
Social Cognitive and Affective Neuroscience, 2025, 20(1), nsaf018

DOI: https://doi.org/10.1093/scan/nsaf018
Advance Access Publication Date: 8 March 2025

Original Research & Neuroscience

Connectome-wide brain signature during fast-food 
advertisement exposure predicts BMI at 2 years
Afroditi Papantoni 1,2, Ashley N. Gearhardt 3, Sonja Yokum 4, Lindzey V. Hoover3, Emily S. Finn 5, Grace E. Shearrer6, 
Lindsey Smith Taillie1, Saame Raza Shaikh1, Katie A. Meyer1, Kyle S. Burger1,2,7,*

1Department of Nutrition, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States 
2Monell Chemical Senses Center, Philadelphia, PA 19104, United States 
3Department of Psychology, University of Michigan, Ann Arbor, MI 48109, United States 
4Oregon Research Institute, Springfield, OR 97477, United States 
5Department of Psychological and Brain Sciences, Dartmouth College, Hanover, NH 03755, United States 
6Department of Family and Consumer Sciences, University of Wyoming, Laramie, WY 82071, United States 
7Biomedical Research Imaging Center, University of North Carolina, Chapel Hill, NC 27514, United States 
*Corresponding author. Monell Chemical Senses Center, 3500 Market St, Philadelphia, PA 19104, United States. E-mail: kburger@monell.org

Abstract

Food advertisements target adolescents, contributing to weight gain and obesity. However, whether brain connectivity during those 
food advertisements can predict weight gain is unknown. Here, 121 adolescents [14.1 ± 1.0 years; 50.4% female; body mass index (BMI): 
23.4 ± 4.8; 71.9% White] completed both a baseline fMRI paradigm viewing advertisements (unhealthy fast food, healthier fast food, and 
nonfood) and an anthropometric assessment 2 years later. We used connectome-based predictive modeling to derive brain networks 
that were associated with BMI both at baseline and the 2-year follow-up. During exposure to unhealthy fast-food commercials, we 
identified a brain network comprising high-degree nodes in the hippocampus, parahippocampal gyrus, and fusiform gyrus rich with 
connections to prefrontal and occipital nodes that predicted lower BMI at the 2-year follow-up (r = 0.17; P = .031). A similar network 
was derived from baseline BMI (n = 168; r = 0.34; P < .001). Functional connectivity networks during exposure to the healthier fast food 
(P = .152) and nonfood commercials (P = .117) were not significant predictors of 2-year BMI. Key brain regions in our derived networks 
have been previously shown to encode aspects of memory formation, visual processing, and self-control. As such, the integration of 
these regions may reflect a mechanism of adolescents’ ability to exert self-control toward obesogenic food stimuli.
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Introduction
Adolescents are one of the primary targets of the food market-
ing industry (Truman and Elliott 2019). The advertisement of 
unhealthy foods to adolescents has been associated with higher 
liking of the advertised products, increased fast-food intake, poor 
diet quality, and greater rates of obesity (Folkvord et al. 2016, 
Harris et al. 2022, Bagnato et al. 2023). Fast-food companies are 
among the top advertisers to adolescents with the majority of 
advertisements in this age group promoting unhealthy fast-food 
products (Kelly et al. 2019, Pauzé and Potvin Kent 2021). US ado-
lescents are exposed to an average of 9.4 food-related TV ads per 
day, summing to over 3500 food-related ad views per year (Frazier 
and Harris 2018). Moreover, adolescents are constantly exposed to 
food marketing campaigns through social media with 6.2 million 
adolescents following 27 of the most highly advertised fast-food, 
snack, and drink brands in 2019 on various social media platforms 
(Rummo et al. 2020).

Food commercials have the power to influence adolescents’ 
eating behavior via a series of psychological and physiological 
responses that render food advertisements highly reinforcing, 

leading to increased food intake (Folkvord et al. 2016), poten-
tially by influencing reward-related networks in the developing 

brain (Casey and Jones 2010). Two meta-analyses have concluded 

that acute exposure to unhealthy food advertising significantly 
increases food intake in children and adolescents (Boyland et al. 

2016, Russell et al. 2019). In addition to behavioral observational 

studies, functional magnetic resonance imaging (fMRI) studies 
have examined how brain responses can predict behaviors, offer-
ing insights into the neural basis of eating behaviors (Giuliani et al. 
2018). Exposure to food vs. nonfood commercials is associated 
with greater brain responses in regions including the cerebel-
lar culmen, middle occipital gyrus, and superior parietal lob-
ule, which are commonly activated in response to both natural 
(food and sex) and drug cues highlighting their role in reward 
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processing, emotional responses, and habit formation (Noori 
et al. 2016, Yeung 2021). Additionally, exposure to dynamic food 
commercials, compared to static food ads, elicits greater blood-
oxygen-level-dependent (BOLD) response in regions that encode 
aspects of reward and gustatory processes (ventral tegmental 
area, substantia nigra, amygdala, and insula), suggesting that 
a more naturalistic presentation of food cues, as the ones seen 
in TV ads, might have a greater impact in engaging dopaminer-
gic reward pathways (Yeum et al. 2023). These brain regions are 
thought to underlie hedonically motivated food behaviors such 
as food cravings, food-approach behaviors, and appetitive moti-
vation in both animal and human research (Nummenmaa et al. 
2012, Siep et al. 2012, Dietrich et al. 2016, Douglass et al. 2017). 
In support, a cross-sectional analysis of the data in the current 
sample demonstrated that greater BOLD activation in reward-
related regions (nucleus accumbens and caudate) in response to 
both unhealthy and healthier fast-food vs. nonfood commercials 
is associated with greater food intake (Gearhardt et al. 2020). Fur-
thermore, less activation in the bilateral fusiform gyrus to both 
food and nonfood brands (vs. control images) is associated with 
greater energy intake from branded meals (Masterson et al. 2019). 
These results suggest that brain responses to branding in gen-
eral, and not just food brands, could be associated with the energy 
intake-promoting effects of marketing.

