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Abstract 
 

Given the same external input, one’s understanding of that input can differ based on internal 

contextual knowledge. Where and how does the brain represent latent belief frameworks that 

interact with incoming sensory information to shape subjective interpretations? In this study, 

participants listened to the same auditory narrative twice, with a plot twist in the middle that 

dramatically shifted their interpretations of the story. Using a robust within-subject whole-brain 

approach, we leveraged shifts in neural activity between the two listens to identify where latent 

interpretations are represented in the brain. We considered the narrative in terms of its hierarchical 

structure, examining how global situation models and their subcomponents–namely, episodes and 

characters–are represented, finding that they rely on partially distinct sets of brain regions. Results 

suggest that our brains represent narratives hierarchically, with individual narrative elements being 

distinct and dynamically updated as a part of changing interpretations of incoming information. 

 

 

 

  

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 13, 2025. ; https://doi.org/10.1101/2025.01.13.632631doi: bioRxiv preprint 

https://doi.org/10.1101/2025.01.13.632631
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 3 

Introduction 
 

Identical sensory inputs can evoke different interpretations. Rather than being fully predictable 

from properties of the information itself (i.e., “stimulus-computable”), our experiences of external 

information are flexibly shaped by how that information interacts with our internal expectations, 

prior knowledge, and mental state.  

 

Perceptual malleability has been widely studied using diverse types of stimuli1. For instance, 

bistable illusions induce rapid and reversible shifts between different valid percepts (e.g. a face 

versus a vase in the Rubin face-vase illusion). Beyond lower-level perceptual phenomena, more 

complex stimuli such as conversations or narratives can also exhibit ambiguity, often leading to 

more consequential and “stickier”—i.e., less reversible—interpretive shifts. (For example, once 

you realize that the character you believed to be the villain is actually the hero, you fundamentally 

alter your understanding of their actions and motivations throughout a story 2). While there has 

been extensive behavioral and neuroimaging work studying these perceptual experiences, it is 

unclear how the subjective interpretations of ambiguous information are instantiated within 

individual brains. 

 

Differences in brain activity across participants to the same external input (e.g. movies, auditory 

narratives, animations) have frequently been used to index different internal experiences of that 

input. In these studies, variability in neural activity across participants is often attributed to 

differences in interpretation. These differences in interpretation are shown to arise from various 

sources including experimentally-imposed or endogenously-generated contexts and beliefs 3–8, 

life-long experiences 9, and stable personality traits 10,11, which are assumed to color how people 

process identical sensory input. While across-subject analyses are informative, they can be 

confounded by idiosyncratic factors such as variations in functional brain anatomy, unmeasured 

traits and states, or experiential differences, making it challenging to fully attribute differences in 

brain activity to differences in interpretation. Instead, a within-subject approach, which compares 

the same individual to themselves before and after an interpretational shift, inherently controls for 

these factors and is a much more robust test for identifying where and how interpretations are 

represented in the brain.  

 

Beyond licensing stronger inferences about the neural basis of interpretations, adopting a within-

individual approach enables us to address two additional gaps in prior research. First, most 

neuroimaging studies treat narratives—and their corresponding interpretations—as monolithic 

entities. However, narratives are hierarchical, consisting of nested subcomponents such as 

characters and episodes 12,13. These subcomponents form dynamic, bidirectional relationships with 

the overarching mental framework that tracks the ‘gist’ of a narrative, or global “situation 

model”14,15: global situation models provide a scaffold for interpreting and organizing narrative 

subcomponents, while updates to these subcomponents (e.g., changes in character motivations or 

new events) reshape the broader situation model. Forming, maintaining, and updating these 

hierarchical representations of narratives is likely to engage brain regions spanning the cortical 

hierarchy (from sensory to transmodal areas 16,17). Thus, a second, related limitation of past 

empirical work is that it has tended to focus on a handful of a priori chosen networks or brain 

regions, such as the default mode network (DMN) 13 and the medial prefrontal cortex (mPFC) 18, 

which may have obscured important effects elsewhere in the brain.  
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Here, we aimed to identify where the brain represents distinct aspects of narrative interpretations.  

We used a unique narrative stimulus that contained a major twist halfway through that prompted 

participants to substantially shift their interpretations of the events preceding the twist. Participants 

then listened to the narrative a second time with this updated interpretation. Importantly, we held 

both the participant and the stimulus constant, enabling us to leverage within-subject shifts in 

neural activity between the first and second listen to understand how and where latent interpretive 

frameworks, independent of external sensory input, are reflected in the brain. Furthermore, by 

taking a whole-brain approach, we found evidence that elements at different levels of the 

interpretation hierarchy—i.e., global situation models, episodes, and characters—are represented 

in dissociable sets of brain regions. This work highlights how latent subjective interpretations of 

narratives are instantiated in the brain hierarchically.  

 

 

Results 
  

Our overarching goal was to identify where and how the brain represents interpretations of 

narratives and their subcomponents using a robust within-subjects approach. Thirty-six healthy 

adults listened to an auditory narrative twice in a row during functional magnetic resonance 

imaging (fMRI) scanning. The narrative featured a twist in the middle that recontextualized the 

earlier segments of the story. Initially perceived as a straightforward dialogue between a 

curmudgeonly dress-shopper (Steve) and a friendly, if pushy, shopkeeper (Lucy), the story later 

reveals a radically different reality: Steve is struggling to survive an apocalypse, and Lucy is a 

robot undermining his survival (See Methods section Stimulus Description for further detail).  

 

The dramatic shift induced by the twist required listeners to update their global situation model, 

reevaluate specific episodes, and reassess the characters in light of the new context. We captured 

sets of within-subject “shifts” – defined as between-listen changes in neural representations – that 

reflect updates to each narrative element to identify where each is represented in the brain.  

 

Representations of global situation models. 
 

We first investigated where global situation models are represented. To this end, we compared 

within-subject neural and behavioral responses between the two listens. Behavioral responses were 

derived from the continuous rating task participants did while listening to the narrative in which 

they were tasked with rating one of the characters (Lucy).  

 

Given the twist in the middle, we split the narrative into three segments: pre-twist, twist, and post-

twist. The twist changes the interpretation of everything that came before it, prompting participants 

to shift to a new global situation model that persists during the remainder of the first listen and 

throughout the second listen. As a result, the pre-twist segment, which is interpreted under a 

different situation model in the first (L1) versus second listen (L2), should be processed most 

differently between listens. In turn, the post-twist segment, which is processed with the same 

situation model across both listens, should exhibit more consistent neural and behavioral patterns 

(Fig. 1A). To identify where global situation models are represented, we therefore compared 
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within-subject neural and behavioral shifts in each segment between listens (pre-twistL1-L2 to post-

twistL1-L2), expecting greater shifts in the pre-twist segment than in the post-twist segment in both 

patterns of neural activity and behavioral ratings as a result of reinterpretation.  

 

Greater behavioral shifts in the pre-twist segment.  

 

During both listens, participants reported their real-time impression (negative to positive) of the 

shopkeeper (“Lucy”) as part of a continuous rater task. Within the behavioral data, impressions of 

Lucy generally moved from positive to negative across the story, reflecting the evolving 

understandings of the broader situation and indicating a transition from viewing Lucy as a store 

clerk dealing with a difficult customer to perceiving her as a robot with Steve struggling to survive.  

 

As hypothesized, behavior shifted more between listens in the pre-twist segment compared to the 

post-twist segment, indicating a greater change in how participants perceived the situation 

(“behavioral shift”; paired t-test, t(34)=5.31, p < 0.001; Fig. 1C). Behavioral shifts were calculated 

as one minus the intra-subject correlation between each participant’s behavioral timeseries from 

the continuous rater task for Listen 1 and Listen 2. 

 

Greater neural shifts in the pre-twist segment.  

