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How to establish robust brain–behavior 
relationships without thousands of individuals
Can studying individual di!erences in brain structure and function reveal individual di!erences in behavior? 
Analyses of MRI data from nearly 50,000 individuals may suggest that the possibility is fleeting. Although sample 
size is important for brain-based prediction, researchers can take other steps to build better biomarkers. These 
include testing model generalizability across people, datasets, and time points and maximizing model robustness 
by optimizing brain data acquisition, behavioral measures, and prediction approaches.

Monica D. Rosenberg and Emily S. Finn

In a recent Nature paper, Marek, 
Tervo-Clemmens, and colleagues1 
investigated whether individual 

differences in brains predict individual 
differences in behavior. To do so, they 
analyzed publicly available MRI and 
behavioral data from thousands of 
volunteers, correlating tens of thousands 
of measures of brain function (functional 
connections measured with functional 
MRI) and structure (cortical thickness 
estimates measured with structural MRI) 
with dozens of measures of cognition and 
psychopathology. Although they identified 
relationships between brain measures and 
behavior, these correlations were unlikely 
to replicate unless they were defined using 
MRI data from thousands of individuals. 
Furthermore, the strongest correlations — 
which are presumably the most likely to be 
published — were the least likely to replicate 
in new data.

This paper has captured attention 
not because its results are controversial 
or surprising. On the contrary, they are 
rigorous and guaranteed any time mass 
univariate tests are used to correlate 
many measures with weak ground-truth 
relationships. Rather, the results generated 
discussion in the field and popular press 
partly because, although the authors 
generally took care to limit the scope of 
their work to what they coined ‘brain-wide 
association studies’ (BWAS), they have 
been misinterpreted as undermining MRI 
research as a whole. Marek et al. emphasize 
that this isn’t true. In this Comment, we 
elaborate on why it isn’t true and explain 
steps that MRI researchers have taken and 
can take to identify real brain–behavior 
associations.

For nearly three decades, MRI research 
has successfully characterized how brain 
activity changes as people see, think, 
and do different things, questions that 
the BWAS approach does not address. 

Groundbreaking functional MRI work, for 
example, compared brain activity evoked 
by pictures of faces with that evoked by 
pictures of objects within subjects to 
identify a face-sensitive patch of cortex 
in 12 of 15 participants2 that has since 
been replicated in nearly every individual 
tested. Other influential work discovered 
willful modulation of brain activity by one 
patient in what otherwise appeared to be 
a persistent vegetative state3 and revealed 
experience-dependent maintenance of 
functional brain architecture in three 
volunteers in arm casts4. The results of these 
three studies changed the way we think 
about the brain using MRI data from only 19 
people. Although BWAS analyses as Marek 
et al. define them require large amounts 
of data, some of the most well-replicated 
findings in human neuroscience come from 
studies that used carefully designed task 
paradigms to measure well-characterized 
cognitive processes in a small number of 
individuals.

This is not to say that sample size is not 
important for discovering replicable brain–
behavior relationships: it is. Underpowered 
analyses can waste time and money and 
sow distrust. But more data alone doesn’t 
guarantee better science. The kind of data 
we collect and the analyses we apply to them 
also matter. As scientists who care deeply 
about discovering real insights about the 
brain and mind, here we spotlight two other 
paths toward replicable brain–behavior 
relationships that do not necessarily require 
thousands of individuals per study. We 
first emphasize the importance of testing 
the generalizability of models that predict 
behavioral variables from brain features. 
We next suggest ways to build more robust 
brain-based predictive models in the first 
place by making thoughtful choices about 
brain data acquisition, behavioral targets 
of prediction, and approaches to model 
building.

Testing model generalizability
We cannot know from sample size alone 
whether a model that predicts behavior 
from brain features will generalize; to tell 
for sure, we must test it on new data. One 
way to do this is to test for generalizability 
within a dataset using internal validation 
approaches such as k-fold cross-validation5,6. 
Although internal validation is a fine 
start, external validation — testing the 
success of a predictive model in an 
entirely separate dataset, ideally from an 
independent data collection site — is a 
necessary test of population-level model 
generalizability7. Validation sets can be 
large open-access datasets, such as the 
Adolescent Brain Cognitive Development 
Study and Human Connectome Project 
samples, or smaller datasets shared by 
individual labs. Differences in imaging 
parameters and behavioral measures 
between samples provide opportunities 
for strong tests of model generalizability. 
A robust model of a cognitive ability, for 
example, should generalize to samples with 
different MRI acquisition parameters and 
behavioral measures of the same underlying 
construct. At the same time, model failures 
can be informative8. Age-prediction 
error, for example, has been related to 
individual differences in risk preference 
in young adults9, and unsuccessful model 
generalizability across populations could 
point to differences in brain–behavior 
relationships when alternative explanations 
are ruled out. Testing model validity in 
multiple independent datasets is necessary 
for developing robust models with 
real-world relevance.

