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Significance

Spontaneous thought provides 
valuable insights into our internal 
states and context, but assessing 
its contents and dynamics is 
challenging due to its 
unconstrained nature. We 
addressed this challenge by 
developing functional MRI-based 
predictive models for two crucial 
content dimensions (i.e., self-
relevance and valence) of 
spontaneous thought. Using 
personalized narratives as 
stimuli, we evoked cognitive and 
affective responses resembling 
real-life experiences. Our models 
were able to predict the levels of 
self-relevance and valence 
ratings during story reading and 
resting state, contributing to 
brain-based daydream decoding. 
These results hold significant 
implications for understanding 
individual differences and 
assessing mental health, 
shedding light on the study of 
internal states and contexts that 
shape our subjective 
experiences.
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The contents and dynamics of spontaneous thought are important factors for personality 
traits and mental health. However, assessing spontaneous thoughts is challenging due to 
their unconstrained nature, and directing participants’ attention to report their thoughts 
may fundamentally alter them. Here, we aimed to decode two key content dimensions 
of spontaneous thought—self-relevance and valence—directly from brain activity. To 
train functional MRI-based predictive models, we used individually generated personal 
stories as stimuli in a story-reading task to mimic narrative-like spontaneous thoughts (n 
= 49). We then tested these models on multiple test datasets (total n = 199). The default 
mode, ventral attention, and frontoparietal networks played key roles in the predictions, 
with the anterior insula and midcingulate cortex contributing to self-relevance prediction 
and the left temporoparietal junction and dorsomedial prefrontal cortex contributing to 
valence prediction. Overall, this study presents brain models of internal thoughts and 
emotions, highlighting the potential for the brain decoding of spontaneous thought.

personal story | spontaneous thought | functional magnetic resonance imaging | brain decoding |  
affective neuroscience

Our mind never rests. Even during quiet periods or sleep, our mind spontaneously wanders 
from the past to the future and from one concept to another (1–3). Spontaneous thoughts 
may seem random, but they often involve topics that are emotionally charged, central to 
self-identity, and related to internal desires and goals (4, 5). The contents and dynamics 
of spontaneous thought are known to be important predictors of cognitive and affective 
traits (e.g., ruminative or internalizing cognitive styles) (2, 6–8) and disrupted brain 
processes, providing potential as cognitive and behavioral markers for mental and neuro-
logic disorders, such as depression, anxiety, and Alzheimer’s disease (9–11). However, the 
assessment of one’s spontaneous thought is challenging, given that it occurs freely with 
minimal conscious constraints (12). In addition, the act of paying attention to spontaneous 
thought can change the nature of spontaneous thought itself, also known as the Heisenberg 
effect (13). For these reasons, measuring some aspects of spontaneous thought directly 
from brain activity, e.g., functional MRI (fMRI) signals, would be useful for the under-
standing of cognitive processes underlying spontaneous thoughts and the clinical appli-
cation (14, 15). One previous study showed that the activation patterns within the medial 
orbitofrontal cortex (OFC) region from task-induced positive or negative affective states 
could classify positive vs. negative affective states during task-free rest (16). The current 
study took one step further by developing regression-based predictive models to decode 
the levels of two key affective dimensions of spontaneous thought—self-relevance and 
valence (6)—based on affective states elicited by personal narratives.

To effectively induce brain representations that resemble those of spontaneous thought, 
we chose to use narratives as stimuli. Recent studies have suggested that spontaneous 
thought is experienced in the form of images or words (17), particularly as deeply processed 
imagery and concepts such as narratives (18). Although narratives cannot capture all 
aspects of spontaneous thought, narratives share key elements with spontaneous thought, 
such as rich semantic information and their temporally unfolding nature (19). In addition, 
narratives have been successfully used in fMRI experiments to study semantic processing 
in the brain (20–25). Thus, narratives provide promising candidate materials for the study 
of brain representations of spontaneous thought.

However, the contents of spontaneous thought have an important characteristic that 
narratives created by others (e.g., experimenters) are lacking, which is that they are often 
very personally relevant (in other words, have high self-relevance) (7, 26, 27). The 
significance of personally relevant topics in spontaneous thought has been empirically 
demonstrated in multiple previous studies (7, 28–33). For example, Andrews-Hanna 
et al. reported that participants rated their spontaneous thoughts as having a high level 
of personal significance across two datasets (28), while Baird et al. found that 66% of 
the off-task thoughts were related to self (29). This motivated us to use personal D
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narratives in our experiment. It is well known that spontaneous 
thought is most commonly about one’s personal life, such as 
current personal concerns, past memories, and future plans  
(5, 7, 33–35), suggesting that self-relevant thought contents are 
major building blocks of spontaneous thought. For example, a 
recent paper proposed that episodic memory serves as a foun-
dation of spontaneous thought and provides a scaffolding for 
semantic memory to generate thought contents (36). In addi-
tion, self-referential information recruits brain systems distinct 
from those for non-self-referential information (37–40), under-
scoring the importance of using self-relevant stimuli to study 
brain representations of spontaneous thought. Thus, we hypoth-
esized that personal narratives would be able to induce brain 
representations close to those of spontaneous thought. Here, 
we performed one-on-one interviews with participants to create 
individually unique stimuli based on personal narratives, which 
were used in the fMRI experiment to elicit self-relevant thoughts 
and emotions.