 

We operationalized neural representations as the multivoxel pattern of activity in each region at 

each timepoint. At each matched timepoint in Listen and Listen 2, we computed the within-subject 

correlation of these patterns (“pattern intra-subject correlation” (pattern intra-SC) 27,28) and 

calculated “neural shifts” as one minus this correlation (henceforth “intra-subject pattern 

distance”). As hypothesized (Fig. 1A), the intra-subject pattern distance was higher in the pre-

twist segment than in the post-twist segment across the cortex, indicating greater neural shifts in 

response to the updated information (main effect of segment: estimate = 0.01, p < 0.001; whole-

brain linear mixed effects model (LMEM) with region and participant as random effects). The 

regions that showed the strongest differences, suggesting a strong role in maintaining and updating 

global situation models, included the left hippocampus, the angular gyrus, temporal parietal 

junction (TPJ), dorsomedial prefrontal cortex (dmPFC), and the bilateral posterior medial cortex 

(PMC)/precuneus (one LMEM per region with participant as a random effect; Fig. 1D). These 

regions align with findings from across-subject studies on contextual modulation and 

representations of situations and schemas 40–43 and studies of interpretational shifts during auditory 

narrative processing 6,44.  

 

Notably, we did not see significant neural shifts between listens in primary auditory cortex. This 

was expected given that the low-level sensory properties of the stimulus are identical across listens 

and also helps to mitigate concerns that participants may have simply been paying less attention 

during the second listen. Some effects, albeit weaker than those in multimodal association regions, 

were also seen in early and middle visual regions (e.g., V1, MT). These effects are likely due, at 

least in part, to differences in how participants were looking at the screen to report or consider 

reporting the changes in the continuous rating task; slider movement overall varied more in each 

listen in the pre-twist segment compared to the post-twist segment (t(34) > 5.63, p < 0.001 for both 

listens). 

 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 13, 2025. ; https://doi.org/10.1101/2025.01.13.632631doi: bioRxiv preprint 

https://doi.org/10.1101/2025.01.13.632631
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 6 

We ran a series of control analyses to ensure the robustness of our findings. We first aimed to rule 

out the possibility that differences in brain activity were driven by participants' movements on the 

continuous rater task. To address this, we regressed the movement of the slider from each 

participant’s neural timeseries in each listen, repeated the analyses on the residuals of this 

regression, and found that the results were largely unchanged (Supplementary Fig. 1A).  

 

Next, we sought to dissociate the effects of our stimulus’ specialized situation model structure 

from the effects of simply re-listening to the same information. First, one may expect that given 

that participants have already heard this narrative once, they may become less interested on the 

second listen. However, both our hypothesis and our observed results work against expected 

attention or “boredom” effects: if participants were simply mind-wandering more as time went on 

during the second listen, we would have expected to see greater shifts post-twist compared to pre-

twist due to decreased engagement and more off-task (as opposed to stimulus-driven) activity. A 

second possibility is that regardless of any situation-model updating, participants simply become 

more synchronized to themselves over time when relistening to the same narrative, which could 

also explain our pre- versus post-twist differences. To help rule out this explanation, we turned to 

an independent dataset 33 where the same participants listened to an auditory story (from The Moth) 

multiple times, of which we used the first two listens (Supplementary Fig. 1B). Critically, this 

story did not contain a twist or any other feature that would induce a global situation model update 

akin to our stimulus. Encouragingly, we found (at a liberal, uncorrected threshold of p < 0.05) that 

only three regions showed a linear effect of time on pattern intra-SC: dorsolateral PFC and the 

bilateral auditory cortex. The latter region (auditory cortex) actually showed a decrease over time, 

potentially indicating reduced attention. Finally, in our dataset, we tested for any linear effects of 

time within segments (pre/post-twist) that could inflate our findings. By splitting each of the pre- 

and post-twist segments into an early and late period, we found that only a few inconsistent regions 

showed differences in pattern intra-SC between the early and late periods of each segment (again, 

at a liberal, uncorrected threshold of p < 0.05; Supplementary Fig. 1C). This combination of 

analyses further strengthens the likelihood that our observed pre- versus post-twist differences 

were, in fact, driven by the situation-model updates induced by the twist in our stimulus, rather 

than simpler phenomena inherent to listening to the same stimulus a second time more generally.  

 

Regions show greater neural shifts when individuals report behavioral shifts.  

 

Our first two analyses showed that, as hypothesized, both neural and behavioral shifts are greater 

in the pre-twist than the post-twist segment, likely reflecting global situation model updates that 

changed how this segment was interpreted overall. In a follow-up analysis, we sought to detect a 

more fine-grained, parametric relationship between these two types of shifts. In other words, 

moment-to-moment, do greater neural shifts track with greater behavioral shifts? Towards this 

goal, we first binarized individual participants’ behavioral timeseries into timepoints where a shift 

was present or absent, corresponding to differences in their behavioral rating between their first 

and second listen (“behavioral shift”). We then compared neural shifts (intra-subject pattern 

distances) between these two sets of timepoints (see Methods section Linking moments of neural 

and behavioral shift).  

 

Participants generally differed in how faithfully they complied with this behavioral task (see 

Methods for more information), limiting our power for this analysis. Although no regions 
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withstood FDR correction, those that showed the strongest effects were the bilateral 

precuneus/PMC, right hemisphere TPJ, and the right medial PFC (p < 0.05), dovetailing with past 

work that implicates these regions in active contextual updating (Fig. 1D). Furthermore, regions 

that showed an effect in this analysis also showed stronger effects in the global situation model 

segment analysis (r = 0.27, p < 0.01; correlation of estimates across regions between analyses). 

This suggests that, as hypothesized, the regions showing greater situation model updating (pre- 

versus post-twist contrast) were also involved in tracking the changed perceptions of Lucy 

throughout the stimulus (compare Fig. 1D and 1E). Importantly, early visual regions did not show 

effects despite the task-induced eye movements towards the slider, indicating that we are likely 

capturing higher-level cognitive mechanisms (e.g., model updating) that operate at a more abstract 

level than simple visual or motor behavior.  

  
Figure 1. Neural and behavioral shifts reflect global situation model updating. A. Hypothesized differences between segments. 

The same individuals listened to an auditory narrative two times. The narrative was divided into three segments: 1. pre-twist, 2. 

twist and 3. post-twist. Novel, recontextualizing information is learned during the ‘twist’ segment, inducing a shift in interpretation. 

This new interpretation (global situation model 2) is carried into the post-twist segment on the first listen and into the entirety of 

the second listen. Thus, greater neural shifts are expected in the pre-twist as compared to the post-twist segment. After each listen, 

participants were tasked with reporting the specific moments (episodes) that they reevaluated in light of the twist (see Fig. 2). B. 

Computing neural shifts. For each participant, neural shifts between listens were computed per region per timepoint as one minus 

the correlation between the multivoxel spatial patterns of activity in Listen 1 and Listen 2 (pattern intra-SC). C. Greater behavioral 

shifts in the pre-twist segment. Within-subject shifts between listens in behavioral ratings (character rating) were greater in the 

pre-twist compared to the post-twist segment (paired t-test, *** indicating p < 0.001). D. Greater neural shifts in the pre-twist 

segment. The median pre-twist and post-twist neural shift value was taken for each participant and compared using a linear mixed 

effects model per region. Estimates plotted reflect the difference between the pre- and post-twist segments (set up as pre-twist > 

post-twist). Regions contoured in black show an FDR-corrected significant effect at qFDR < 0.05 for all matched-length sample 

comparisons between segments (see Methods). Regions contoured in blue show an effect at p < 0.05 (uncorrected) for all matched-

length sample comparisons. E. Greater neural shifts accompany behavioral shifts. For each participant, we binarized timepoints 

into those with a behavioral shift (absolute difference in ratings between Listen 1 and Listen 2 > 0) and those without a behavioral 

shift (absolute difference in ratings equal to 0), then compared neural shifts between these two groups of timepoints. The observed 

median difference in neural shifts (behavioral shift “present” moments minus behavioral shift “absent” moments) across 

participants is plotted. Blue contours indicate regions showing significant relationships between neural and behavioral shifts 

(thresholded at p < 0.05, uncorrected, determined via block permutations, n = 10,000). 
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Representations of episodes. 
 