Despite these advances in knowledge, prospective investiga-
tions of the impact of food and nonfood commercials on future 
weight change among adolescents are lacking. Adolescence is a 
critical developmental period marked by extensive changes in the 
structure and function of the adolescent brain that refine higher-
order cognitive functions including decision-making (Blakemore 
and Mills 2014, Larsen and Luna 2018). Thus, understanding how 
exposure to environmental food cues interacts with functional 
brain connectivity during this sensitive period can provide insight 
into the brain pathways through which food ad exposure leads to 
increased food intake and weight gain in adolescents. Advances in 
fMRI data-driven machine learning-based connectivity analyses 
have yielded tools, e.g., connectome-based predictive modeling 
(CPM), that allow us to identify brain circuits predictive of cer-
tain behaviors and traits across individuals to develop models of 
brain–behavior relationships “i.e., neural signatures” (Finn et al. 
2015, Rosenberg et al. 2016, Shen et al. 2017). The ability to identify 
brain functional connectivity patterns that make some adoles-
cents more susceptible to food advertising content than others 
could ultimately aid in the development of policies that tightly 
regulate advertisment exposure among the younger population.

Here, we utilized CPM to examine whether functional con-
nectivity networks during passive viewing of food and nonfood 
advertisements could be derived from baseline body mass index 
(BMI) and predict future BMI in adolescents. Based on previous 
work studying BOLD responses to food commercials (Gearhardt 
et al. 2014, 2020, Masterson et al. 2019, Arrona-Cardoza et al. 
2022, Yeum et al. 2023), we hypothesized that increased func-
tional connectivity between regions in dopaminergic networks 
(dorsal striatum, ventral striatum, and thalamus) and salience 
networks (insula and amygdala) in response to fast-food com-
mercials compared to nonfood commercials would predict greater 
BMI in adolescents at a 2-year follow-up.

Materials and methods
Sample
The current sample was drawn from a larger study detailed here 
(Gearhardt et al. 2020, Hoover 2022). In brief, participants (n = 193) 
were recruited from southeast Michigan between 2015 and 2017 

and asked to complete an fMRI task measuring BOLD responses to 
fast-food (unhealthy and healthier) and nonfood commercials at 
baseline, and complete height and weight measurements at base-
line and the 2-year follow-up. Participants were English-speaking 
adolescents between 13 and 16 years of age. Adolescents were 
excluded if they were using psychotropic medications or illicit 
drugs, had a lifetime psychiatric disorder, a BMI percentile of 
<5%, or fMRI contraindicators (e.g., presence of metal implants). 
Of the 193 adolescents in the full sample at baseline, 186 com-
pleted the fMRI scan, of which 9 showed excessive movement (i.e., 
head motion of >3 mm or degrees in any direction within two or 
more runs), 2 had scan data with acquisition errors, and 2 did 
not have the correct onset timing files for the fMRI task, resulting 
in a baseline sample of 173 (n = 124 with the 2-year follow-up). 
Anthropometric measurements for five participants from base-
line and three from the 2-year follow-up were flagged as statistical 
outliers and removed, resulting in a final analytic sample of 168 
adolescents at baseline and 121 at the 2-year follow-up.

Overview of study procedures
During the baseline assessment, parents provided written 
informed consent. Adolescents had their height and weight 
measured and completed the fMRI commercials neuroimaging 
paradigm. Adolescents completed a 2 -year follow-up visit, where 
they repeated the height and weight measurements. Study proce-
dures were approved by the University of Michigan Institutional 
Review Board.

Measures
Anthropometrics
Participants’ height and weight were collected in light clothing 
without jackets, socks, or shoes. Height was measured using an 
O’Leary Acrylic Stadiometer (in centimeters, to the nearest tenth); 
weight was measured using a Detecto Portable Scale (in kilograms, 
to the nearest tenth). Height and weight measurements were 
repeated twice and the averages were used for subsequent analy-
ses. BMI values (kg/m2) were calculated at baseline and the 2-year 
follow-up. Participants reported their pubertal development at 
baseline and follow-up using a series of sex-specific line drawings 
at various stages of pubertal development (Bonat et al. 2002).

Scan procedures
For the fMRI scan, participants were asked to refrain from eat-
ing or drinking (except water) following their last meal before the 
scan (last meal consumed 1–7 h prior to scan). Participants rated 
their hunger on a scale from 0 (not hungry at all) to 100 (extremely 
hungry) before the scan. As described in Gearhardt et al. (2020), 
if a rating of ≥70 was indicated, participants were offered a small 
snack (e.g., crackers, fruits) to normalize their hunger to a neu-
tral state. From the individuals included in the baseline analysis 
(n = 168), a total of 7.7% received a snack (n = 13). From the indi-
viduals included in the 2-year follow-up analysis (n = 121), a total 
of 5.8% received a snack (n = 7). Hunger ratings were repeated 
after the snack and hunger was decreased by 53.6% in those who 
consumed the snack.

fMRI data acquisition
Data were acquired with a GE Discovery MR750 3T scanner. An 
8-channel head coil was used to acquire data from the entire 
brain. Functional data were acquired using a spiral sequence with 
the following parameters: repetition time (TR) = 2000 ms, echo 
time (TE) = 30 ms, flip angle = 90∘, field of view (FOV) = 22 × 22 cm2, 
acquisition matrix 64 × 64, 3-mm slice thickness with no gap, 43 
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Figure 1. fMRI commercials paradigm.

axial slices, and voxel size = 3.44 × 3.44 × 3.0 mm3. In total, 156 vol-
umes were collected during each of four functional runs. Anatom-
ical scans were acquired using a high-resolution T1-weighted 
spoiled-gradient-recalled acquisition (TR = 12.3 ms; TE = 5.2 ms, 
inversion time (TI) = 500 ms, flip angle = 15∘, FOV = 22 × 22 cm2, 
slice thickness = 1.0 mm, voxel size = 1 × 1 × 1 mm3).