External model validation can be 
combined with other approaches to 
testing the robustness of brain–behavior 
associations. Preregistration, for example, 
limits researcher degrees of freedom by 
‘locking in’ hypotheses and analysis methods 
ahead of time and is gaining popularity 

NATURE NEUROSCIENCE | VOL 25 | JULY 2022 | 835–837 | www.nature.com/natureneuroscience

http://crossmark.crossref.org/dialog/?doi=10.1038/s41593-022-01110-9&domain=pdf
http://www.nature.com/natureneuroscience


836

comment

in neuroimaging research10–12. Likewise, 
sharing a published model’s features and 
weights essentially ‘preregisters’ it by 
making it available to other groups to test 
on new data8. Real-time neurofeedback 
offers another way to preregister and test 
(causal) hypotheses about brain–behavior 
relationships, as experimenters must 
decide what brain feature(s) will govern the 
feedback before data collection13. Finally, 
even without a formal predictive model 
to assess, researchers can try to replicate 
previous findings. Incentives such as journal 
policies that welcome replication and the 
Organization for Human Brain Mapping’s 
Replication Award are contributing to a 
growing emphasis on replication. Together 
with model validation, preregistration, 
model-sharing, and replication can help 
to identify robust relationships between 
individual differences in brain features and 
behavior.

Although Marek et al. focus on 
across-subject analyses, researchers can take 
advantage of growing repositories of deep 
imaging data14 to complement individual 
differences studies with within-subject 
investigation. Imagine, for example, that 
we identify a functional brain network 
whose strength scales with the ability 
to regulate emotion across individuals. 
To better understand this relationship, 
we can ask whether the same network 
fluctuates with emotion regulation within 
an individual. Does it vary with states 
that affect emotion regulation or change 
with this ability across the lifespan? We 
can also ask whether manipulating this 
hypothetical network alters emotion 

regulation and vice versa. Does training 
someone to strengthen their network with 
real-time neurofeedback improve emotion 
regulation? Does a behavioral intervention 
that benefits emotion regulation also 
strengthen the network? Following this 
logic, recent work identified a functional 
connectivity-based model that predicts 
different measures of sustained attention 
in independent datasets15–17, fluctuates with 
attention task performance across minutes, 
days, and months18, and is sensitive to 
pharmacological manipulations that affect 
attentional state10,18,19. Combining across- 
and within-individual analyses is a powerful 
way to assess the validity and practical 
relevance of brain–behavior relationships.

Building generalizable models
To complement efforts to test and validate 
existing models, we should build new 
models with an eye toward maximizing 
generalizability with thoughtful choices 
during experimental design, data collection, 
and analysis.

First, we should choose the right 
behavioral measure(s). Marek et al. test 41 
demographic, cognitive, and mental health 
variables, and focus on cognitive ability and 
psychopathology. They find more success 
and generalizability for models that predict 
cognitive ability, in line with mounting 
evidence that performance-based variables, 
rather than self-report questionnaires, 
are often more robustly predictable from 
brain data20,21. However, this does not 
necessarily indict self-report as a whole, as 
the distinction could lie in the constructs 
being measured and/or their amenability 

to introspection. Using ecological 
momentary assessments to densely sample 
individuals’ moods, symptoms, and other 
experiences could improve the reliability 
and validity of self-report data22. Also of 
note, tried-and-true performance measures 
from traditional tasks often suffer from 
limited variation in the general population, 
making them unsuitable for research into 
individual differences23. Thus, choosing 
appropriate behavioral measures is a 
challenging chicken-and-egg problem: to 
determine whether individual differences 
in brain data are meaningful, we must 
relate them to out-of-scanner behaviors and 
phenotypes, but without knowing which 
behaviors and phenotypes are most robustly 
reflected in biology, we cannot choose the 
most valid targets. Future research should 
invest in developing new assays that evince 
meaningful and stable individual variability 
in both normative and clinical populations. 
Targeting brain-based predictions toward 
longitudinal real-world outcomes is also an 
important gold standard8,24.

Second, we should choose the right brain 
acquisition state. Marek et al. focus largely 
on resting state. This makes sense, given that 
large-scale human neuroimaging datasets 
are currently dominated by resting-state 
acquisitions, sometimes accompanied by 
a handful of traditional cognitive tasks. 
However, an overreliance on resting 
state may be harming the sensitivity and 
generalizability of BWASs. To see why, 
consider analogies from other fields of 
medicine: to screen for abnormal heart 
rhythms, rather than measuring heart rate 
while patients sit on a couch, cardiologists 
subject them to a treadmill test. To screen 
for diabetes risk, rather than measure blood 
sugar when patients come in off the street, 
physicians conduct a glucose-tolerance test 
under controlled lab conditions. Similarly, 
to assess brain function, rather than using 
unconstrained rest, we should put people 
under the conditions in which the relevant 
characteristics and/or vulnerabilities 
are most likely to emerge. Indeed, task 
functional MRI data yield more accurate 
predictions of phenotypes (see ref. 25 for 
a review), including traditional tasks (for 
example, n-back, emotional faces26) as 
well as naturalistic tasks such as watching 
a movie20. Functional connectivity during 
task states is often more reliable in and of 
itself27,28, which may explain some of its 
increased sensitivity to behavior. (However, 
we caution researchers against blindly 
optimizing for test–retest reliability of 
brain data alone: not only does increased 
reliability not necessarily guarantee 
improved behavior prediction, but also 
some degree of within-subject change in 

