRC/CPM
3https://bioimagesuiteweb.github.io/webapp/connviewer.html
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CPM analysis with the shuffled data. Based on these null
distributions, the p values for predictions were calculated as:
p ¼ ð#fρnull>ρmediang þ 1Þ=1001, where #{ρnull > ρmedian} indi-
cates the number of permutated predictions numerically greater
than the median of the unpermutated predictions. As we expect a
positive association between predicted and actual values, one-
tailed p values are reported. Comparison between models was
performed using Steiger’s test to compare dependent correlation
coefficients.

RESULTS
Prediction of trait irritability
The overall CPM model successfully predicted child-reported ARI
using functional connectivity from the frustration blocks (ρ= 0.24,
RMSE= 2.02, p= 0.03, permutation testing, 1000 iterations, one-
tailed; Fig. 2). Given the confounding effect of motion on
functional connectivity, the wide age range of the sample,
potential sex differences, the co-occurrence of ADHD and anxiety
symptoms with irritability, and potential medication confound,
we tested whether our findings remained after adjusting for
the effects of motion, age, sex, ADHD and anxiety symptoms,
and medications. Follow-up comparisons adjusting for head
motion (ρ= 0.24, RMSE= 1.98, p= 0.03), age (ρ= 0.22, RMSE=
2.01, p= 0.04), sex (ρ= 0.24, RMSE= 2.0, p= 0.04), ADHD
symptoms (ρ= 0.22, RMSE= 2.03, p= 0.04), anxiety symptoms
(ρ= 0.22, RMSE= 2.03, p= 0.04), stimulants (ρ= 0.24, RMSE=
2.01, p= 0.03), nonstimulants ADHD medications (ρ= 0.24,
RMSE= 2.01, p= 0.03), antidepressants (ρ= 0.25, RMSE= 2.01,
p= 0.01), and antipsychotics (ρ= 0.23, RMSE= 2.01, p= 0.04)
demonstrated similar prediction performances. When the CPM
model was divided into independent positive and negative
predictive networks, only the positive predictive network con-
tributed to prediction (positive network: ρ= 0.29; negative
network: ρ= 0.04). We were not able to predict child-reported
ARI using functional connectivity from either the nonfrustration
blocks (ρ= 0.06, RMSE= 2.17, p= 0.26) or the difference between
the frustration and nonfrustration connectomes (ρ=−0.05, RMSE
= 3.83, p= 0.49). These prediction performances were signifi-
cantly worse than that using the frustration blocks (z= 2.67, p=
0.008; z= 2.82, p= 0.005). Finally, we were not able to predict
parent-reported ARI with CPM using functional connectivity
from the frustration blocks (ρ=−0.07, RMSE= 3.48, p= 0.61),
nonfrustration blocks (ρ=−0.04, RMSE= 3.43, p= 0.59), or the
difference between the connectomes (ρ= 0.03, RMSE= 3.72, p=
0.52). These predictions were significantly worse than the
predictions of child-reported ARI using the frustration blocks
(z= 2.5, p= 0.01; z= 2.3, p= 0.02; z= 2.0, p= 0.05).

Given the high co-occurrence between irritability and ADHD
symptoms, we conducted additional analysis to further disen-
tangle the relationship between irritability and ADHD and found
that the networks predicting ADHD were largely independent of
those predicting irritability (see Supplementary Information).

Anatomical and network localization of circuits predicting child-
reported trait irritability
Because the negative network did not contribute to prediction, we
only localized the positive network. A total of 266 edges positively
predicted child-reported ARI, consisting of 56 ipsilateral connec-
tions in the right hemisphere, 82 ipsilateral connections in the left
hemisphere, and 128 connections between the right and left
hemispheres (Fig. 3A). These connections included equal number
of long- and short-range connections (45% long range; 55% short
range, χ2= 0.66, p= 0.42). In addition, 214 brain regions (out of
268) and all 10 canonical networks contributed to this model.
Nodes with the greatest number of edges were primarily located
in the left cerebellum, left parietal lobe, right thalamus, and motor
cortex (Fig. 3B). At the network level, connections within the
motor-sensory network and between the motor-sensory, sub-
cortical, and salience networks, and between these networks and
the medial frontal and frontoparietal networks contributed the
majority of edges to the positive network (Fig. 3C).

Prediction of state irritability
We investigated whether CPM could predict state irritability, i.e.,
participants’ self-rated frustration during task. Neither the original
CPM model (ρ= 0.16, RMSE= 1.97, p= 0.14, permutation testing,
1000 iterations, one-tailed) nor models trained from the frustration
(ρ= 0.18, RMSE= 2.17, p= 0.12, permutation testing, 1000 itera-
tions, one-tailed) or nonfrustration blocks (ρ= 0.19, RMSE= 1.77,
p= 0.11, permutation testing, 1000 iterations, one-tailed) signifi-
cantly predicted state irritability.

Prediction of trait irritability using task activation
Given that task connectivity predicted child-reported irritability,
we also examined if task activation could predict child-reported
irritability (Supplementary Information). In brief, we found limited
evidence that task activation predicted child-reported irritability.