Having detected evidence for representations of a coarse-level global situation model in certain 

brain regions, we next investigated if and where the brain represents interpretations of smaller 

units of a narrative, namely specific episodes 45. Here we defined episodes as punctate events with 

a clear beginning, middle, and end, that drove the plot forward. 

 

After each listen, we prompted participants to identify specific moments that they reevaluated or 

reinterpreted in light of the twist (see Methods section Experimental Procedures for more 

information). All episodes occurred within the pre-twist segment, aligning with the neural and 

behavioral results that suggested greater interpretation updating during this segment (Fig. 1).  

 

We hypothesized that, over and above the generally greater neural shifts in the pre-twist relative 

to post-twist segment, neural shifts would be even more exaggerated specifically during the 

episodes that participants reported reevaluating between listens. To test this hypothesis, we 

selected five episodes that were reevaluated by the majority of participants and chose five control 

episodes of matched length that were also in the pre-twist segment that most participants did not 

report reevaluating (shown in Fig. 2A). Then, for each participant, we modeled each individual 

episode using an event-related general linear model (GLM) and used the extracted episode-wise 

betas to compute a neural shift (intra-subject pattern distance between listens, Fig. 2B; see 

Methods section Computing shifts in the reevaluated episodes for more information).  

 

By comparing neural shifts between reevaluated and control episodes, we found evidence that 

interpretations of episodes are represented along the bilateral superior temporal lobes, in the left 

TPJ, and, at an uncorrected threshold, in the left superior frontal cortex (Fig. 2C; LMEM per region 

predicting the difference in the neural shift between reevaluated and control episodes, treating both 

participant and episode pair (reevaluated, matched control) as random effects). These findings 

replicate a related study that identified the left anterior middle temporal gyrus as among regions 

supporting ‘aha’ moments 46. Furthermore, the observed left lateralization aligns with previous 

findings that functional representations of semantics and social cognition are predominantly left-

lateralized 47–51. 

 

Compared to the global situation model, interpretations of specific episodes appeared to be 

represented in distinct, more lateralized temporal regions (compare Fig. 1D to Fig. 2C). The one 

region that showed strong effects in both episode and situation model representations was the left 

TPJ; this finding is unsurprising considering this region’s involvement in binding of external 

information and managing competing beliefs 52,53. 
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Figure 2. Episodes that are reevaluated show greater neural shifts between listens. A. Identifying reevaluated episodes and 

matched controls. Using behavioral data provided by the participants inside and outside of the scanner, we selected the top five 

most commonly reevaluated episodes and paired each one with a matched control episode that was nearby in the narrative and the 

same length, but not reported as reevaluated by most participants. All reevaluated and control episodes were within the pre-twist 

segment. We plot the temporal location and duration of each episode plus a raster-style depiction of participants’ behavioral reports 

(black lines correspond to moments that participants reported reevaluating; gray lines correspond to the first TRs which were 

removed to avoid transience effects). The five reevaluated and control episode pairs are highlighted and labeled. Timepoints in 

gray were not included. B. Computing neural shifts between the reevaluated and control episodes. For each participant, we 

used an event-related GLM to model each individual episode in each listen, then computed neural shifts as one minus the correlation 

between the spatial pattern of beta values in Listen 1 and Listen 2 (one value per region per episode). Greater neural shifts were 

hypothesized for the reevaluated, as opposed to the control, episodes. C. Reevaluated episodes show greater neural shifts within 

individuals. Plotted estimates show the strength of the difference between reevaluated and null episodes within participants. 

(Estimates reflect output from a linear mixed effects model in which within-subject neural shifts were predicted by episode type 

(set up as reevaluated > control), using participant and episode pair as a random effect.) Regions contoured in black show an FDR-

corrected significant effect at qFDR < 0.05. Blue contours reflect a relationship thresholded at p < 0.05 (uncorrected). The across-

subject distribution of median neural shifts within the superior temporal sulcus are plotted in the inset. Dots represent participants’ 

median neural shifts across episodes within each listen. 

  

Representations of Characters.  

 
Having demonstrated that global situation models and models of specific episodes are represented 

in largely distinct brain regions, we next examined how information about characters was 

represented and updated across the narrative. Characters link episodic details to the global situation 

model by embodying the motivations and goals that influence the narrative’s progression and, 

especially in this stimulus, undergo major reinterpretation (see Methods section Stimulus 

Description). To study character representations, we investigated how representations of Lucy 

(from shopkeeper to robot) are constructed and updated across the two listens. We focused 

specifically on Lucy because the updates to her character are larger and better motivated than those 

for Steve; she starts and ends the story and undergoes a much greater identity shift. 

 

We expected that by the end of Listen 1, participants would have converged on a final 

interpretation of Lucy (as a robot) and that they would then “reload” this interpretation at the start 

of Listen 2. We operationalized these assumptions into predictions about what neural activity 

patterns should look like in regions tracking latent representations of the character.  

 

To this end, we split the narrative into “Lucy” or “Steve” conversational turns based on speaking 

onset and offset times and modeled each turn in each listen using an event-related GLM. For each 
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participant, we designated a “template” neural representation of Lucy from her final speech event 

(conversational turn) in Listen 1, when participants had all the information necessary to fully 

interpret (represent) her identity. We then correlated representations of Lucy at each turn in Listen 

1 and Listen 2 with this template, yielding a series of intra-subject character event-template 

correlations per region (Fig. 3A). The magnitude and change over time of these correlations were 

compared between listens. We considered a region as representing Lucy if it showed the following 

properties: (1) a steady increase over time in similarity between Lucy events and the template over 

Listen 1, (2) a reloaded template-like representation at the start of Listen 2, (3) a stabilization in 

representation (i.e., flatter slope toward the template) over the course of Listen 2, and (4) a 

dissociable representation of Steve (i.e., lower or negative correlations with the template that stay 

flat or decrease over time) in both listens (Fig. 3B “Criteria”). For more information on these 

criteria and how they were tested, see Methods section “Computing updates in the representations 

of characters”.  

 

Results indicated that much of the brain showed effects consistent with the hypothesized directions 

across our four criteria. A subset of regions exhibited a significantly steeper slope over time 

(increasing event to template correlations) in Listen 1 relative to Listen 2 (qFDR < 0.05; Fig. 3C, 

all contours), which we considered the most important index for a region representing latent 

character interpretations. This effect emerged in the bilateral mPFC and right anterior temporal 

pole, as well as in the precuneus and rostral posterior cingulate regions that flank the posteromedial 

DMN-associated areas (parietal memory network 54,55). Some of these regions have previously 

been implicated in investigations of characters in narratives 18,42,56,57.  

 

Taken together with the previous section, these results show that episode and character 

representations, while both contributing to the formation of the global situation models, rely on 

distinct brain regions. Unlike left-lateralized episode representations, character representations 

show stronger right-lateralized involvement (see: right angular gyrus, TPJ, anterior temporal pole).  

 
 

 
 

 

Figure 3. Character representations are updated on the second listen. A. Computing representations of characters. The 

dialogue was split into ‘Lucy’ and ‘Steve’ events based on speaking onset and offset times. We designated a per-participant 

‘template’ representation of Lucy based on her last speech event in Listen 1 (L1). Each event was correlated with the template to 

test for a series of criteria (see panel B). B. Schematic of criteria. Correlations between Lucy events and the template were 

hypothesized to be positive and to increase progressively over the course of the story (positive slope). In Listen 2, they were 

expected to start higher and exhibit a weaker slope compared to Listen 1, reflecting the “loading” of Lucy’s representation from 

the end of Listen 1. Correlations between Steve events and the template were hypothesized to be non-existent or, if anything, to 

show a negative slope over time (as representations of the characters diverged). C. Regions track character representations. 