Among multiple dimensions of spontaneous thought (6, 7, 17), 
here we particularly focused on two content dimensions—self-relevance 
and valence. We chose these two dimensions mainly because 
dimensionality reduction analyses conducted in previous studies 
showed that self-relevance and valence were among the most 
central dimensions that can serve as summaries of other content 
dimensions (6, 7). In addition, these two variables are likely to 
be among the fundamental dimensions of human cognition and 
emotions given that self-relevance and valence convey informa-
tion crucial for survival, such as what to avoid (i.e., negative 
valence, high self-relevance), what to approach (i.e., positive 
valence, high self-relevance), or what to ignore (i.e., low 
self-relevance). In terms of the brain systems, self-relevance and 
valence can be linked to the brain networks related to valuation 
(i.e., is it good or bad?) and context-dependent salience detection 
(i.e., is it relevant to me?), such as the default mode, limbic, and 
ventral attention networks (41–43). Note that, however, these 
two dimensions are only a small fraction of components that 
constitute spontaneous thoughts, and therefore, consider this 
study as a step toward the decoding of the rich content of 
spontaneous thoughts.

As shown in Fig. 1A, the major research goals of the current 
study include 1) developing fMRI multivariate pattern-based 
predictive models of self-relevance and valence using data from 
the story-reading task, 2) comparing and interpreting the newly 
developed predictive models of self-relevance and valence, and 
3) testing the predictive models on the resting-state fMRI data 
with and without intermittent thought-sampling probes. To this 
end, we conducted an fMRI experiment (n = 49) while partici-
pants underwent the story-reading and thought-sampling tasks. 
In the story-reading task, participants were asked to read their 
own stories or stories made by others to induce a wide range of 
levels of self-relevance and valence. In the thought-sampling task, 
participants were asked to think freely and intermittently report 
a few words that represented their current thoughts. After fMRI 
scans, participants provided self-relevance and valence ratings for 
the stories and words from the story-reading and thought-sampling 
tasks. With the fMRI data from the story-reading task, we devel-
oped fMRI multivariate pattern-based decoding models of self- 
relevance and valence that showed significant predictions in the 
leave-one-subject-out cross-validation (LOSO-CV). We then 
identified important contributors to the prediction of both mod-
els using the virtual lesion and isolation analysis methods. Finally, 
we applied these models to decode self-relevance and valence 
scores during the thought-sampling task (n = 49) and resting state 
(n = 90 and 60).

Results

Experimental Overview and Post-scan Survey. Fig. 1B shows the 
experimental design of the current study, which we briefly describe 
here (for the details of the experimental procedure, please see 
Materials and Methods and SI Appendix, Supplementary Methods). 
On day 1, we conducted a one-on-one interview with participants 
to create personal stories to use as stimuli in the fMRI experiment. 
On day 2, participants underwent the story-reading and thought-
sampling tasks in the scanner. During the story-reading task, 
participants read four “personal” stories, which were created 
for each participant, and six “common” stories, which were the 
same across participants. While reading the stories, participants 
were intermittently asked to provide their valence ratings (i.e., 
three times per story). In the thought-sampling task, we asked 
participants to think freely and verbally report what was in their 
mind with a few words intermittently [every 50.7 ± 5.6 (mean ± 
SD) s]. After the scan, we conducted a post-scan survey on words 
and stories (Fig. 1C). For the word survey, participants rated the 
words they generated during the thought-sampling task using a 
multidimensional content scale (see SI Appendix, Supplementary 
Methods for details), and for the story survey, participants read 
the stories again and rated their perceived levels of self-relevance 
and valence using continuous ratings (see SI Appendix, Fig. S1 for 
example and group average ratings). To ensure that the post-scan 
survey results reflected the in-scanner experience, we compared 
the intermittent valence ratings from the in-scanner story-reading 
task with the valence ratings from the post-scan survey. As shown 
in Fig. 1D, the in-scanner vs. post-scan valence ratings were highly 
correlated (mean r = 0.844, z = 51.71, P < 2.220e-16, two-tailed, 
bootstrap tests with 10,000 iterations), suggesting that the post-
scan survey ratings reflected the in-scanner experience well.

Developing Predictive Models of Self-relevance and Valence. 
To achieve the first research goal, i.e., developing fMRI-based 
predictive models of self-relevance and valence (Fig.  1A), we 
trained fMRI multivariate pattern-based predictive models 
using the fMRI data from the story-reading task. To effectively 
disentangle fMRI patterns for self-relevance and valence, we 
concatenated and quantized the data based on quintiles of the two 
dimensions, constructing 25 averaged images per participant (i.e., 
5 levels of self-relevance ×   5 levels of valence; for details of the data 
quantization and distribution of ratings, see SI Appendix, Figs. S2 
and S3). We then trained predictive models of self-relevance and 
valence using principal component regression (PCR) (44) with 
LOSO-CV and random-split cross-validation (RS-CV) (45, 46).  
The models showed significant cross-validated prediction 
performances—prediction–outcome correlations for self-relevance,  
with LOSO-CV, mean r = 0.322, z = 9.204, P < 2.220e-16, 
mean squared error (mse) = 0.148, two-tailed, bootstrap tests 
with 10,000 iterations, with RS-CV, mean r = 0.332, mse = 
0.144 (Fig. 2A); for valence, with LOSO-CV, mean r = 0.205, 
z = 6.235, P = 4.511e-10, mse = 0.454, two-tailed, bootstrap 
tests with 10,000 iterations, with RS-CV, mean r = 0.179, mse 
= 0.458 (Fig. 2B). Permutation tests with 1,000 iterations and 
LOSO-CV also provided significant performances against null 
models (both P = 0.0010; SI Appendix, Fig. S4). Interestingly, an 
additional analysis correlating model performances with vividness 
ratings across subjects showed a significant positive correlation for 
the valence model, r = 0.370, P = 0.0090 (SI Appendix, Fig. S5), 
suggesting that poorer prediction performance for some individuals 
might arise from reduced engagement with the narratives.