fMRI commercial paradigm
The fMRI commercial paradigm was developed to include com-
mercials commonly viewed by young adolescents based on 
Nielsen Gross Ratings Point national data (Harris 2013). Details on 
the commercial selection as well as a full list of the commercials 
used can be found in Gearhardt et al. (2020). Briefly, the stim-
uli in the fMRI task included 20 fast-food commercials promot-
ing unhealthy food from Wendy’s and McDonald’s (e.g., Quarter 
Pounder with Cheese), 20 fast-food commercials for healthier food 
options from McDonald’s and Wendy’s (e.g., Southwest Salad), and 
20 nonfood phone (control) commercials from AT&T and Verizon 
(e.g., iPhone). Foods depicted in the commercials were evaluated 
as unhealthy or healthier using the Nutrient Profile Index (NPI), a 
measure of overall nutrition quality used in the UK (Ofcom 2006, 
Rayner et al. 2009). NPI scores range from 1 to 100 (higher score 
indicates healthier items), with foods in the unhealthy fast-food 
commercials averaging 44.05 ± 4.21 and foods in the healthier 
fast-food commercials averaging 70.20 ± 3.86. Each commercial 
lasted ∼15 s and was shown only once. Between each commercial 
was a jittered fixation cross (4–8 s) (Fig. 1). The paradigm consisted 
of four 7-min runs with 15 commercials per run. The order of com-
mercials was randomized in each of the runs and the order of 
the four runs was randomized over the participants. Participants 
were instructed to watch the commercials. After the scan, self-
reported liking ratings of the commercials in the paradigm were 
collected. Participants were asked “How much do you LIKE the fol-
lowing products?” for each of the advertised items (i.e., unhealthy 
fast-food, healthier fast-food, and phones). Responses were pro-
vided on a 5-point scale ranging from Dislike Extremely (1 point) 
to Like Extremely (5 points). In addition, both at baseline and the 
2-year follow-up, participants answered questions about the fre-
quency of visiting Wendy’s and McDonald’s in a typical week to 
assess their overall fast-food exposure, with 63.7% and 78.5% of 
adolescents reporting visiting those restaurants at least once per 
week at baseline and the 2 year follow-up, respectively.

fMRI preprocessing
Following previous work (Burger and Stice 2013), all images 
were manually realigned to the anterior commissure - posterior 
commissure line and skull stripped using the Brain Extraction 
Tool in the FMRIB Software Library FSL; v5.0.9; FMRIB Analysis 
Group, Oxford, UK). Neuroimaging data were preprocessed and 

analyzed primarily using Statistical Parametric Mapping (SPM12, 
Functional Imaging Laboratory, University College of London) in 
MATLAB (R2015a; MathWorks, Inc., Natick, MA, USA). Anatomic 
images were segmented and normalized to Montreal Neurolog-
ical Institute (MNI) space with the use of the DARTEL toolbox. 
Anatomical data were coregistered to the mean functional image 
and segmented into six tissue types using unified segmenta-
tion approach (Ashburner and Friston 2005). Functional images 
were realigned to the mean functional image, coregistered with 
the anatomic images, normalized to MNI space with the use 
of DARTEL, and smoothed with an 8-mm full-width at half-
maximum isotropic Gaussian kernel. DARTEL was used to cre-
ate a group anatomical template, transformations from which 
were applied to warp functional data to the ICBM-152 template 
supplied with SPM12 (Ashburner 2007). Artifact Detection Tools 
(http://www.nitrc.org/projects/artifact_detect/) software package 
was used for automatic detection of spikes and motion in the 
functional data. Motion parameters (three translations and three 
rotations) were included as regressors in the design matrix at 
individual-level analysis. Additionally, functional image volumes 
where the z-normalized global brain activation exceeded 3 SDs 
from the mean or showed >1.5 mm of composite movement were 
flagged as outliers and deweighted during individual-level model 
estimation.

Statistical analyses
Behavioral analysis
Raw BMI scores were used to assess BMI changes, as they are 
considered better than BMI-for-age percentiles or BMI z-scores 
for modeling change over time (Adise et al. 2024). Paired sam-
ple t-tests were used to compare BMI across the two timepoints, 
and repeated measures ANOVA was used to explore biological sex 
by timepoint differences and differences in the liking ratings by 
commercial type.

Functional connectivity
Following data preprocessing, we used a whole-brain functional 
atlas defined on a separate group of healthy adult subjects (Shen 
et al. 2013) to parcellate the brains of each subject into 268 regions 
of interest. We chose the Shen 268-node parcellation because it 
covers the whole brain, including subcortical areas and cerebel-
lum, and has been used in previous CPM studies (Rosenberg et al. 
2016, Yip et al. 2019, Farruggia et al. 2020, Finn and Bandettini 
2021). Here, the mean timecourses per run per participant (i.e., 
average BOLD signal of all voxels within the node during each task 
run) for each of the 268 nodes were extracted using Nipype 1.8.6 
implemented in Python 3.11.2. To minimize the impact of task-
induced co-activation in the functional connectivity analyses 
(Cole et al. 2019) and capture mostly “background” fluctuations 
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in brain activity induced by the different commercial types, after 
modeling the task effects within a general linear model design, 
we extracted the timecourses on the residuals of this regression 
(Al-Aidroos et al. 2012). Timecourses were concatenated across 
all available runs per participant, standardized within subject, 
and detrended to remove linear trends from the signal. Functional 
connectivity matrices for each subject were created by correlat-
ing each node’s timecourse with every other node’s timecourse 
to construct 238 × 238 matrices, one per subject (all 30 nodes that 
were part of the cerebellar canonical network, as defined by Noble 
et al. (2017) and Greene et al. (2018), were dropped to focus the 
analyses on networks more commonly associated with BMI; note 
that 28 nodes in the cerebellum that were part of the other canoni-
cal networks were kept in). Correlation coefficients in the 238 × 238 
connectivity matrices were transformed to z-scores using Fisher’s 
transformation.

Connectome-based predictive modeling
CPM is a data-driven approach that uses whole-brain functional 
connectivity to develop models of brain–behavior relationships 
using machine learning (Finn et al. 2015, Shen et al. 2017). CPM 
analysis was conducted using previously validated custom scripts 
in MATLAB (Shen et al. 2017, Boyle and Weng 2023). A detailed 
description of the CPM protocol can be found in Shen et al. (2017). 
An overview of the method is as follows:

(i) Without any prior scaling or standardization, data, compris-
ing each subject’s functional connectivity matrix and the 
target behavioral variable, were divided into training and 
test sets for 10-fold cross-validation, where the total num-
ber of subjects was binned into 10 equal size groups, and 
for each iteration subjects from nine bins (90% of the par-
ticipants) were used for training and subjects from the one 
left-out independent bin (10% of participants) were used for 
testing. We ran two separate models each with a different 
target variable: one with baseline BMI and the other with 2-
year BMI (controlling for baseline BMI). For each model, we 
then repeated the 10-fold cross-validation process 100 times 
to create a distribution of the test statistic and ensure its 
stability across different train-test folds.