Estimates reflect the magnitude of the effect for our main criterion, which was that the similarity between Lucy events and the final 
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template representation of Lucy should show a steeper slope over time in Listen 1 than Listen 2 (computed with a linear mixed 

effects model predicting event-template correlations from an interaction between listen and event number with a random effect of 

participant). Regions plotted meet all of our criteria (see B; Methods). All contoured regions show an FDR-corrected significant 

effect at qFDR < 0.05. Gray contours indicate regions that show an effect at qFDR < 0.05 for the main criterion. Black contours 

additionally indicate regions that an effect for all Criteria (1-3) at qFDR < 0.05.  

Dissociable neural substrates for representing distinct elements of 

narrative interpretation.  

Results thus far revealed that neural representations of different narrative elements involve 

partially overlapping yet somewhat distinct sets of brain regions, consistent with the hierarchical 

organization of these elements. This can be appreciated visually by comparing the maps for global 

situation models, episodes, and characters (compare Fig. 1D to 2C to 3C). To quantify this 

dissociation, we first assessed the degree of overlap in the regions involved in each analysis by 

correlating effect estimates across regions. Regions representing the global situation model were 

distinct from those representing either episodes (r = - 0.04, p > 0.05) or characters (r = - 0.13; p > 

0.05); these two subcomponents (characters and episodes) were also distinct from one another (r 

= - 0.20, p = 0.07; Fig. 4A).  

To further explore these dissociations, we applied KMeans clustering to group regions based on 

their distribution (pattern) of estimates from each analysis, which identified four informative 

clusters (Fig. 4B). We highlight two key outcomes from our clustering results.  First, while the 

default mode network (DMN), broadly defined, was involved in representing all three narrative 

elements, its different sub-regions and sub-networks have distinct and variable contributions for 

representing these elements. Second, the clustering solution that emerged reinforces our 

hypothesized hierarchical framework in that global situation models were represented to some 

extent in every cluster, sometimes along with either episodes or characters, but not both.  

 

To elaborate, while Clusters 1 and 2 were involved in representing all three narrative elements, 

Cluster 1 was largely representative of global situation models and Cluster 2 was largely 

representative of character-level information. Interestingly, these two clusters both comprise parts 

of the DMN; the “core” regions (bilateral AG, TPJ, and precuneus/PMC) in Cluster 1 and the 

bilateral mPFC, bilateral hippocampus, and right temporal pole in Cluster 2. The former regions 

have been previously reported to facilitate broad “interpretation” updating across individuals, 

while the latter have been associated with maintaining representations of schemas, identities, and 

mental simulations 58,59. In turn, Clusters 3 and 4 exhibited greater specificity. Both clusters were 

involved in representing global situation models, but each cluster was paired with a distinct 

narrative subcomponent: Cluster 3 with episode representations and Cluster 4 with character 

representations. Together, these analyses highlight how distinct sets of brain regions are 

differentially engaged to support the hierarchical structure of narrative elements.  
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Figure 4. Representations of narrative elements are differentially represented and coupled within distinct sets of brain regions. 

A. Narrative elements are represented in distinct neural substrates. Correlations between normalized estimates in each region 

across analyses show that representations of global situation models, episodes and characters rely on distinct neural substrates. 

Each dot indicates a region. Coloring of a region is based on the assigned cluster (see B). B. Groups of regions support different 

narrative elements. We clustered regions according to their relative involvement in representing the three narrative elements: 

global situation model (as indexed by the pre- versus post-twist analysis), specific episodes, and characters. A solution of k = 4 

clusters was found.  Clusters 1 and 2 showed relatively high involvement in representing all three narrative elements, while Clusters 

3 and 4 exhibited a paired coupling of the global situation model with each of the other two sub-components (episodes and 

characters, respectively). 

 

 

Discussion 

 
In this study, we investigated where and how the brain supports latent belief representations of 

distinct narrative elements. To do so, we deliberately selected an auditory narrative that featured a 

mid-story ‘twist’ or shift in the ground truth that fundamentally altered participants' understanding 

of earlier events. Participants listened to the stimulus twice over, carrying forward the global 

situation model formed after the twist into the second listen. This within-subject design enabled 

us to directly compare each participant to themselves as they updated their interpretations and 

understand how this interpretational shift altered the representation of the same sensory input. We 

decomposed large-scale representations of the narrative into three hierarchical subcomponents 

(global situation models, episodes, characters) and detected multivariate representations of these 
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components that might otherwise be obscured or confounded at the across-subject level. We found 

that global situation models exhibited the most widespread representations across the brain. In 

turn, episodes and characters relied on partially overlapping regions with each other and with 

global situation models, yet each also engaged distinct cortical regions, suggesting a degree of 

specialization in neural roles for representing and integrating different narrative elements. 

 

While narratives are increasingly used to study the neural integration of information over time 12,60, 

researchers have paid limited attention to how subcomponents of narratives are instantiated within 

underlying neural representations. Many studies inherently assume that narratives are represented 

as a unified whole. However, behavioral evidence from prior work 61 suggests that different 

narrative elements can be updated independently, proffering the possibility that distinct neural 

systems may underlie the representation of specific narrative elements. We provide evidence for 

this idea: the default mode network (DMN) supports narrative representations broadly, but there 

are notable distinctions across transmodal cortex and the hippocampus in the degree to which 

specific regions are involved in representing these different narrative elements. 

 

Much prior work has focused on across-subject differences in activity within the DMN during 

narrative processing 6,7,40,62. For instance, Zadbood et al., (2022) used an across-subjects design 

and a movie with a plot twist to demonstrate that representations in specific core subregions of the 

DMN (e.g., TPJ, mPFC, temporal poles) varied based on participants' prior knowledge of the twist 

and were updated with the new information gained via the twist. Our findings align with and 

extend these prior across-subject studies. By localizing within-individual representations of 

distinct narrative elements, we provide greater specificity to how narratives are represented within 

the DMN. We showed that different subnetworks and subregions of this larger network have 

greater contributions to some narrative elements, as compared to others. While changes in activity 

within the core cortical DMN regions track within-individual global situation model updating and 

correlate with behavioral shifts, lateral temporal regions, such as the STS and temporal pole, 

appear to support more focal representations for episodes and characters, respectively. Even 

among the core DMN regions, there are some distinctions – for example, the mPFC represents 

global situation models and characters, but not episodes. Taken together, our findings add to the 

longstanding evidence that the DMN comprises multiple, interacting subsystems with distinct 

functions 63–66.  

 

These topographic distinctions may, in part, reflect differences in not only what types of 

information these transmodal regions are sensitive to, but also their temporal windows of 

information processing and integration 67. There is extensive evidence that hierarchical processing 

architectures may be effective for processing stimuli that possess a hierarchical structure (see 68 

for a review); regions earlier in the cortical hierarchy (namely, primary sensory and sensory 

association regions) are sensitive to fast fluctuations in the input stream, while higher order 

transmodal regions are sensitive to slower fluctuations, changing only in response to longer 

windows of prior stimulus context. While temporal receptive windows have been commonly 

studied with language (comparing words to sentences to paragraphs), these windows likely support 

the processing of latent, time-varying narrative features. Global situation models and character 

representations operate over longer timescales than episodes; situation models sit at the apex, 

episodes serve as the fundamental building blocks, and characters function as dynamic agents 

driving transitions between episodes. We find that regions with shorter receptive windows track 
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faster, more time-bound fundamental narrative units (e.g., left STS uniquely represents episodes) 

compared to regions with longer intrinsic timescales that process slower dynamics (e.g., the 

dorsolateral prefrontal cortex uniquely represents the global situation; see 13,69 and 70 for a review). 