As shown in Fig. 2 A and B, the two models showed a weak 
correlation between the unthresholded whole-brain patterns of D
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predictive weights, r = 0.120, while the mPFC, which is known 
to be important both for self-referential and valence information 
processing (47–50), showed a weak, but larger correlation (r = 
0.269) than the whole brain, suggesting the existence of overlap-
ping representations between self-relevance and valence within 
the mPFC. For example, both self-relevance and valence models 
thresholded at P < 0.001 (two-tailed, bootstrap test) showed neg-
ative weights within the dorsomedial prefrontal cortex [dmPFC, 
Brodmann area (BA) 9] and the subgenual anterior cingulate cor-
tex (sgACC, BA25) and positive weights in the ventromedial pre-
frontal cortex (vmPFC, BA11). However, given that these are the 
uncorrected results, we conducted further analyses on the 
network-level and voxel-level importance, the results of which we 
describe in the next section.

We also conducted additional analyses on the self-relevance and 
valence models to further examine their validity. First, we tested 
whether the self-relevance model could classify the personal versus 

common stories. As Fig. 2C shows, the self-relevance ratings were 
significantly higher in the personal stories [0.75 ± 0.16 (mean ± 
SD)] than in the common stories (0.42 ± 0.10), t48 = 15.86, P < 
2.220e-16, two-tailed, paired t-test, consistent with our assump-
tion that the self-generated personal stories would be more 
self-relevant than common stories generated by others. The 
cross-validated responses of the self-relevance model were also 
significantly higher for the personal stories than the common sto-
ries, t48 = 10.18, P < 2.220e-16, two-tailed, paired t-test. The 
forced-choice classification accuracy with LOSO-CV was 93.8%, 
P = 6.980e-11, two-tailed, binomial test. These results suggest that 
reading personal and common stories induces different brain 
representations, and the differences can be captured by our self- 
relevance model.

Second, to examine the validity of the valence model, we selected 
the top 20 positive and negative words from the six common story 
sets based either on the TR-by-TR actual valence ratings or the 

B

A C

D

Fig. 1.   Research goals and experimental design. (A) This study has three research goals, each corresponding to different analysis steps. The first goal is to build 
predictive models, the second goal is to interpret the model features that contribute most to prediction, and the third goal is to test the models on independent 
data. (B) The experiment was conducted over 2 d separated by an interval of approximately 1 wk (mean = 7.3 d). On day 1, we conducted a pre-scan survey and 
one-on-one interviews to create personal story stimuli. On day 2, we conducted an fMRI experiment that consisted of five story-reading runs and two thought-
sampling runs. During the story-reading runs, we asked participants to intermittently rate the current emotional valence (three times per story). For details of 
the experimental procedure, please see Materials and Methods and SI Appendix, Supplementary Methods. (C) After the scan, participants underwent the post-scan 
survey for thought-sampling responses (i.e., words or phrases) and stories. For each thought-sampling response, we asked participants to rate the response 
on five content dimensions, including self-relevance, valence, and other dimensions. For the story survey, we asked participants to read the stories again while 
continuously rating them on the content dimensions of self-relevance and valence using a tablet pen. The plot shows example story ratings, in which the green 
line indicates self-relevance ratings, while the purple line indicates valence ratings. (D) The valence ratings between the inside and the outside of the scanner 
showed high within-individual correlations, mean r = 0.844, P < 2.220e-16, two-tailed, bootstrap tests with 10,000 iterations.
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TR-by-TR valence model responses. We then compared the selec-
tion frequency between the ratings vs. model responses after adjust-
ing the frequency value with the overall word frequency, which we 
named adjusted selection frequency based on valence (aFv; for 
details, see SI Appendix, Supplementary Methods). As shown in 
Fig. 2D, the aFv values based on the actual valence ratings showed 
a significant correlation with the aFv values based on the valence 
model, r = 0.2855, P = 1.110e-16. For example, the words “crazily,” 
“crying,” and “wait” had low aFv values based on ratings and model 
response, whereas “water,” “now,” and “running” showed high aFv 
values in both measures. Fig. 2D also provides the contexts in 
which these words were used. We applied the same approach to 
the self-relevance model as well, shown in SI Appendix, Fig. S6.