(ii) For each model, in the training set, each edge in the con-
nectivity matrix was correlated with the target variable. 
Target variables (baseline BMI, 2-year BMI) were normally 
distributed, and thus we used partial Pearson’s correlation 
to control for age, biological sex, baseline pubertal stage for 
both models, and baseline BMI for the 2-year BMI model 
only. In post hoc analyses, additional covariates (pre-scan 
snack intake, pre-scan hunger ratings, self-reported liking 
ratings for the commercials, change in pubertal stage from 
baseline to the 2-year follow-up, and fast-food exposure) 
were included in the models but results remained similar in 
statistical significance across all models and types of com-
mercials, so they were omitted from the results presented 
here.

(iii) A feature selection threshold was applied to select the most 
relevant edges for use in the predictive model based on the 
correlation coefficients calculated in (ii). Here, we retained 
edges with |r| > 0.25 (corresponding to a two-tailed P-value 
of approximately .006) for the correlation between connec-
tivity and the target variable. Edges were separated into a 
positive network (edges where connectivity is positively cor-
related with the target variable) and a negative network 

(edges where connectivity is negatively correlated with the 
target variable).

(iv) For each subject in the training set, we calculated the 
summed connectivity strength across all retained edges in 
the positive and negative networks separately.

(v) Still using the training set only, we fitted two linear models: 
one using the positive network and the other using the neg-
ative network, by regressing network strength on the target 
variable. The model parameters were extracted and saved.

(vi) For each subject in the test set, we calculated positive and 
negative network strength using the same method described 
in (iii). These values were used as input to each of the linear 
models estimated in (v) to create the predicted scores for the 
target variable for each subject.

Evaluating model performance and statistical significance
To assess prediction accuracy of each linear model (positive and 
negative), we correlated the predicted (model generated) and 
observed target variable scores across subjects using Pearson’s 
correlation. The coefficient of determination (r2) was also calcu-
lated using the sum-of-squares approach to assess the proportion 
of variance in the observed values explained by the predicted val-
ues. Given that correlation is a relative measure of accuracy rather 
than an absolute one, the mean absolute error (MAE) between the 
predicted and observed target variable scores was also calculated 
and reported below.

In cross-validation, regression folds are not independent of 
one another, and as such, we used nonparametric permutation 
testing to assess the statistical significance of prediction accu-
racy. We generated a null distribution for the correlations between 
the predicted and observed target variable scores by randomly 
shuffling the target variable with respect to connectivity matrices 
and repeating the entire CPM pipeline 10 000 times. The nonpara-
metric P-value for each network strength was calculated as the 
proportion of permuted correlation coefficients (i.e., from the null 
distribution) that are greater than or equal to the true prediction 
correlation coefficient (i.e., mean across the 100 true models) for 
that network strength model.

Data visualization
Only edges selected in at least 90% of all folds across all 100 iter-
ations were extracted and graphed for the significant networks. 
Figures were constructed using BioImage Suite (Joshi et al. 2011). 
The 238 nodes included in the analyses were assigned to nine 
canonical networks as defined in Greene et al. (2018) emphasizing 
different properties of the human brain and consist of medial-
frontal (MF), fronto-parietal (FP), default mode network (DMN), 
motor/somatosensory (Mot), primary visual (VI), secondary visual 
(VII), visual association (VAs), salience (SAL), and subcortical (SC) 
networks.

Results
Participant characteristics at baseline (n = 168) and the 2-year 
follow-up (n = 121) are summarized in Table 1. The subsample 
that did not complete the 2-year follow-up (n = 47) was signifi-
cantly older at baseline compared to the participants that com-
pleted the 2-year follow-up (t = 2.70, P = .008), but showed no other 
differences. 

BMI was significantly higher at the 2-year follow-up com-
pared to baseline [t(121) = 6.53, P < .001]. Differences among self-
reported liking of the three types of advertised items were 
observed [F(2, 334) = 33.74, P < .001]; nonfood (phone) items 
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Table 1. Participant characteristics.

 Baseline  Two-year follow-up

 n = 168  n = 121  n = 121

 Count (percent)

 Sex
 Female  86 (51.2)  61 (50.4)
 Male  82 (48.8)  60 (49.6)
Ethnicity
 Hispanic or Latino  15 (8.9)  13 (10.7)
 Not Hispanic or Latino  153 (91.1)  108 (89.3)
Race
 American Indian/Alaska Native  3 (1.8)  3 (2.5)
 Asian  2 (1.2)  1 (0.8)
 Black or African American  22 (13.1)  12 (9.9)
 White  118 (70.2)  87 (71.9)
 More than one race  14 (8.3)  11 (9.1)
 Other/unknown  9 (5.4)  7 (5.8)
Weight category
 Underweight  0 (0)  0 (0)  1 (0.8)
 Healthy weight  94 (56.0)  72 (59.5)  68 (56.2)
 Overweight  39 (23.2)  23 (19.0)  27 (22.3)
 Obese  35 (20.8)  26 (21.5)  25 (20.7)

Pubertal (tanner) pubic hair stage Girls (n = 86) Boys (n = 81)a Girls (n = 61) Boys (n = 60) Girls (n = 60)a Boys (n = 60)
 1 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0)
 2 2 (2.3) 5 (6.2) 1 (1.6) 5 (8.3) 0 (0) 0 (0)
 3 8 (9.3) 21 (25.9) 7 (11.5) 14 (23.3) 2 (3.3) 2 (3.3)
 4 36 (41.9) 33 (40.7) 25 (41.0) 25 (41.7) 21 (35.0) 24 (40.0)
 5 40 (46.5) 22 (27.2) 28 (45.9) 16 (26.7) 37 (61.7) 34 (56.7)
Pubertal (tanner) breast stage (girls only)
 1 0 (0) 0 (0) 0 (0)
 2 2 (2.3) – 1 (1.6) – 0 (0) –
 3 23 (26.7) 16 (26.2) 2 (3.3)
 4 37 (43.0) 27 (44.3) 27 (45.0)
 5 24 (27.9) 17 (27.9) 31 (51.7)