Future work should directly manipulate the timescales at which these features operate and interact 

to investigate this more systematically. 

 

Despite these dissociations in representation, the lateral posterior parietal and temporal cortex 

(regions including and around the TPJ) represented all three narrative elements regardless of their 

position in the narrative hierarchy (Fig. 4B, Cluster 1). Outside of its general association with the 

DMN, a recent proposal has termed this patch of cortex as “gestalt cortex,” theorizing that it is 

specifically involved in supporting subjective experiences, or construals, by reconciling competing 

interpretations 71. To our knowledge, we are providing the first within-subject evidence for “gestalt 

cortex,” highlighting that representational shifts within these regions reflect internal updating of 

construals.  

 

There are several limitations to this work. First, our analyses rely on a single stimulus. Although 

this stimulus was carefully chosen for our study design, we acknowledge that some observed 

effects could be driven in part by idiosyncratic properties of this particular stimulus rather than 

more general features of narrative interpretation 72. We benefited from focusing solely on one, 

relatively long stimulus in the auditory domain, but future work may consider employing carefully 

crafted multisensory stimuli to broaden generalizability. Second, relatedly, our study specifically 

focuses on two mid-level subcomponents in narrative representation—episode and character 

representations—that were well-suited to our stimulus. Future research could explore more fine-

grained features, such as distinctions between main and secondary characters or hierarchical 

(nested) episode and event structures. Third, participants were quite variable in their behaviors 

during the study, specifically how often they used the slider to report their character impressions 

as well as the number of and detail associated with episodes they reported reevaluating, which 

limited our ability to create individualized models of representations and how they were updated. 

Lastly, issues of MRI data quality interfered with our ability to investigate subcortical regions. 

Future work should explore subcortical involvement in these processes, including regions such as 

the amygdala, which has been implicated in supporting episodic memories and narrative 

processing.  

 

In sum, we capture how latent interpretive frameworks are instantiated in the brain, highlighting 

the advantages of a within-subject approach. By holding both the participant and the sensory input 

constant, we robustly identified shifts in patterns of neural activity induced by new context for the 

same information. These shifts reflect updated interpretations and situation models, as well as more 

nuanced representations of episodes and characters. This approach allowed us to better pinpoint 

where these distinct narrative elements are neurally represented, offering a clearer understanding 

of the hierarchical organization of narrative processing in the brain. Together, this work provides 

a foundation for understanding how exogenous input and endogenous belief frameworks interact 

to shape subjective experience. 
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Methods 

 

Stimulus description.  

We used the “Dark End of the Mall” episode (18:25 min:sec) from the podcast The Truth, which 

consists of a dialogue between two characters, Lucy and Steve 19. The non-speaking time is limited 

to moments of a dog barking and brief moments of a “song” playing in the background. We chose 

this stimulus due to the feasibility of working with only two characters and, more importantly, its 

unique narrative structure. Specifically, the narrative contained a twist in the middle that required 

participants to globally update their situation model of events that preceded the twist, creating 

three distinct and meaningful narrative segments (pre-twist, twist, and post-twist) for within-

subject comparison. We provide a brief synopsis below. 

 

The story starts off with a phone conversation between Lucy, a sweet but vapid bridal shop 

employee, and presumably her boyfriend (whom listeners do not hear) which gets 

interrupted by Steve running into the shop. Listeners initially perceive Steve as a cranky 

dress shopper who is abrasive toward Lucy as he tries multiple attempts to convince her 

that she should give him some of the food hidden in the shop. Lucy gets frustrated with 

Steve and calls mall security and tries to kick him out of the shop. Eventually, Steve asks 

Lucy if he can tell her a story. It is revealed via Steve’s story that Lucy is, in fact, a robot 

programmed to work in a 1950’s style bridal shop, that they are both living in an 

apocalypse in 2050, and that Steve is one of the last surviving humans and has figured out 

that bridal shops have hidden snacks that sustain his survival. He almost convinces Lucy 

to help him, but ultimately fails as she kicks him out of the shop where, presumably, he 

meets his death. Listeners last hear a distressed Steve confronting barking dogs and Lucy 

again on the phone with her boyfriend, but listeners now realize via the narrative that the 

dogs are likely zombies and the boyfriend is fictitious. 

 

Participants. All data was collected at the Dartmouth Brain Imaging Center. Participants (n=36; 

24F, 12M, 1 non-binary; median age = 20, range = 18 to 33) were healthy individuals, with normal 

or corrected-to-normal vision and hearing and no recent psychiatric or neurological diagnoses or 

MRI contraindications. They were recruited from the local areas of New Hampshire and Vermont, 

including the Dartmouth College student body. The Committee for the Protection of Human 

Subjects of Dartmouth College approved the study, and all participants provided written consent.  

 

Experimental procedures. All participants listened to the same auditory stimulus twice. At the 

beginning of the study, they were told that they may hear the auditory narrative a second time, but 

that they also may have the opportunity to hear a second story. No participant actually heard 

another story. While in the scanner, we used Sensimetrics Model S14 insert earphones to present 

the sound, and participants were given a trackpad (Cedrus Lumina) to continuously indicate their 

impressions of Lucy from very negative to very positive throughout each listen. They were given 

minimal visual input: the screen displayed throughout both listens showed a static photograph of 

a bridal shop (to promote imagery and engagement with the story) and, underneath that image, the 

continuous scale used to rate Lucy impressions.  
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Continuous Rater Task.  

Participants were tasked with rating the character of Lucy by answering the question: “Overall, 

how much do you like Lucy?” During the presentation of the stimulus, participants used the 

trackpad to update their rating while the stimulus played along a scale from -3 to 3. We opted to 

do this task in real time in the scanner as opposed to in an independent dataset of non-fMRI 

participants because pilot participants showed considerable variability in their ratings. 

Furthermore, to emphasize the within-subject design of our study, we did not want to use other 

participants’ data as a proxy for fMRI participants’ ratings of the character.  

 

Before the second listen, participants were instructed as follows: “For your 2nd story, you have 

been assigned to listen to the same story again and complete the same prompt. For this 2nd listen 

of the same story, consider how your impression has changed. Because you have already listened 

to the story, we expect that your impressions of Lucy are different than your 1st listen. Given what 

you know about this story, what is your impression of Lucy now? Please use the slider to 

continuously rate your impression.” 

 

Tasks after each listen.  

Each scanner run consisted of the entire narrative; after each listen, participants were asked to do 

a series of character rating questions and memory tests (maximum of 10 seconds each) and engage 

in a “reevaluation task” (Fig. 1A). For the character rating questions, participants were asked to 

report “Overall, how much do you like [Lucy/Steve]” as independent questions. For memory 

questions, participants were asked “1. What is Lucy, 2. What does Lucy hear running throughout 

the story, 3. What is the name of the shop where this story takes place?” after Listen 1 and “1. 

What caused the destruction of humankind?, 2. What dish does Lucy recommend Steve buy at the 

food court?, 3. Who does Lucy think she is talking to at the beginning of the story?” These 

questions were intended to be relatively challenging and therefore to serve as attention checks. 

Participants performed well on these questions (median score 100%; mean score = 93%). After 

completing these questions, participants then completed the reevaluation task after each listen. 

After Listen 1, they were instructed “Using the microphone, please describe the moments at the 

beginning of the story that you reconsidered after hearing the end.” After Listen 2, they were 

instructed, “please describe the moments of the story that changed for you after hearing the story 

once before.” They had 60 seconds to answer using free speech.  

 

Post-scan tasks.  

Outside the scanner, participants were presented with the transcript and asked to “highlight the 1-

3 sentences that mark the moment in the story when the twist occurred.” They were also given all 

of the sentences in the pre-twist segment and tasked to indicate the ones that they reevaluated. 

Instructions stated “highlight the sentences that mark the moments in the story that you 

reinterpreted when listening to it a second time.”  