DISCUSSION
This is the first study to apply predictive modeling (i.e., CPM) to
identify whole-brain patterns of disrupted networks underlying
irritability using a frustrative nonreward paradigm. We used CPM
as a machine learning approach to associate connectivity with
dimensional measures of irritability, rather than categories, at a
subject-by-subject level to maximize the information available to
characterize individual differences in brain–behavior relations.
Given the limited sample size (n= 69), our results should be
treated as preliminary. Nonetheless, our CPM approach showed
that functional connectivity during frustration (but not nonfrus-
tration) blocks was associated with child-reported irritability. The
predictive networks of child-reported irritability were primarily
within the motor-sensory network; among the motor-sensory,
salience, and subcortical (including amygdala, thalamus, striatum)
networks; and between these networks and the frontoparietal and
medial frontal networks. Results were adjusted for age, sex,
motion, medications, ADHD, and anxiety symptoms.
Functional connectivity is commonly examined using resting

state scans. In this study, we found that functional connectivity
during a “frustrated” state was more predictive of youths’ trait-
level irritability than functional connectivity during a “nonfru-
strated” state. Thus, the frustration task may serve as a “mental
stress test” [25, 26] to evoke individual differences in connectivity
related to irritability. That is, researchers may be more likely to
observe disrupted connectivity and brain dysfunction in youth

Fig. 2 Correlation between observed (x-axis) and predicted
(y-axis) irritability generated using CPM. RMSE root mean square
error. Shaded area represents 95% confidence interval.
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with irritability when the brain system is “stressed” by frustration
than when they are “at rest.” These results align with other CPM
studies using task-based connectivity. For example, task-based
connectivity using salient infant faces and cry stimuli was
associated with caregiving measure of early postpartum mothers
[37], and connectivity from relevant tasks were associated with
relapse to cocaine and opioids in polysubstance using individuals
[18]. Overall, our findings support the importance of examining
functional connectivity during a phenotype-relevant state such as
frustration to better probe individual differences in brain–behavior
associations and thus facilitate biomarker discovery [38].
Past research employed a seed-based approach focused on

amygdala-, ACC-, or IFG-based connectivity and linked irritability and
frustration to neutral circuits connecting amygdala, ACC, mPFC, and
striatum [20–23]. Importantly, the current study extends prior
literature by examining connectivity of multiple functional networks
across the brain. Indeed, a much larger networks were implicated in
irritability than previously found [20–23]. Most of the networks
predicting irritability were within the motor-sensory network and
between motor-sensory, salience (e.g., ACC), and subcortical (e.g.,
amygdala, striatum) networks as well as between these three
networks and medial frontal (e.g., mPFC) and frontoparietal (e.g., IFG)
networks. Our finding involving the salience, subcortical, medial
frontal, and frontoparietal networks was consistent with prior seed-
based literature linking IFG, amygdala, ACC, mPFC, and striatum
[20–23]. One novel finding of this study is the contribution of within
motor-sensory network, and between motor-sensory and frontopar-
ietal, subcortical, salience, and medial frontal networks to the
prediction of irritability.
A recent fMRI study of irritability in youth used a stop-signal task

[39], which is similar to our “change-signal” task except that only
ours requires the execution of an alternate response after inhibiting
the prepotent response. This study found that irritability in youth is
associated with decreased activation in the primary motor and
somatosensory cortex [39]. Research on the irritability-related
construct of aggression also finds links between aggression and

dysfunction in the primary motor cortex [40, 41]. Moreover,
structural connectivity and voxel-based studies suggest that
irritability in youth is associated with abnormal white matter
microstructure in the corticospinal tract, a major motor pathway
[42], and lower gray matter volume in the primary motor and
somatosensory cortex [39] and presupplementary motor area [43].
Behaviorally, research in animals and human suggest that following
frustration, animals and human showed increased motor activity,
aggression, and approach behavior [9, 10]. These are consistent with
our finding that connectivity within the motor-sensory network and
between motor-sensory and other networks (e.g., frontoparietal,
subcortical, salience, and medial frontal) are among the main
predictive networks of irritability. Dysfunction in the mPFC, parietal
lobe, and regions in the subcortical (amygdala, striatum) and
salience (ACC) networks have been reported in youth with irritability,
especially when frustrated [11–14]. Increased connectivity between
the motor-sensory network and other networks (including the
frontoparietal, subcortical, salience, and medial frontal networks)
during frustration in youth with irritability may mediate dysregulated
attention and motor control and disrupt integration of motor-
sensory, emotional, and cognitive information during frustration in
youth with irritability. As irritable youths become frustrated, they
may activate the motor network and its connection to other
networks to a greater extent than nonirritable youths, thus resulting
in the increased motor activity that characterizes the temper
outbursts and aggressive behavior associated with irritability [1].
In contrast, functional connectivity during the task was not

associated with parent-reported irritability. This is surprising given
previous studies linking brain function [44] and connectivity [22]
to parent reports of irritability. Notably, our sample included
youths who were significantly older (mean age= 14.55 years; four
subjects aged 18–22 years) than previous studies (mean age=
4.27 years [22] and 13.06 years [44]). It is well documented that
parent–child informant disagreement tends to be greater for
internalizing and mood symptoms, which are less observable to
others, than externalizing symptoms [45], hence an emphasis on