 Mean ± SD

 Age (years)b  14.3 (1.0)  14.1 (1.0)  16.1 (1.0)
BMI (kg/m2)  23.7 (4.8)  23.4 (4.8)  24.8 (5.1)
BMI z-score 0.82 (0.90) 0.78 (0.91) 0.75 (0.98)
Liking ratings for commercials
Unhealthy fast foodc 2.84 (0.60) 2.84 (0.62)  –
Healthier fast food 2.69 (0.59) 2.70 (0.58)  –
Nonfood phoned 3.07 (0.50) 3.09 (0.50)  –

aPubertal stage was missing for one participant at baseline and one participant at the 2-year follow-up.
bAge significantly higher in the full sample (n = 168 vs. n = 121) (P = .008).
cLiking ratings significantly higher for unhealthy vs. healthier fast-food commercials (P = .001).
dLiking ratings significantly higher for nonfood vs. unhealthy fast-food commercials (P < .001) and nonfood vs. healthier fast-food commercials (P < .001).

were rated higher compared to both unhealthy and healthier 
fast-food items (P < .001 for both). Unhealthy fast-food items 
had higher liking ratings than healthier food items (P = .001;
Table 1).

Pubertal stage at baseline was significantly higher in female vs. 
male participants at baseline (𝜒2 = 12.37, P = .006), but not at the 
2-year follow-up (𝜒2 = 0.32, P = .853). Pubertal stage was also sig-
nificantly different by race at baseline (Black adolescents reported 
higher pubertal stage; 𝜒2 = 56.56, P < .001), but not at the 2-year 
follow-up (𝜒2 = 13.18, P = .356).

Brain networks in response to unhealthy 
fast-food commercials
Baseline
We first examined whether functional connectivity in response to 
each type of commercial is significantly associated with BMI at 

baseline, controlling for age, sex, and baseline pubertal stage. We 
identified a functional connectivity network in response to pas-
sive viewing of “unhealthy fast-food” commercials where stronger 
connectivity among the nodes of the network was associated 
with lower BMI at baseline (r = 0.341, nonparametric permutation 
P < .001, r2 = 0.116, MAE = 3.722; Fig. 2). This “negative” network 
contained 450 edges (1.6% of all possible connections among the 
nodes in the atlas used). Highest-degree nodes (i.e. nodes with 
the greatest number of nodal connections contributing to the 
network) were found in the fusiform gyrus, cerebellum, occipi-
tal cortex, hippocampus, and anterior prefrontal cortex (Table 2). 
These nodes are summarized based on their overlap with the 
nine canonical networks and can be seen in Fig. 2b and c. We 
observed connections within the SC canonical network, as well 
as connections between the SC and VAs, SAL, and DMN canonical 
networks.
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6  Papantoni et al.

Figure 2. Brain networks associated with baseline BMI during exposure to unhealthy fast-food commercials. Representation of negative BMI networks 
at baseline in response to the unhealthy fast-food commercials. Greater number of connections between the displayed nodes at baseline is associated 
with lower baseline BMI. Darker colored regions (a) indicate nodes with a greater number of connections. Chord diagrams (b) represent the 
connections among the nine canonical brain networks. Matrix cells (c) represent the total number of edges connecting nodes between each network 
pair among the canonical networks, where darker colors indicate more connections. Scatterplots (d) represent model accuracy, i.e., the relationship 
between the observed versus the predicted baseline BMI generated by the functional connectivity CPM models during exposure to unhealthy fast-food 
commercials. Models have been adjusted for age, sex, and baseline pubertal stage. Coefficient of determination (r2) is calculated as the total sum of 
squares explained by the model.

Table 2. High-degree nodes (top 5%) in the negative BMI network at baseline for unhealthy fast-food commercials.

Degree
Degree as proportion 
of network sizea

Shen 268 atlas node 
(Shen et al. 2013) Region

Canonical 
Network

MNI coordinates 
(x, y, z)

Negative network

18 0.040 200 L Fusiform gyrus VAs −43, −52, −17
17 0.038 257 White matter (callosal 

body)
SC −11, 24, 10

17 0.038 246 L Cerebellum FP −43, −64, −46
12 0.027 206 L Occipital VAs −43, −70, −14
11 0.024 216 L Lingual gyrus VI −22, −67, 7
10 0.022 232 L Hippocampus SC −36, −25, −15
10 0.022 217 White matter (callosal 

body)
SC −24, −41, 20

10 0.022 138 L Anterior prefrontal 
cortex

DMN −7, 48, −6

10 0.022 123 R Caudate SC 13, 20, −1
9 0.020 230 L Hippocampus SC −32, −40, −4
9 0.020 134 L Orbitofrontal cortex DMN −5, 29, −10
9 0.020 94 R Hippocampus SC 36, −15, −18

aNegative network consists of a total of 450 edges.
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Brain signatures predicting future BMI  7

Figure 3. Brain networks predicting lower BMI over 2 years during exposure to unhealthy fast-food commercials. Representation of negative BMI 
networks at the 2-year follow-up in response to the unhealthy fast-food commercials. Greater number of connections between the displayed nodes at 
baseline is predictive of lower BMI at the 2-year follow-up. Darker colored regions (a) indicate nodes with a greater number of connections. Chord 
diagrams (b) represent the connections among the nine canonical brain networks. Matrix cells (c) represent the total number of edges connecting 
nodes between each network pair among the canonical networks, where darker colors indicate more connections. Scatterplots represent model 
accuracy, i.e., the relationship between the observed versus the predicted 2-year follow-up BMI generated by the functional connectivity CPM models 
during exposure to (d) unhealthy fast-food, (e) healthier fast-food, and (f) nonfood phone commercials. Only the CPM based on the unhealthy fast-food 
functional connectivity reached statistical significance. Models have been adjusted for age, sex, baseline pubertal stage, and baseline BMI. Coefficient 
of determination (r2) is calculated as the total sum of squares explained by the model.