 

 

fMRI data processing. 

MRI acquisition. All data were collected at Dartmouth College in a 3.0 Tesla Siemens 

MAGNETOM Prisma whole-body MRI system (Siemens Medical Solutions, Erlangen, Germany) 

equipped with a 64-channel head coil. 
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T1 image.  

For registration purposes, a high-resolution T1-weighted magnetization-prepared rapid acquisition 

gradient echo (MPRAGE) imaging sequence was acquired (TR = 2,300 ms, echo time 

(TE) = 2.32 ms, inversion time = 933 ms, flip angle = 8°, field of view = 256 × 256 mm, 

slices = 255, voxel size = 3 × 3 × 3 mm isotropic). T1 images were segmented, and surfaces were 

generated using FreeSurfer 20. 

 

fMRI acquisition.  

fMRI data were acquired using a multi-echo T2*-weighted sequence. The sequence parameters 

were: TR = 1,000 ms, TEs = [14.2, 34.84, 55.48], GRAPPA factor = 4, flip angle = 60°, matrix 

size = 90 × 72, slices = 52, multiband factor = 4, voxel size = 3mm isotropic. To account for field 

stabilization and hemodynamic delay, an additional two TRs were added to the front of the 

stimulus and 10 TRs were added to the end.  

 

Preprocessing.  

Multi-echo data preprocessing was implemented in AFNI 21 using afni_proc.py for alignment, 

transformation, and optimization steps. Each participant’s data was processed to align the 

anatomical (T1) image and functional images, with motion correction based on the second echo 

and alignment parameters applied to all echoes. Functional data underwent despiking (3dDespike) 

for outlier attenuation, followed by the concatenation and extraction of functional time series for 

each echo. The three echoes were then optimally combined and denoised using multi-echo ICA 

via tedana 22–24. Signals were then normalized to percent signal change and spatially blurred 

(3dBlurInMask), with motion regressors applied to reduce artifacts in final volumes. Following 

preprocessing, to account for transitory changes at the start of the stimulus 4, we removed the first 

18 TRs from the start of the stimulus for all of our subsequent analyses (also excluded in Fig. 1A, 

grayed out in Fig. 2A).  

 

Defining regions of interest.  

The Schaefer parcellation 25 was used to designate 100 cortical regions; five of these regions—

around the ventral part of the brain—were removed because more than 50% of participants were 

missing more than 40% of the data in these regions. The Harvard-Oxford Atlas was used to identify 

the hippocampus in both the left and right hemispheres 26. We were unable to include other 

subcortical regions, including the amygdala, due to data loss (almost 50% of participants (17/36) 

were missing signal in more than 40% of voxels). Parcel sizes ranged from 113 to 759 voxels. All 

results shown here were robust to parcellation granularity in that effects persisted when using a 

400-region parcellation 25.  

 

Computing the ‘twist’. 

We defined the “twist” in the story as moment(s) when participants transition from one 

interpretation/situation model to another—specifically, from believing the setting is a bridal shop 

to realizing it is a post-apocalyptic world. To capture this shift, participants were asked to identify 

the twist in a post-scan survey (see Experimental Procedures for more information on 

instructions). Participant responses varied considerably, with some selecting multiple points in the 

story. To address this variability, we adopted a conservative approach to identifying the twist, 

defining its start as the point before the earliest event chosen by the majority of participants, and 

its end as the point after the latest event chosen by the majority. This approach allowed us to split 
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the stimulus into pre-twist (length = 532 TRs) and post-twist segments (length = 355 TRs), plus a 

segment in the middle corresponding to the twist itself (length = 200 TRs). Pre- and post-twist 

segments were matched for length when appropriate (see Section Methods: Computing neural 

shifts to assess global situation model representations).  

 

Computing behavioral shifts to assess situation model representations. 

We compared “behavioral shifts” between the pre-twist and post-twist segments using the 

timeseries from each participant’s continuous rating of Lucy acquired in both listens. See 

Experimental Procedures for specific instructions on how this continuous rater task was 

conducted. We quantified the dissimilarity (“behavioral shift”) as one minus an intra-subject 

correlation (intra-SC) between the behavioral timeseries from Listen 1 and Listen 2 for each 

segment.  We compared these within-subject intra-SC values between segments using a paired t-

test. 

 

Computing neural shifts to assess global situation model representations. 

Our first goal was to quantify changes in the within-subject representation of the narrative (“neural 

shifts”) between listens and to compare the magnitude of these changes between the pre-twist and 

post-twist segments. For each participant and region, we correlated the multivoxel spatial pattern 

at each timepoint between listens, yielding a pattern intra-subject correlation (intraSC) 27,28 for 

each timepoint. This was converted into a “neural shift” at each timepoint by subtracting the pattern 

intraSC from one (distance).  

 

To test for a difference between segments, we computed the median neural shift value within each 

segment for each participant and conducted a linear mixed effects model (LMEM; using lme4 in 

R; 29) where median neural shift was predicted by the segment (pre- or post-twist) it belonged to, 

using participant as a random effect. Note that taking the median neural shift from each segment, 

as opposed to using shifts from all timepoints, helps accounts for autocorrelation in the functional 

data. This model was run per region. The estimates from each of these LMEMs were plotted (Fig. 

1D).  

 

To ensure observed neural shifts were not driven by differences in length of the two segments (532 

versus 355 TRs), we trimmed the pre-twist segment to match the length of the post-twist segment. 

Specifically, we generated all possible 355-TR subsets of the pre-twist segment by sequentially 

trimming the pre-twist data from the start, creating 178 distinct samples (532 - 355 + 1). For each 

sample, we ran an LMEM for each region to compare the pre-twist and post-twist segments. The 

p-values from these models were then corrected for multiple comparisons using false discovery 

rate (FDR) based on the number of regions in our analyses (97 total: 95 cortical and two 

hippocampi) using an alpha of 0.05. To be as conservative as possible, we only considered regions 

to be significant if they were qFDR < 0.05 in all 178 matched-length samples (Fig. 1D).  

 

Linking moments of neural and behavioral shift.  

For each participant, we aimed to identify which neural regions track behavioral shifts in 

interpretation. To this end, we binarized timepoints into moments where behavioral shifts were 

present (i.e., absolute difference of behavioral rating between Listen 1 and Listen 2 >0) or absent 

(i.e., absolute difference = 0). We took this binary approach, rather than directly correlating the 

behavioral continuous response timeseries with the neural timecourse as has been done in other 
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studies 30,31, for two reasons. First, this approach better isolates specific moments where shifts in 

character impressions occur, allowing us to directly link these discrete behavioral shifts to changes 

in neural activity. Second, participants exhibited variability across listens in their use of the sliders 

both in the range of values used and in the frequency of movements (Wilcoxon signed-rank test, p 

< 0.05). Participants also differed amongst themselves, though not statistically significantly (std. 

within Listen 1: 20.5 ± 24; Listen 2: 16 ± 32.4; Kruskal-Wallis test, p > 0.05). This variability 

introduced potential confounds, limiting the validity of direct correlations between the neural and 

behavioral timeseries. For example, two participants did not move the sliders at all in the second 

listen (yielding an n=34 for this analysis altogether) and several moved them very infrequently, 

violating the basic assumptions for such correlations. By adopting a binary approach, we 

circumvented these issues and instead focused on the presence or absence of meaningful 

differences.  

 

For each participant, we then compared the median neural shift between the timepoints when a 

behavioral shift was present or absent, using this (present minus absent) as our observed difference. 

To account for the hemodynamic delay, we shifted the behavioral timeseries by 4 TRs (4 seconds) 

relative to the neural data. To evaluate the statistical significance of these observed differences, 

we generated a null distribution by randomly shuffling blocks of time (of length 10 TRs 32) of the 

behavioral data 10,000 times for each participant, effectively breaking any relationship between 

the neural data and behavioral labels. For each permutation, we recalculated the differences 

between the shuffled 'shift present' and ‘shift absent’ timepoints, to generate a distribution of 

differences that would be expected under the null hypothesis (i.e., H0:  no true relationship between 

the neural and behavioral data). The p-value was calculated as the proportion of null differences 

greater than or equal to the observed difference.  