We also conducted univariate general linear model (GLM) anal-
yses for the comparisons (SI Appendix, Fig. S7). Although the uni-
variate maps showed activation patterns distinct from the predictive 

models (whole-brain pattern similarity between the GLM and rele-
vant predictive model maps, r = 0.302 for valence and r = 0.226 for 
self-relevance, SI Appendix, Fig. S7 A and B), there were also some 
consistent findings. For example, the contrast map for the personal 
vs. common stories (SI Appendix, Fig. S7C) and the parametric mod-
ulation map of self-relevance ratings showed strong activations within 
the anterior midcingulate cortex (aMCC) and anterior insula (aINS), 
which were consistent with the multivariate pattern-based predictive 
model of self-relevance (r = 0.142 between the contrast map and 
self-relevance predictive model). In addition, the parametric modu-
lation map of valence ratings showed positive vmPFC activation, 
consistent with the multivariate pattern-based valence model.

Network- and Region-level Importance for Predictive Models. 
To achieve the second research goal, i.e., comparing brain 
representations of self-relevance and valence (Fig. 1A), we further 
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Fig. 2.   Multivariate pattern-based predictive models of self-relevance and valence. (A) Multivariate pattern-based predictive model of self-relevance. The brain 
map shows the predictive weights (positive in warm colors, negative in cool colors) that reliably contributed to the prediction of self-relevance based on bootstrap 
tests (thresholded at uncorrected P < 0.001, two-tailed). We thresholded the map for the purpose of display and interpretation; all weights were used in the 
prediction. We also pruned the map using two more liberal thresholds, uncorrected P < 0.01 and P < 0.05, two-tailed, to show the extent of activation clusters. The 
Inset shows the unthresholded weight patterns within the medial prefrontal cortex (mPFC). The violin plot on the right shows the LOSO-CV model performance, n 
= 49, mean r = 0.322, P < 2.220e-16, bootstrap test, two-tailed. Each dot indicates the predictive performance of each participant, and the thick red line indicates 
the median. ****P < 0.0001. (B) Multivariate pattern-based predictive models of valence. (C) (Top) The personal stories showed a higher level of self-relevance 
ratings compared to the common stories, t48 = 15.86, P < 2.2204e-16, two-tailed, paired t-test. orange line: higher scores in the personal stories, blue line: higher 
scores in the common stories. (Middle and Bottom) The personal stories showed a higher level of the self-relevance model response than the common stories, 
t48 = 10.18, P < 2.2204e-16, and the forced-choice classification accuracy was 93.8%, P = 6.980e-11, two-tailed, binomial test. (D) Word representations of the 
valence model in TR-by-TR word analysis. We used the adjusted selection frequency based on valence (aFV; see SI Appendix, Supplementary Methods) to examine 
the relative importance of words based on valence ratings or valence model responses. The wordclouds show the relative aFv scores for the top 100 words 
selected based on the absolute values of actual valence ratings (Left) and the model responses on those words (Middle). The word size represents the absolute 
magnitude of aFv. The scatter plot shows the relationship between the aFv scores based on the valence ratings (x axis) and the valence model responses (y axis) 
from the whole word set. The “words-in-context” box shows the context in which some top words were used.
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examined the importance of various features for the self-relevance 
and valence models (51). Specifically, we examined network- 
and region-level importance with virtual isolation analysis (i.e., 
calculating the prediction–outcome correlation based on a single 
large-scale network, region, or searchlight at a time) and virtual 
lesion analysis (51) (i.e., calculating the changes in the prediction–
outcome correlation after removing one network, region, or 
searchlight at a time). As shown in Fig. 3A, the virtual isolation 
analysis using large-scale networks and some regions of interest 
(ROIs) showed that the default mode, ventral attention, and 
frontoparietal networks had significant prediction performances 
for both self-relevance and valence (bootstrap test with 10,000 
iterations; for details, see SI Appendix, Table S1). For the brain 
maps of the large-scale networks and ROIs, please see SI Appendix, 
Fig.  S8. When we tested the mPFC region separately, it also 
showed significant prediction for both self-relevance and valence. 
The visual network was, however, important only for predicting 
self-relevance, while the limbic network was important only for 
predicting valence. The virtual lesion analysis using large-scale 
networks and ROIs also showed that the default mode network 
(DMN) was important for predicting both self-relevance and 
valence (SI Appendix, Fig. S9A and Table S1), while the visual, 
ventral attention, and frontoparietal networks were important only 
for predicting self-relevance, and the mPFC was important only 
for predicting valence.

The Fig. 3B and SI Appendix, Fig. S9B present the searchlight 
analysis results for the virtual isolation and virtual lesion analyses, 
respectively. The searchlight-based virtual isolation results show 
that the aMCC, aINS, and visual areas were important for the 
prediction of self-relevance, and for the valence model, the 
dmPFC, temporoparietal junction (TPJ), temporal pole (TP), 
and other regions were important predictors. Fig. 3C shows the 
conjunction map between the importance maps of self-relevance 
and valence models, and the supplementary motor area (SMA), 
superior temporal gyrus (STG), and inferior frontal gyrus (IFG) 
appeared to be important for both models.