Box 1 | Recommendations for establishing generalizable brain–behavior associations

Test and validate existing models:

•	 Do out-of-sample prediction rather 
than within-sample correlation

•	 Validate models in a single dataset 
using cross-validation (!ne) or across 
entirely separate datasets (much better)

•	 Share data and models themselves, so 
that models can be tested and poten-
tially tweaked on independent data by 
multiple laboratories

•	 Preregister hypotheses and analysis 
methods

•	 Assess whether models de!ned to pre-
dict individual di"erences in behavior 
capture within-subject change

•	 Test whether experimentally manipu-
lating behavior (for example, with 
training or pharmacological interven-
tion) results in expected brain changes

•	 Test whether experimentally manipu-
lating brain signatures (for example, 
with real-time neurofeedback) results 
in expected behavioral change

Set models up to generalize:

•	 Choose behavioral measures with 
demonstrated reliability and sensitivity 
to individual di"erences

•	 For functional acquisitions, consider 
task states rather than rest, especially 
task(s) tailored to the behavior or phe-
notype of interest

•	 Use multivariate rather than univariate 
approaches to model building

•	 Allow for innovative new behavio-
ral measures and scan paradigms to 
emerge from smaller-scale studies for 
eventual inclusion in large-scale con-
sortium e"orts
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brain function is expected and often reflects 
meaningful processes29.) Therefore, rather 
than defaulting to rest, we can improve our 
models by using thoughtfully chosen task 
paradigms, perhaps even tailoring them to 
our phenotype(s) or behavior(s) of interest.

Third, we should focus on patterns 
of brain features rather than features in 
isolation. Marek et al. show improved 
reliability of multivariate patterns over 
univariate associations. This is perhaps 
unsurprising given that brain functions are 
inherently complex and interdependent, and 
our measures of them are inherently noisy; 
therefore, because ground-truth effect sizes 
for individual features are small, we get 
better signal when aggregating across many 
features. Another benefit to multivariate 
approaches is that they eschew the need 
to correct for multiple comparisons across 
features, which, as Marek et al. point out, 
can harm replication and generalizability 
by increasing false negatives. A drawback 
of multivariate approaches is that models 
can be harder to interpret. Furthermore, 
the models themselves — that is, the 
weights on specific features — can also be 
somewhat unreliable, tempering potential 
interpretations1,30. One solution is to use 
‘virtual lesion’ approaches, which selectively 
remove features (for example, connections 
from a single canonical brain network) 
to determine the extent to which model 
performance suffers. This approach can 
point to feature sets with above-average 
importance for predicting the phenotype 
of interest. Regardless, both theory and 
empirical evidence suggest that multivariate 
approaches are much more appropriate 
than mass univariate tests for establishing 
generalizable brain–behavior associations. 
Moving forward, our field can strive to 
develop the BWAS equivalent of GWAS 
polygenic risk scores that combine multiple 
features, or even outputs from multiple 
models, to produce a combined estimated 
phenotype prediction.

Conclusions
While large sample sizes certainly help, 
they are not the only route to generalizable 
brain–behavior relationships. Here, we have 
highlighted steps researchers can take to 
test for and promote replicability even with 
sample sizes in the tens or perhaps hundreds 
of individuals (see Box 1).

One danger in discounting the value 
of smaller-scale datasets based on Marek 
et al.’s findings is that doing so could stifle 
innovation. Sample sizes in the thousands 
or tens of thousands are virtually only 
achievable in large-scale consortia with 
major financial and logistical support. 
While these datasets are highly valuable, 
they are often limited to the tried-and-true 
measurements for both behavioral and 
brain data (‘science by committee’), which 
paradoxically may be some of the worst for 
studying individual differences23. It is risky 
to include newer and relatively untested 
behavioral measurements and/or scan 
paradigms in a protocol destined to be run 
on thousands of people, but if we do not 
allow evidence to build up from smaller 
studies, we risk remaining stuck in local 
optima for how we acquire data, which 
will severely hamper our ability to make 
incisive discoveries about brain–behavior 
relationships in the long run.

Overall, we reaffirm Marek, 
Tervo-Clemmens, and colleagues’ assertion 
that small-sample neuroimaging studies 
have an important place, and furthermore 
contend that, with careful model building 
and proper validation, they will continue 
to have value for discovering robust links 
between brain and behavior. We can do 
better without necessarily going bigger.
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