Fig. 3 CPM predicts irritability. A Edges that contributed to the CPM model organized by macroscopic brain regions. To help visualizing
these complex networks, edges only belonging to nodes with five or more edges (degree ≥ 5; middle) and 10 or more edges (degree ≥ 10;
right) are also shown. B Visualization of node degree (i.e., the sum of predictive edges for a node for the positive networks). Darker color
indicates higher degree. C Within and between network connectivity for the positive network. Cells represent the total number of edges
connecting nodes within and between each network, with darker colors indicating a greater number of edges. As the negative network did
not contribute to prediction, only the positive network is shown in all visualizations. Visualization created using BioImage Suite Web, http://
bisweb.yale.edu/. MF medial frontal, FP frontoparietal, DMN default mode network, Mot motor/sensory, VI visual A, VII visual B, VAs visual
association, SAL salience, SC subcortical, CBL cerebellum.
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children’s self-reports of internalizing symptoms [46, 47]. Perhaps
when youths get older, they become better and more accurate
informants of their own irritability than their parents, thus
enabling detection of the brain–behavior association.
Functional connectivity was not associated with state irritability

(i.e., subjects’ moment-to-moment frustration ratings during task),
despite participants’ feelings of greater frustration during frustration
than nonfrustration blocks. This may be a type 2 error or due to the
generally poor reliability of task measures [48]. Objective measures
such as physiological data (e.g., skin conductance and heart rate)
may provide an additional probe of state irritability. It remains to be
determined if disrupted functional connectivity during frustration
better reflects individual differences in trait irritability than in state
irritability. Given the low convergent validity between self-report
and task measures and the fact that each may assess different
aspects of the same cognitive process or behavioral tendency [49],
future work should continue to include both types of measurements
as probes for individual differences in irritability.
When we used task activation from five main events to predict

irritability using common, standard machine learning approaches
(i.e., SVR, LASSO, ridge, and elastic net), we found limited evidence
that task activation predicted irritability. Only the correct change
trials during frustration blocks significantly predicted child-
reported irritability when using elastic net with α= 0.50 specifi-
cally. This may be due to the low reliability of regional activation,
relative to functional connectivity [50], and is consistent with the
increasingly recognized notion that psychiatric disorders and
phenotypes are more likely to involve complex alterations in
neural network and connectivity rather than localized abnormal
activation within specific regions [51]. However, future fMRI
research should continue to investigate both regional activation
and connectivity patterns, as each provides important information
to advance the understanding of the neural mechanisms
mediating phenotypes of interest [15].
A common concern about predictive modeling in human

neuroscience is that resulting models often seem to explain
disappointingly little variance in the predicted measure, particu-
larly when compared to results derived from explanatory models
[52]. In contrast to explanatory models that use all available data
to generate a model, predictive models attempt to prevent
overfitting by validating the model through cross-validation with
strict separation of the training and testing data. Thus, correlations
reported from predictive modeling are typically lower than those
from explanatory models but are much closer to the true
underlying effect sizes. Our reported effect sizes align with most
predictive modeling studies [53] and with recent mega-analyses
comprised of thousands of subjects [54].
While this study provides novel contribution to the understanding

of neural networks implicated in irritability, several limitations should
be noted. While our sample is moderate for an fMRI study, it is
relatively small for predictive models. We used tenfold cross-
validation to increase our generalizability over explanatory models,
consistent with current best practices for predictive modeling
[52, 55]. Nonetheless, the use of predictive modeling alone does not
guarantee generalizability to another sample. Thus, our results
remain preliminary, and replication of our findings is needed using
large, diverse samples. Relatedly, our findings may apply only to the
disorders sampled here (DMDD, anxiety disorder, and ADHD) and
not to other disorders (e.g., depression, autism, and bipolar disorder)
in which irritability is also common. Of note, failure to generalize
may reflect inherent differences in samples. The underlying
predictive features may be different for different populations and
reflect important group differences in underlying neural circuitry. In
addition, the sample had a wide age range, and the limited sample
size precluded us from stratifying our analysis by age groups.
However, our results are unlikely to be driven by the wide age range,
as we found that (a) the validity of our task as a frustrative
nonreward paradigm did not vary as a function of age; (b) irritability

was not related to age; and (c) our analyses covaried for age. Still,
future research with a larger sample or a narrower age range is
warranted to determine if our findings can be generalized across
age groups. Another interesting future direction would be to test the
generalizability of our CPM results to frustrative nonreward tasks
probing different processes other than cognitive flexibility.
In conclusion, in this pilot work, we found that functional

connectivity when youths were frustrated was associated with
their self-reported irritability symptoms outside of the scanner.
Neural networks supporting motor function, action preparation,
attention control, and integration of motor-sensory, emotional,
and cognitive information are among the most predictive
networks of irritability. Future research with large samples is
necessary to replicate these findings.
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