Decoding the Levels of Self-relevance and Valence during 
Free-thinking and Resting. To achieve the third research goal, 
i.e., decoding the levels of self-relevance and valence during free-
thinking and resting (Fig. 1A), we first tested the models on the 
fMRI data from the thought-sampling task, in which we asked 
participants to report what they were thinking every 50 s with 
jitters [interval = 50.7 ± 5.6 (mean ± SD) s; see SI  Appendix, 
Supplementary Methods for the details of the task]. Given that 
the verbal responses to thought sampling are most likely to be 
based on the thought contents just before the reporting onset and 
considering the hemodynamic delay, as shown in Fig. 4A, our time 
of interest was a 10-TR (a total of 4.6 s) time window around the 
reporting onset. We evaluated the prediction performance with 
the prediction–outcome correlations with LOSO-CV using the 
moving-window approach based on the data convolved with the 
temporal Gaussian kernel (FWHM = 10 TRs). As in Fig. 4 B, Left 
panel, both predictions of self-relevance and valence showed the 
best prediction performance at the time-of-interest period. When 
we examined the prediction performances of time bins of 10 TRs 
(Fig. 4 B, Right panel), both models showed weak but significant 
correlations for the corresponding ratings at the time-of-interest 
bin (for the self-relevance model predicting self-relevance ratings, 
mean r = 0.0518, P = 0.0141, one-tailed, bootstrap test with 
10,000 iterations; for the valence model predicting valence ratings, 
mean r = 0.0495, P = 0.0095). For the exact r and p values of 
each time bin, please see SI Appendix, Table S2. To compare our 
model performance with other predefined models, we also tested 
nine a priori maps from previous studies in the same manner. The 
a priori maps included two maps for cognitive components of 
self-generated thought (52), six meta-analytic maps of aversion, 
episodic, default, self, emotion, and semantic from a previous 
study (53), and the picture-induced negative emotion signature 
(PINES) (54) (Fig. 4C). The result showed that only the models 
from this study were predictive of the self-relevance and valence 
ratings (see SI Appendix, Fig. S10A for predictive performances of 
a priori maps in all time bins). We also examined which large-scale 
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networks and ROIs were important for these predictions (at the 
time-of-interest bin) with the virtual isolation analysis and found 
that the DMN was the only predictor important for both self-
relevance and valence models (SI Appendix, Fig. S11, and for the 
exact r and P values of each time bin, please see SI Appendix, 
Table S3).

Finally, we tested the self-relevance and valence models on the 
resting-state fMRI data from two independent datasets (n = 90 
and 60), in which, at the end of the resting scan, participants 
reported the levels of self-relevance and valence for the thoughts 
they had during the resting scan (post-resting survey; Fig. 5A and 
SI Appendix, Fig. S12). Since the answers to the post-resting survey 
were likely to be based on participants’ thoughts near the end of 
the scan, we evaluated the model performance using averaged data 
from the end of the scan (see SI Appendix, Fig. S13 for the model 
performance over the entire time series of the run). As shown in 
Fig. 5B, for the first independent dataset (n = 90), the self-relevance 
and valence models showed significant predictions for the self- 
relevance and valence ratings around the same temporal window, 
which was 27th to 33rd TRs (for self-relevance) and 26th to 37th 
TRs (for valence) from the end of the scan (the gray boxes in 
Fig. 5B, which indicated the time points with r > 0 and P < 0.05, 

one-tailed, one-sample t-test). The best prediction was observed 
when the data of the last 31 TRs (i.e., 14.3 s) were averaged, and 
the prediction performances were r = 0.189, P = 0.037 for the 
self-relevance model and r = 0.300, P = 0.002 for the valence model 
(one-tailed, scatter plots in Fig. 5B). Similar to what we did for 
the free-thinking decoding, we examined which large-scale net-
works and ROIs were important for these predictions (for the last 
31 TRs) with the virtual isolation analysis. For self-relevance, only 
the DMN was significant, while for valence, the ventral attention, 
limbic networks, and brainstem were significant (Fig. 5C, also see 
SI Appendix, Fig. S10B for predictive performances of a priori 
maps for the resting-state decoding). We additionally tested our 
models on the second independent resting-state dataset (n = 60; 
SI Appendix, Fig. S12A). Taking the last 31 TR-sized time window 
as a predefined hypothesis, the valence model showed a significant 
prediction performance (r = 0.320, P = 0.0063), while the self- 
relevance model did not demonstrate significant prediction (r = 
−0.094, P = 0.2375). However, further exploratory analyses on 
varying window sizes (SI Appendix, Fig. S12B) revealed that an 
average of the last 10 TRs (equivalent to 4.6 s) yielded a significant 
predictive performance (r = 0.218, P = 0.0470) in predicting 
self-relevance.
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Fig. 4.   Decoding self-relevance and valence during free-thinking. (A) During the thought-sampling task, participants were instructed to think freely for around 
50 s and then verbally report what they were thinking in words or phrases. One thought-sampling run included a total of six trials, and each story-reading was 
followed by three trials of thought-sampling. We applied the predictive models of self-relevance and valence to the fMRI data from the free-thinking period to 
predict the self-relevance and valence ratings collected from the post-scan survey. (B) Model performances (Top: predicting self-relevance; Bottom: predicting 
valence) measured by the prediction–outcome correlations. The plots on the left show the prediction performance using a moving-window approach based on 
the data convolved with a temporal Gaussian kernel (FWHM = 10 TRs). The plots on the right show the prediction performances for the time bins of 10 TRs. The 
predictive performances were calculated as prediction–outcome correlations for each time bin, with one-tailed test and bootstrap tests with 10,000 iterations. *P 
< 0.05. Shading and error bars indicate the SD of performances across all participants. (C) The prediction performances of the self-relevance and valence models 
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Discussion

In this study, we developed multivariate pattern-based predictive 
models of self-relevance and valence that can be used to decode 
affective dimensions of spontaneous thoughts. For this, we con-
ducted an fMRI experiment using a narrative-reading task, in 
which we showed personal stories created through one-on-one 
online interviews with participants and common stories created 
by others. The self-relevance and valence models could decode the 
levels of these two content dimensions of spontaneous thought 
during rest across three datasets. The main innovations and find-
ings of this study can be summarized as the following: 1) we used 
personal stories as stimuli to evoke thoughts and emotions that 
resemble spontaneous thoughts; 2) we identified brain systems 
important for decoding self-relevance and valence using virtual 
isolation and lesion analyses, such as the mPFC, aINS, and TPJ; 
and 3) we were able to decode the level of self-relevance and 
valence during rest with or without thought sampling using the 
predictive models.