Two-year follow-up
We identified a functional connectivity network in response 
to passive viewing of “unhealthy fast-food” commercials where 
stronger connectivity among the nodes predicted lower BMI at 2 
years (r = 0.174, nonparametric permutation P = .031, r2 = 0.031, 
MAE = 4.164; Fig. 3), controlling for age, sex, baseline pubertal 
stage, and baseline BMI. This network contained 132 edges (0.5% 
of all possible connections). Highest-degree nodes were found 
in the parahippocampal gyrus, hippocampus, posterior cingulate 
cortex, superior temporal gyrus, and insula (Table 3). These nodes 
are summarized based on their overlap with the nine canonical 
networks and can be seen in Fig. 3b and c. Here, nodes within the 
SC canonical network were interconnected with nodes within the 
MF, FP, DMN, and Mot networks.

Brain networks in response to healthier fast-food 
commercials
Baseline
A functional connectivity network in response to passive view-
ing of “healthier fast-food” commercials was identified, where 
stronger connectivity among the nodes of the network was associ-
ated with lower BMI at baseline (r = 0.366, nonparametric permu-
tation P < .001, r2 = 0.134, MAE = 3.672; Fig. 4), controlling for age, 
sex, and baseline pubertal stage. This negative network contained 
566 edges (2.1% of all possible connections). Highest-degree nodes 
for the network were found in the fusiform gyrus, cerebellum, 

occipital cortex, and hippocampus (Table 4). These nodes are sum-
marized based on their overlap with the nine canonical networks 
and can be seen in Fig. 4b and c. Here, we observed connections 
within the FP and within the SC canonical networks. There were 
also connections between the FP, VAs, SAL, and SC networks.

Two-year follow-up
Functional connectivity networks in response to passive view-
ing of the “healthier fast-food” commercials did not significantly 
predict BMI at the 2-year follow-up (r = 0.103, nonparametric per-
mutation P = .152, r2 = 0.011, MAE = 4.194; Fig. 3e), controlling for 
age, sex, baseline pubertal stage, and baseline BMI.

Brain networks in response to nonfood 
commercials
Baseline
There was also a significant functional connectivity network in 
response to passive viewing of “nonfood” commercials where 
stronger connectivity among the nodes of the network was associ-
ated with lower BMI at baseline (r = 0.331, nonparametric permu-
tation P < .001, r2 = 0.110, MAE = 3.732; Fig. 5), controlling for age, 
sex, and baseline pubertal stage. This negative network contained 
666 edges (2.4% of all possible connections). Highest-degree nodes 
were found in the fusiform gyrus, cerebellum, and occipital cortex 
(Table 5). These nodes are summarized based on their overlap with 
the nine canonical networks and can be seen in Fig. 5b and c. We 
found connections within the SC and within the Mot networks, 
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8  Papantoni et al.

Table 3. High-degree nodes (top 5%) in the network that predicted lower BMI after 2 years during exposure to unhealthy fast-food 
commercials.

Degree
Degree as proportion 
of network sizea

Shen 268 atlas node 
(Shen et al. 2013) Region

Canonical 
network

MNI coordinates 
(x, y, z)

Negative network

10 0.076 95 R Parahippocampal gyrus SC 28, −29, −14
8 0.061 230 L Hippocampus SC −32, −40, −4
7 0.053 233 L Parahippocampal gyrus SC −21, −31, −11
5 0.038 91 R Dorsal posterior 

cingulate cortex
SAL 8, −40, 48

4 0.03 63 R Duperior temporal gyrus Mot 62, −24, −3
4 0.03 35 R Insula Mot 41, 4, 7
4 0.03 29 R Supplementary motor 

area
SAL 14, 6, 65

4 0.03 7 R Anterior prefrontal 
cortex

FP 31, 55, −4

3 0.023 234 L Parahippocampal gyrus SC −31, −24, −27
3 0.023 231 L Hippocampus SC −23, −13, −17
3 0.023 198 L Fusiform gyrus VI −27, −43, −16
3 0.023 168 L Insula Mot −39, 2, 10

aNegative network consists of a total of 132 edges.

Figure 4. Brain networks associated with baseline BMI during exposure to healthier fast-food commercials. Representation of negative BMI networks 
at baseline in response to the healthier fast-food commercials. Greater number of connections between the displayed nodes at baseline is associated 
with lower baseline BMI. Darker colored regions (a) indicate nodes with a greater number of connections. Chord diagrams (b) represent the 
connections among the nine canonical brain networks. Matrix cells (c) represent the total number of edges connecting nodes between each network 
pair among the canonical networks, where darker colors indicate more connections. Scatterplots (d) represent the relationship between the observed 
versus the predicted baseline BMI generated by the CPM model. Models have been adjusted for age, sex, and baseline pubertal stage. Coefficient of 
determination (r2) is calculated as the total sum of squares explained by the model.
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Brain signatures predicting future BMI  9

Table 4. High-degree nodes (top 5%) in the negative BMI network at baseline for healthier fast-food commercials.

Degree
Degree as proportion 
of network sizea

Shen 268 atlas node 
(Shen et al. 2013) Region

Canonical 
network

MNI coordinates 
(x, y, z)

Negative network

23 0.041 246 L Cerebellum FP −43, −64, −46
22 0.039 200 L Fusiform gyrus VAs −43, −52, −17
22 0.039 116 R Cerebellum FP 42, −64, −49
18 0.032 206 L Occipital VAs −43, −70, −14
16 0.028 257 White matter (callosal 

body)
SC −11, 24, 10

13 0.023 232 L Hippocampus SC −36, −25, −15
13 0.023 67 R Fusiform gyrus VAs 36, −69, −17
12 0.021 152 L Inferior frontal gyrus SAL −28, 36, −16
12 0.021 136 L Orbitofrontal cortex SAL −6, 18, −22
10 0.018 123 R Caudate SC 13, 20, −1

9 0.016 178 L Superior parietal lobule SAL −10, −66, 55
9 0.016 142 L Anterior prefrontal 

cortex
FP −29, 54, 3

aNegative network consists of a total of 566 edges.