 

Control analyses: ruling out possible confounding effects of time on within-subject similarity. 

To further ensure that the observed results, which were consistent with our hypothesized 

directionality (higher similarity in the post-twist relative to pre-twist segment), were due primarily 

to shifts in interpretation rather than other explanations, we investigated the alternative hypothesis 

that individuals simply become more similar to themselves over time when processing the same 

long-timescale narrative. Critically, we tested this hypothesis both in an independent dataset as 

well as in our own dataset, as described below. 

 

Computing within-subject similarity over time in an independent dataset. 

 

We used fMRI data from an existing dataset 33 in which participants (N = 8) listened to the same 

The Moth story (“Where There’s Smoke”) multiple times. Importantly, this story lacked a twist or 

any other feature that might induce interpretational differences, making it suitable as a control. We 

used data from the first two times participants listened to the story (run 1 from session 2 and run 2 

from session 3), performed functional alignment using hyperalignment 34 with a leave-one-session-

out cross-validation procedure, and again parcellated the data using the Schaefer parcellation. 

Taking the same approach as in our main analyses, we then computed the pattern intra-SC at each 

timepoint. To assess whether within-subject similarity changed with time, for each region, we fit 

a linear model for each participant predicting pattern intra-SC as a function of timepoint (TR). We 

then evaluated statistical significance using a one-sample t-test (two-sided) for each region on the 
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resulting beta values across participants. We applied a liberal, uncorrected threshold of p < 0.05 to 

see which regions, if any, showed increased or decreased similarity over time. 

 

Computing changes over time within segments of our narrative.  

 

To further rule out possible confounding effects of time (rather than interpretation) on the 

similarity of within-subject neural representations, in our dataset, we tested for any linear effects 

of time within segments. Specifically, we further divided our pre-twist and post-twist segments 

into early and late periods, resulting in four distinct periods: pre-twist early, pre-twist late, post-

twist early, and post-twist late. Within each of these four periods, we took the same approach: for 

each participant, we computed pattern intra-SC values between listens at each timepoint within 

each region. We then fit a linear model for each participant predicting pattern intra-SC as a function 

of timepoint (TR) in a given period. Next, we aggregated beta values from these models across 

participants and performed two two-sample t-tests within each region. Specifically, we compared 

beta values across participants for pre-twist early vs. pre-twist late and post-twist early vs. post-

twist late. These tests assessed whether similarity was higher in the earlier versus later segments. 

We applied a liberal, uncorrected threshold of p < 0.05 to identify which regions, if any, showed 

an effect of increased (or decreased) similarity over time. 

 

 

Computing shifts in the reevaluated episodes. 

As discussed in further detail in Experimental Procedures, after each listen, participants verbally 

reported episodes – distinct events with a clear beginning, middle, and end that advanced the 

storyline – that they reevaluated. Then, outside the scanner, they manually highlighted the text to 

indicate these episodes. Our goal was to identify where and how these episodes are represented in 

the brain.  

 

Given that participants varied in the number of episodes they chose, we selected five episodes 

consistently noted by the majority (at least 25/36; ~70%) of participants in both their in-scanner 

verbal reports and post-scanner written highlighting task. These episodes varied in duration (8, 9, 

11, 18, and 27 TRs) and were manually checked by the experimenter to ensure that they included 

the entirety of an episode, i.e., if a participant chose only one of the two sentences that comprised 

an episode, we considered the entirety of the episode if the majority of other participants reported 

reevaluating all of it. Importantly, all identified episodes occurred within the pre-twist segment 

(Fig. 2A).  

 

We then selected a set of “control episodes” to serve as a comparison point for the reevaluated 

episodes. To this end, we identified episodes within the pre-twist segment that the vast majority of 

participants (no more than 11/36; less than 30%) did not report reevaluating. We intentionally 

chose these episodes to be matched in length and nearby in time to the reevaluated episodes to 

account for any neural drift in the signal and to ensure that both the “control” and “reevaluated” 

episodes were within the same pre-twist segment (which had more overall reinterpretation, see 

Fig. 1). A brief description of these episodes is provided below.  

 

The reevaluated episodes include the following: 1r. a conversation that Lucy has with an 

imaginary boyfriend; 2r. when Steve calls her a robot (reinterpreted from ‘corporate 
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drone’ to actual robot); 3r. when Lucy calls Steve skinny which participants begin to 

realize is because he has been in survival mode for years; 4r. the ‘emergency song’ which 

is not a ‘hit song’ of the summer, but rather an emergency signal in the apocalypse; 5r. 

when Lucy tells Steve that the reason she cannot give him food and water is policy (because 

she is programmed to prevent this). The corresponding ‘control’ moments are when 1c. 

Lucy welcomes Steve to the store; 2c. when Lucy is impressed with Steve’s knowledge of 

the store’s policies; 3c. when he asks if his trying on a dress is against their policy; 4c. 

when Lucy chastises Steve; 5c. and when he calls her kind.  

 

To compute the timings of each episode, we first used WhisperX 35 to force-align the stimulus 

transcript with the auditory narrative. This process yielded an onset and offset timing for each 

word in seconds. We defined each episode as lasting from the onset of the first word to the offset 

of the last word. It is important to note that the start of the first reevaluated episode was excluded 

because it overlapped with the portion of the stimulus excluded to account for transitory delays 

(i.e., therefore, we only included the remaining portion of the episode). 

 

Next, to directly assess whether the processed of reevaluated episodes showed greater differences 

between listens compared to control episodes, we applied a general linear model (GLM) analysis. 

Using a GLM, for each participant, we modeled all episodes (10 total; reevaluated and control) in 

each listen using individual regressors for each episode (implemented as an individual-modulated 

event-related analysis using AFNI’s 3dDeconvolve function). This allowed us to obtain voxel-wise 

beta values for each episode. We then calculated “neural shifts” for each episode as one minus the 

correlation (correlation distance) between the spatial pattern of voxelwise beta values in each 

region between Listen 1 and Listen 2 (Fig. 2B). Lastly, per region, we fit a LMEM to test the 

hypothesis that neural shifts would be greater for the reevaluated compared to the control episodes. 

This was set up using a main effect of episode type (set as a contrast of reevaluated > control), 

using a random effect of participant and episode pair. Here, episode pair refers to each pair of 

reevaluated and control episodes that were close in time and matched in length. P-values from the 

models were corrected for multiple comparisons using FDR with an alpha of 0.05, based on the 

number of regions analyzed (97; Fig. 2C).  

 

 

Computing updates in the representations of characters.  

In our final analysis, we aimed to track where and how characters are represented. To this end, we 

identified brain regions where, despite receiving the same sensory input on Listen 2, the 

representations of the character Lucy were updated given the interpretation gained throughout 

Listen 1. We translated this into a series of four criteria that a region had to meet to be considered 

as representing character interpretations. Three of these criteria were in regard to Lucy and one 

was in regard to Steve; this final Steve criterion served as a control to ensure that the representation 

of Steve was distinct from Lucy. We motivate the focus on Lucy in Results. All criteria are 

described in detail later in this section (see “Criteria for character representation updating”).   

 

To isolate the representations of each character, we segmented the stimulus into blocks either Lucy 

or Steve was speaking (conversational “turns”), defining these as “Lucy events” and “Steve 

events.” We identified the onset and offset of these events using the word-level alignment times 

provided by WhisperX 35 and manually verified each event. We excluded events shorter than 5 
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TRs (such as Steve saying his name), resulting in 41 events for Lucy and 33 events for Steve 

(median event length: 9 TRs; range 5-27 TRs).  