First, we used personal narratives as experimental stimuli to 
induce cognitive and emotional states similar to spontaneous 
thoughts. We used self-generated personal stories as stimuli for 
the following reasons: 1) self-relevant thoughts, such as current 
personal concerns, past memories, and future plans, are known 

to feature prominently in spontaneous thought (7, 26, 27); 2) 
recent studies suggested that spontaneous thoughts are experi-
enced in the form of deeply processed imagery and concepts, such 
as narratives (18); and 3) brain structures important for sponta-
neous thought and internal narrative construction are largely 
overlapping (55–57). Therefore, personal stories based on partic-
ipants’ past experiences and related emotions should share many 
characteristics with spontaneous thoughts. In addition, following 
recent efforts in the neuroimaging field to use naturalistic stimuli, 
such as movies (24, 58, 59), we created individually unique stories 
through one-on-one interviews with participants to make the 
experimental stimuli as natural as possible. The common stories 
used for all participants were also created by pilot participants 
through the same one-on-one interview procedure. Therefore, we 
believe our story stimuli were able to induce natural and vivid 
thoughts and emotions that resemble spontaneous thoughts dur-
ing the scan. Using these stories as a bridge between the experi-
ment and naturally experiencing spontaneous thoughts, we 
developed fMRI-based predictive models that could decode not 
only the contents of current reading materials but also the phe-
nomenological qualities of individuals’ spontaneous thoughts (15).

Second, we identified brain regions and networks important for 
decoding levels of self-relevance and valence. Using virtual isola-
tion and virtual lesion methods (51), we found some converging 
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Fig. 5.   Decoding self-relevance and valence during rest. (A) We tested our models on data from a 6-min resting-state run from an independent dataset (n = 
90) to predict self-relevance and valence ratings from a post-run survey on spontaneous thoughts during resting. (B) Prediction performance was calculated as 
the prediction–outcome correlation based on the averaged data from the end of the scan. The gray boxes indicate the time period where each model showed 
significant positive predictions (i.e., P < 0.05 and r > 0). The scatter plots show the relationship between the ratings and pattern expression values when the last 
31 TRs (14.3 s) were averaged. Each dot indicates each participant. *P < 0.05 and **P < 0.01, one-tailed, one-sample t-test. (C) Network- and region-level decoding 
performance of the last 31 TRs. Each colored dot represents the mean prediction–outcome correlations for each network or region with bootstrap tests with 
10,000 iterations. The error bars represent the SD of the sampling distribution, *P < 0.05 and **P < 0.01, one-tailed, bootstrap test.
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evidence that the DMN, including the mPFC, plays an important 
role in predicting both self-relevance and valence. Particularly, for 
decoding levels of self-relevance and valence during free-thinking, 
the DMN was the only significant predictor for both self-relevance 
and valence (SI Appendix, Fig. S10). This is consistent with previ-
ous literature suggesting that the DMN is important for 
stimulus-independent, task-unrelated thought (14), processing 
details of ongoing cognition (17), memory (60, 61), affective con-
tent of spontaneous thought (16), and self (62, 63). There were 
also brain networks and regions that were uniquely important for 
each model. For example, the visual network (Fig. 3A), aINS, and 
aMCC (Fig. 3B) were among the important features for decoding 
self-relevance, but these were not important for valence. The 
importance of the aINS and aMCC for self-relevance can be 
understood in the context of the salience network (or the ventral 
attention network), considering that the aINS and aMCC are 
among the key hubs of the network. The salience network is known 
to be important for context-dependent salience detection (42, 43), 
and it is likely that when there is no external task (such as reading 
autobiographical stories without external tasks), the self can 
become the most important context, which is generated from 
within. For example, in our task, the primary concern or ongoing 
implicit task could become identifying content relevant to oneself. 
This could be the case for many other naturalistic situations where 
we do not have external tasks. In addition, the limbic network 
(Fig. 3A) and the left TPJ and dmPFC (Fig. 3B) were among the 
important features for decoding valence, but these were not impor-
tant for self-relevance. The importance of the limbic network in 
emotional valence is also consistent with previous studies reporting 
that the OFC and TP, which are the main components of the 
limbic network, were important for valence processing (50, 64). 
We also found that the left TPJ, along with the dmPFC (Fig. 3B), 
were important for valence. This finding was rather unexpected, 
but the left TPJ and dmPFC are the major constituents of DMN’s 
dorsal medial subsystem (65). This subsystem has been suggested 
to play an important role in a high-level “mind’s mind” form of 
imagination, such as reflective thinking in the verbal form (55). 
Thus, we can speculate that feeling positive or negative emotions 
from reading autobiographical stories requires more of the mind’s 
mind form of imagination, such as mentalizing (66).