Figure 5. Brain networks associated with baseline BMI during exposure to nonfood commercials. Representation of negative BMI networks at baseline 
in response to the nonfood commercials. Greater number of connections between the displayed nodes at baseline is associated with lower baseline 
BMI. Darker colored regions (a) indicate nodes with a greater number of connections. Chord diagrams (b) represent the connections among the nine 
canonical brain networks. Matrix cells (c) represent the total number of edges connecting nodes between each network pair among the canonical 
networks, where darker colors indicate more connections. Scatterplots (d) represent the relationship between the observed versus the predicted 
baseline BMI generated by the CPM models. Models have been adjusted for age, sex, and baseline pubertal stage. Coefficient of determination (r2) is 
calculated as the total sum of squares explained by the model.
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Table 5. High-degree nodes (top 5%) in the negative BMI network at baseline for nonfood commercials.

Degree
Degree as proportion 
of network sizea

Shen 268 atlas node 
(Shen et al. 2013) Region

Canonical 
network

MNI coordinates 
(x, y, z)

Negative network

25 0.038 246 L Cerebellum FP −43, −64, −46
21 0.032 206 L Occipital VAs −43, −70, −14
16 0.024 257 White matter (callosal 

body)
SC −11, 24, 10

15 0.023 207 L Occipital VI −26, −63, −12
15 0.023 200 L Fusiform gyrus VAs −43, −52, −17
14 0.021 216 L Lingual gyrus VI −22, −67, 7
14 0.021 212 L Occipital VII −11, −98, 8
13 0.020 116 R Cerebellum FP 42, −64, −49
13 0.020 66 R Fusiform gyrus VAs 46, −60, −15
12 0.018 69 R Fusiform gyrus VAs 55, −56, −5
11 0.017 261 L Putamen SC −25, 6, 0
11 0.017 134 L Orbitofrontal cortex DMN −5, 29, −10

aNegative network consists of a total of 666 edges.

as well as connections between the SC, VAs, and FP canonical 
networks. 

Two-year follow-up
Functional connectivity networks in response to passive view-
ing of the “nonfood” commercials did not significantly predict 
BMI at the 2-year follow-up (r = 0.115, nonparametric permuta-
tion P = .117, r2 = 0.015, MAE = 4.215; Fig. 3f), controlling for age, 
sex, baseline pubertal stage, and baseline BMI.

Discussion
During adolescence, individuals develop food choice autonomy, 
forming eating habits and behaviors that continue into adult-
hood (Videon and Manning 2003, Bassett et al. 2008). Adolescents 
are exposed to thousands of food commercials increasing their 
risk of developing unhealthy eating habits that lead to overeat-
ing and weight gain (Scully et al. 2012, Zimmerman and Shimoga 
2014). In recent meta-analyses, food (vs. nonfood) commercials 
elicit increased brain activation in regions shown to encode self-
control behaviors, modulation of food cravings, reward process-
ing, and visual processing (Yeung 2021, Arrona-Cardoza et al. 
2022). However, there is little evidence to understand whether 
brain network activation patterns to food commercials are asso-
ciated with future weight change. Here, we observed that a 
brain network rich in connections in regions previously impli-
cated in stimuli processing and self-control predicted lower cur-
rent and future BMI. Interestingly, these networks were specific 
to when the participants were viewing the unhealthy fast-food
commercials.

In this investigation, we employed CPM that uses cross-
validation to protect against overfitting and ensure that models 
generalize to novel individuals in the same dataset, increasing the 
likelihood of replicating the results in novel datasets (Shen et al. 
2017). We observed that stronger baseline functional connectivity 
within subcortical network nodes as well as between subcortical, 
salience, visual association, and frontoparietal canonical net-
works was associated with lower BMI at baseline. The most highly 
interconnected nodes associated with current BMI across all three 
types of commercials included regions in the fusiform gyrus, 
hippocampus, and cerebellum (regions assigned in the visual 
association, subcortical, and frontoparietal canonical networks, 

respectively), with connections to other visual association, pre-
frontal, temporal, and subcortical brain regions. We also observed 
that stronger functional connectivity among regions that encode 
aspects of memory formation, visual processing, and self-control 
predicted lower BMI at the 2-year follow-up. The most highly 
interconnected nodes when predicting lower future BMI included 
regions in the parahippocampal gyrus and hippocampus, with 
connections to prefrontal and temporoparietal brain regions. This 
may suggest that increased interplay among these regions may 
have a protective effect against the detrimental influences of 
fast-food marketing on eating behaviors.

The fusiform gyrus was involved in the baseline CPM networks 
with more connections from this region to inferior frontal gyrus, 
prefrontal cortex, and caudate being associated with lower base-
line BMI. The fusiform gyrus is involved in semantic memory 
(Mion et al. 2010) but also appears to play a role in the visual pro-
cessing of food cues in both adults and adolescents (Huerta et al. 
2014, van Meer et al. 2015). Children have shown increased bilat-
eral fusiform gyri activation in response to both food and nonfood 
brand images, while less activation in this area to both food and 
nonfood brands was associated with greater energy intake of the 
branded foods (Masterson et al. 2019). The fusiform area, part 
of the ventral visual pathway, contains subregions with a neural 
response that is highly selective to images of food (Khosla et al. 
2022, Jain et al. 2023). Earlier results (Bruce et al. 2013, Maynard 
et al. 2017) suggest that the fusiform gyrus might play a more gen-
eral role in the visual processing of all salient stimuli, both food 
and nonfood. In agreement with the literature, we corroborate 
that this is a region implicated in the processing of multiple types 
of visual cues and highlight that increased functional connec-
tivity of the fusiform gyrus to the frontoparietal and subcortical 
networks is associated with lower current BMI, a relationship pos-
sibly mediated by suppressing the salience of rewarding stimuli 
commonly shown in fast-food commercials.