 

For each participant, we ran a GLM for each listen with individual regressors for each speaking 

event (implemented as an individual-modulated event-related analysis using AFNI’s 

3dDeconvolve function, similar to the episodes analysis described above). Then, within each 

region, we used the voxel-wise beta values from the final event of Listen 1 to define a “template” 

representation for Lucy. Specifically, in this event, participants should have a finalized 

understanding of who she is under their revised interpretation following the twist. A description 

of the template event can be found below. 

 

This template event follows Lucy ignoring Steve's pleas and continuing to have an 

imaginary conversation with a boyfriend about a fictional dinner and wondering about 

what Steve might be up to. In this event, she references the “dogs not barking” anymore 

and suggests that perhaps Steve may have fed them; listeners are left to realize that the 

“dogs” have stopped “barking” because Steve has died.  

 

Thus, for each participant, we correlated the multivoxel patterns of beta values for each non-

template event in both Listen 1 and Listen 2 (either Lucy or Steve) to the participant’s own Lucy-

template event (Fig. 3A). Lastly, we leveraged these event-template pattern intra-SC values to 

identify character representations (tested using the following criteria).  

 

Criteria for character representation updating. 

We expected that representations of Lucy naturally evolved for participants throughout Listen 1 

(shopkeeper to robot), and that the updated (robot) representation would be “loaded” back into 

memory at the start of Listen 2. We evaluated which brain regions exhibited this representational 

transition—and could therefore be considered to instantiate latent interpretations of characters—

as defined by the following criteria. 

 

Criterion 1— Representations of Lucy become more like the template throughout Listen 1.  

To test if representations of Lucy become more like the template, we fit a LMEM for each region, 

predicting the event-template pattern intra-SC in Listen 1 from the event number (with higher 

numbers corresponding to later events) and treating participant as a random effect. We 

hypothesized a positive linear trend across character events, with later events showing stronger 

correlations with the template as representations converge toward the final template, reflecting 

participants' learning about Lucy across the first listen. For this criterion to be met, the statistic had 

to be positive.  

 

Criterion 2—Representations of Lucy during her first event are ‘updated’ in Listen 2.  

To test if participants “load in” their updated representation of Lucy when starting Listen 2, for 

each region and individual, we compared the correlation to the template for the first Lucy character 

event between the two listens. By comparing the same character event (matched sensory input) 

across listens to the same template, we inferred that stronger correlations with the template in 

Listen 2 reflected a shift toward a more updated representation of Lucy. For each region, we 

performed a paired t-test comparing the distribution of correlation values across participants 
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between Listens 1 and 2. For this criterion to be met, the statistic had to be positive (Listen 2 > 

Listen 1).  

 

Criterion 3—Representations of Lucy stabilize in Listen 2.  

To test if representations of Lucy “stabilize,” we compared how event-template correlations 

evolved over time between the two listens. We fit a LMEM for each region, predicting the event-

template correlation based on an interaction of listen (Listen 1 or Listen 2) and character event 

number, treating participant as a random effect. As noted in Criterion 1, we hypothesized that there 

would be a positive linear fit of event number—that is, later character events would be more 

correlated to the template as the representation built up over the course of the narrative. Here, 

additionally, we tested that the positive slope would be steeper in Listen 1 relative to Listen 2, 

given that in Listen 2 the character representation requires less updating and starts out closer to the 

template because it has been “preloaded” into memory. For this criterion to be met, the statistic of 

the interaction between Listen and event number had to be positive (slope in Listen 1 > slope in 

Listen 2) and we furthered delineated regions that were significant at qFDR < 0.05. This was our 

most important criteria– see Combining these criteria.  

 

Criterion 4—Control: Representations of Steve are distinct from representations of Lucy in Listen 

1 and Listen 2.  

As a control, we compared representations of Steve to Lucy’s final template. Specifically, we 

computed event-template correlations using Steve events from Listen 1 and Listen 2. We then fit 

two independent LMEMs, with participant as a random effect, predicting this correlation from the 

event number. Given that we expected representations of Steve to be distinct from Lucy, we did 

not expect a correlation with the template. Therefore, for this criterion to be met, this relationship 

needed to be negative or at least not significantly positive at an uncorrected threshold of p < 0.05. 

This would indicate that the representations of the characters are becoming increasingly distinct 

(see Fig. 3B, blue lines).  

 

Combining criteria.  

We had two steps to combining these criteria. First, to be conservative, we show only regions that 

fit all of the expected criteria (no effect in Criterion 4 and positive in Criteria 1-3) in our character 

representation map (Fig. 3C). Second, we considered Criterion 3 – Representations of Lucy 

stabilize in Listen 2 – as the most critical, given its focus on within-subject, across-listen updating 

and reloading of character representations. Consequently, we used estimates from this analysis for 

plotting and for the following analyses (see Clustering results across analyses). We also used the 

corresponding p-values to correct for multiple comparisons using FDR with an alpha of 0.05 across 

the 97 regions analyzed (gray contours in Fig. 3C). We additionally highlighted regions that were 

significant at qFDR < 0.05 in all Lucy criteria (1-3; black contours in Fig. 3C).  

 

Clustering results across analyses.  

In our final analysis, we aimed to assess the extent to which representations of the three narrative 

elements—global situation models (Fig. 1D), episodes (Fig. 2C), and characters (Fig. 3C)—rely 

on overlapping versus distinct brain regions. The data from each analysis was normalized using 

min-max scaling and then concatenated across analyses. The scaled values allowed for consistent 

comparison across analyses and any excluded regions were set to zero. Excluded regions included 

those where effects were in the opposite of the expected direction in a given analysis, including 3 
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regions (3/97; 3%) from the global situation model analysis, 24 regions (~24.7%) from the episode 

analysis, and 12 regions (~12.4%) from the character representation analysis, where to be more 

conservative we only included regions that fit the expected direction in all four of our criteria. 

None of the 97 overall regions were excluded from all three of our analyses.  

 

We then took two approaches to comparing region-wise involvement across the three narrative 

elements. First, we correlated the scaled estimates across regions between all possible pairs of the 

three analyses. Second, we used KMeans clustering 36 to perform pattern vector-based clustering, 

grouping regions based on the similarity of their pattern of estimates derived from each analysis. 

This approach captured the underlying structure of the relationships across regions and assigned a 

single cluster label to each region. To determine the optimal number of clusters (k), we calculated 

the silhouette score for values of k ranging from 2 to 5 and selected k = 4 based on the maximum 

score (s = 0.30).  

 

Visualization.  

Motivated by a recent recommendation 37, we present largely unthresholded, whole-brain maps for 

all of our main figures and add contours to indicate regions meeting criteria for statistical 

significance (described in detail in the caption of each figure). Although our discussion mostly 

focuses on only those regions meeting statistical significance, we display results across the brain 

to provide insight into the directionality of effects and facilitate comparisons with past and future 

work.  

 

To do so, we create a translucent map weighting the data by an opacity (alpha) mask using a 

threshold of 20% of the maximum range of the data. For each region, we calculate an alpha value 

(ranging from 0 to 1) to determine its transparency level. If a value exceeds a threshold of 20%, 

the corresponding region is assigned an alpha value of 1 (fully opaque) and is normally plotted. 

For values between 0 and our threshold, the alpha value is scaled proportionally from 0 to 1, with 

increasing transparency for weaker effects. In the global situation model and episode analyses, 

regions meeting an uncorrected threshold of p < 0.05 are outlined in a blue contour, while those 

meeting a corrected threshold of qFDR < 0.05 are outlined in black. In the character analysis, all 

contoured regions meet the corrected threshold of qFDR < 0.05, with color distinctions indicating 

whether a region satisfies just the main criterion at qFDR < 0.05 (in grey) or multiple criteria (in 

black). The SurfPlot package 38,39 was used for visualization.  
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