Third, with our self-relevance and valence models, we were able 
to decode the respective content dimension scores during 
free-thinking and resting. Different from recent efforts to decode 
semantic features directly from brain activity (25, 67, 68), we 
targeted the affective dimensions of thought, which provide infor-
mation that is complementary yet somewhat independent of its 
semantic dimension. The affective dimension becomes particularly 
important when it comes to concepts of personal relevance (e.g., 
those related to autobiographical memory or personal back-
ground). For instance, even if two individuals contemplate the 
same concept (e.g., father), their personal meanings can diverge 
dramatically (e.g., caring father vs. abusive father), which can be 
reflected in the affective dimension. Our study focused on the 
affective dimensions of spontaneous thought to capture the idio-
syncrasies with which individuals perceive and relate to semantic 
concepts. There was a previous study that also tried to classify 
positive versus negatively valenced task-free thoughts based on 
task-induced brain activation patterns, especially focusing on the 
medial orbitofrontal cortex (16). Our study has a similar motiva-
tion and approach in that we also used task-induced brain activa-
tion patterns to develop decoders for the affective content 
dimensions of spontaneous thought. However, our approach has 
extended the previous study in multiple aspects. Different from 
building a classification model based on a local region’s activation 

patterns, we developed regression-based predictive models using 
whole-brain activation patterns. In addition, our modeling tar-
geted to predict the levels of self-relevance as well as valence. Our 
self-relevance and valence models showed weak but significant 
prediction performances across three different datasets with two 
different task contexts—i.e., thought sampling and resting. This 
represents a powerful combination of task-based data (i.e., per-
sonal and common stories) with annotated rest in an effort to 
decode the contents of the mind during rest using a known ground 
truth (69).

Given that the contents and dynamics of spontaneous thought 
could provide rich information about individuals’ mental and 
brain health, the ability to decode some aspects of spontaneous 
thought directly from neuroimaging data would be useful. In this 
study, we focused on two content dimensions of spontaneous 
thought—self-relevance and valence, which are among the impor-
tant predictors of depression and negative affectivity scores in 
subclinical populations (6, 7). Though further studies, including 
clinical ones, are needed to identify which content dimensions are 
most useful for predicting and promoting mental health and 
well-being, this study showed the potential to use fMRI data to 
extract certain information about spontaneous thought. 
Importantly, we demonstrated that resting-state fMRI could be 
used to decode aspects of spontaneous thought, opening a broad 
avenue for using resting-state data involving no or minimal tasks 
(e.g., introspection) to obtain rich information about one’s inter-
nal cognition. This is important because it is often difficult (or 
impossible) to administer task-based fMRI tests to patients. In 
addition, our study further implies that we should reconceptualize 
the notion of the resting state. As we wrote in the introduction, 
our mind (and brain) never rests. Our mind keeps wandering, and 
our brain keeps being activated spontaneously. Therefore, the rest-
ing state should be reconceptualized as spontaneous cognition or 
spontaneous activity conditions. With this perspective, we will be 
able to develop tasks that are based on resting but have minimal 
task components, which then can be used to provide richer and 
clinically more useful information.

There are some limitations in this study. First, we used two 
different types of stories—personal and common stories—to 
increase the variance of the level of self-relevance, the orthogo-
nality between self-relevance and valence, and the comparability 
across participants. However, it is also possible that they are qual-
itatively different and thus might not be comparable between the 
two conditions. We made multiple efforts to resolve this issue. 
Given that we expected personal stories to be more familiar than 
common stories, we had participants read all common stories on 
day 1. We also gave quizzes on the common stories twice—first, 
on day 1 after reading the stories, and second, on day 2 right 
before the fMRI experiment (see SI Appendix, Supplementary 
Methods for the quiz scores). In addition, we collected ratings of 
concentration and familiarity for each story on a scale of 0 to 1 
after each run. The results showed that the concentration and 
familiarity ratings for the personal stories [0.78 ± 0.17 (mean ± 
SD) and 0.87 ± 0.16, respectively] were still higher than the 
common stories (0.69 ± 0.21 and 0.74 ± 0.19), indicating that 
personal stories elicited higher levels of concentration and famil-
iarity. This might suggest that the inherent attention levels while 
reading personal versus common stories could differ, potentially 
introducing an unwanted confound between self-relevance and 
attention. Nevertheless, the concentration and familiarity ratings 
for common stories were also high enough for us to assume that 
the two types of stories were not qualitatively different. In future 
studies, however, it would be good to try using a single type of 
story with variable levels of self-relevance and valence. Second, D
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the prediction performances for decoding free-thinking and 
resting-state data were low and turned nonsignificant upon cor-
rection for multiple comparisons. Thus, they require careful inter-
pretation with the risk of type I errors. Nevertheless, the significant 
predictions for self-relevance and valence within identical time 
windows might imply a reduced likelihood of these being false 
positives (Fig. 5B). Furthermore, significant valence predictions 
within the same time window across two independent datasets 
offer additional support for the generalizability of our predictive 
model (SI Appendix, Fig. S12). In addition, it may imply that the 
brain representations of spontaneous thought are highly complex 
and idiosyncratic. In a recent study, we showed that the brain 
representations of valence become increasingly idiosyncratic as 
thought topics become more self-relevant (6). Therefore, adopting 
a personalized modeling approach to studying spontaneous 
thought (e.g., extensive sampling of small-N design) could be 
considered in future studies. Also, we only tested the activation 
pattern-based models. Considering that a recent study convinc-
ingly showed that a functional connectivity-based model per-
formed better than an activation-based model in predicting an 
emotional experience in naturalistic contexts (70), it is possible 
that functional connectivity-based models work better in our case 
as well. This should be tested in future studies. Third, the intrinsic 
interrelationship between self-relevance and valence might influ-
ence our results. As shown in SI Appendix, Fig. S3, there was a 
positive correlation between raw self-relevance and valence rat-
ings, r = 0.111, P < 2.220e-16, potentially attributed to the 
well-documented self-positivity bias (71). To counteract the 
effects of this correlative nature between self-relevance and valence 
on our data and modeling, we implemented multiple strategies. 
These included constructing personal narratives on both positive 
(i.e., safety, pleasure) and negative topics (i.e., danger, pain) and 
conducting data quantization prior to predictive modeling. 
However, there were weak, but significant spatial correlations 
between the whole-brain or mPFC weight patterns of the two 
models (Fig. 2). In addition, the valence model appeared to be 
predictive of self-relevance at a time window near the reporting 
onset in Fig. 4B. Future studies should delve deeper into the 
nuanced relationship between the self-relevance and valence of 
spontaneous thoughts and their neural representations.