The parahippocampal gyrus was a key node in the signifi-
cant 2-year negative CPM networks with more connections from 
this region to the prefrontal cortex, orbitofrontal cortex, infe-
rior frontal gyrus, and middle temporal gyrus being linked to 
lower future BMI. This region plays an important role in mem-
ory and learning as well as in the hedonic processing of feeding 
and encoding of salient stimuli, allowing for food-related recol-
lection (Berthoud 2002, Bragulat et al. 2010). Greater activation 
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in the parahippocampal gyrus correlates with greater food crav-
ings in young women (Chen et al. 2017). Individuals with obe-
sity show increased parahippocampal activation when exposed 
to naturalistic food odors (Bragulat et al. 2010) and differences 
in parahippocampal resting-state functional connectivity with 
increased connections to reward processing regions (Zhang et al. 
2020). Furthermore, individuals with obesity show increased acti-
vation in the parahippocampal gyrus and decreased activation 
in the dorsolateral prefrontal cortex during exposure to food 
images compared to healthy controls (Brooks et al. 2013). In con-
trast, our results show that stronger connectivity between the 
parahippocampal gyrus and the prefrontal cortex during view-
ing of unhealthy fast-food commercials is associated with lower 
future BMI, suggesting that it is not only the activation within 
each region that plays a role in the neural processing of food 
cues but also the connections between different parts of the brain 
that influence food cue encoding. In this case, strong connections 
between the parahippocampal gyrus, implicated in cognitive eval-
uation of salient stimuli, and the prefrontal cortex, implicated 
in cognitive control, might make individuals to assign a lower 
motivational value to unhealthy foods shown in commercials and 
potentially lead to inhibiting consumption of those foods.

A greater number of connections from the hippocampus to 
prefrontal cortex and inferior frontal gyrus were also linked to 
both lower current and lower future BMI. The hippocampus, 
through its involvement in the formation and retrieval of declara-
tive memories (Bird and Burgess 2008), plays a critical role in food 
intake regulation (Stevenson and Francis 2017) by allowing us to 
consciously evaluate when, what, and how much to eat. Research 
suggests that recollection of past eating events acts as a form 
of self-control to inhibit further food intake (Higgs et al. 2008, 
Collins and Stafford 2015). Lesions in this area lead to impaired 
body weight regulation in animal models, suggesting that the 
hippocampus mediates inhibition of food intake (Davidson et al. 
2009, Henderson et al. 2013). During satiation, the hippocampus 
appears to encode an inhibitory form of learning that allows us to 
suppress consummatory behaviors despite the presence of pleas-
ant food cues in the environment (Davidson et al. 2009, 2005, 
2014). Similarly, human neuroimaging studies have shown that in 
response to the consumption of a satiating liquid meal, individu-
als with current and past obesity have decreased regional cerebral 
blood flow to the hippocampus (DelParigi et al. 2004). Our results 
are in line with these previous findings and suggest that increased 
involvement of the hippocampus in frontoparietal, subcortical, 
motor, and default mode networks is associated with better future 
weight outcomes. People with obesity have shown reduced BOLD 
signal intensity in the hippocampus and decreased functional 
connectivity in the frontal gyrus of the default mode network 
compared to a control group (Chao et al. 2018), both findings that 
align with the results presented here. In contrast, BOLD signal 
intensity in a sample of young adults with obesity was higher in 
the hippocampus and lower in the prefrontal cortex compared 
to adults with normal weight, with resting-state activity in the 
hippocampus mediating task-induced hippocampal activation in 
response to high-calorie food cues in participants with obesity (Li 
et al. 2021). Although these results might appear contrasting, they 
could also suggest the heterogeneity of hippocampal function 
in the regulation of food intake and the importance of studying 
whole-brain functional connectivity in parsing out the complex 
relationships between all the brain networks involved in eating
regulation.

It is important to consider the limitations of this study. First, 
we lacked power to test possible racial/ethnic differences. There 

is evidence to suggest that Black adolescents are exposed to a 
higher number of TV ads for snacks and sugary drinks compared 
to White youth (Miller et al. 2021), placing this group at a greater 
risk of consuming unhealthier foods. Imaging data for this study 
were collected in an MRI scanner using an 8-channel head coil, 
which, compared to the more widely used 32-channel head coil, 
has shown increased noise amplification and reduced signal-to-
noise ratio during data acquisition (Panman et al. 2019). The 
machine learning approach implemented here provides a more 
conservative estimate of the strength of the brain–behavior rela-
tionship compared to traditional correlation approaches. How-
ever, the ultimate test of the generalizability of our results would 
be whether the predictive networks identified here would relate 
to body weight measures in an entirely separate sample. Given 
that we have not performed this external validation, it limits the 
generalizability and replicability of our results. Additionally, it is 
important to note that we lacked information on socioeconomic 
status in this sample. There is evidence to suggest that lower 
socioeconomic status is associated with altered neural responses 
to food cues in reward processing and executive control regions 
(Zhang et al. 2023), with socioeconomic status influencing the 
relationship between brain food cue reactivity and weight. As 
such, future studies should include a comprehensive assessment 
of socioeconomic status. Another variable that would have added 
further nuance to the results would be recall of the commer-
cials after the fMRI paradigm to assess participants’ attention 
to the task. However, this was not directly tested here. Lastly, 
over the past several years, there has been a considerable shift 
from more traditional to digital marketing with the food industry 
advertising foods and beverages on social media apps, stream-
ing platforms, and video games, with equally alarming effects on 
children’s and adolescents’ food choices as traditional TV com-
mercials (Mc Carthy et al. 2022), highlighting the need for further 
studies.

In sum, this study found that stronger connectivity between 
regions implicated in memory formation, learning, visual pro-
cessing, and self-control in response to unhealthy fast-food com-
mercials predicts lower BMI at a 2-year follow-up. These results 
suggest that some adolescents might be able to exert more self-
control over the influence external food stimuli have on their food 
choices, making them less vulnerable to overeating and weight 
gain later in life. Further examining the biological and environ-
mental factors that lead to stronger connectivity in this protective 
network in some individuals could be crucial for understanding 
the neuropsychological underpinnings of eating behaviors, while 
longer follow-up studies across developmental transitions would 
be an important future direction. Although further research on 
individual-level differences in eating behavior and food choices is 
warranted, it is imperative to consider the need for population-
level changes in policy that strictly regulate fast-food advertise-
ments targeting adolescents.
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