Despite these caveats, the current study introduces a unique 
approach to brain decoding of spontaneous thought—utilizing 
self-generated personal stories to develop brain-based predictive 
models of self-relevance and valence of spontaneous thought con-
tents. As these models showed the potential to decode these spon-
taneous thought content dimensions during free-thinking or 
resting state, they hold the potential to address some basic science 
questions that are otherwise inaccessible. Overall, this study pro-
vides an important step toward developing brain models of inter-
nal thoughts and emotions during daydreaming.

Materials and Methods

Participants. Fifty-seven healthy right-handed participants completed the 
experiment. Participants provided written informed consent in compliance with 
the guidelines of the Sungkyunkwan University Bioethics Committee. The full 

study protocol was approved by the institutional review board. Participants with 
psychiatric, neurological, or systemic disorders and MRI contraindications were 
excluded. All participants had a normal or corrected-to-normal vision and were 
naïve to the purpose of the experiment. All participants were Koreans and spoke 
Korean as their first language. All experimental procedures were conducted 
using the Korean language. We included forty-nine participants [age = 22.8 ±  
2.4 (mean ± SD), 21 female] in the final data given that we excluded eight par-
ticipants total [six participants due to poor performance (e.g., did not focus on 
the task, slept during the scan, or did not fully understand the task), and two 
participants due to poor image quality].

Experimental Procedure. The experiment consisted of three components 
across sessions of two days (Fig. 1B): 1) an online interview on day 1, 2) an fMRI 
experiment with the story-reading and thought-sampling tasks on day 2, and 3)  
a post-scan survey on day 2. First, on day 1, after providing an overview of the 
experiment and having participants complete a pre-scan survey of self-report 
questionnaires, we conducted a one-on-one interview to create personal stories. 
After the interview, the participants read the common stories to match the level 
of familiarity between the personal and common story sets. Then, participants 
visited the lab again about 1 wk [7.32 ± 2.8 (mean ± SD) d] after their first visit 
for the fMRI experiment and post-scan survey. The fMRI experiment had a total 
of seven runs, which consisted of five story-reading runs (about 14 min per run) 
and two thought-sampling runs (about 6 min per run). We placed the thought-
sampling runs in the first and last runs of the seven runs. We used MATLAB 
(MathWorks) and Psychtoolbox (version 3.0.16, http://psychtoolbox.org/) for 
stimuli presentation and behavioral data acquisition. After the fMRI experiment, 
we conducted a post-scan survey. For details of the interview, story-making pro-
cedure, story-reading and though-sampling tasks, and post-scan survey, please 
see SI Appendix, Supplementary Methods.

fMRI Data Acquisition and Analysis. Whole-brain MRI data were acquired on 
a 3T Siemens Prisma scanner at Sungkyunkwan University with a 64-channel 
head coil. High-resolution T1-weighted structural images were acquired 
with TR = 2,400 ms and TE = 2.34 ms. Functional echo-planar imaging (EPI) 
images were acquired with TR = 460 ms, TE = 27.2 ms, multiband acceleration  
factor = 8, field of view = 220 mm, 82 × 82 matrix, 2.7 × 2.7 × 2.7 mm3 voxels, 
and 56 interleaved slices. The number of volumes was 812 for the thought-
sampling runs and 1,855 for the story-reading runs. For details about the fMRI 
data preprocessing, general linear modeling, predictive modeling, model inter-
pretation, and independent testing, please see SI Appendix, Supplementary 
Methods.

Data, Materials, and Software Availability. The data and codes used to 
generate the main figures, including the predictive models, are shared through 
Zenodo.org (https://zenodo.org/doi/10.5281/zenodo.10039368) (72). In-house 
Matlab codes for fMRI data analyses are available at https://github.com/canlab/
CanlabCore (73) and https://github.com/cocoanlab/cocoanCORE (74).
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