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A B S T R A C T   

Recent methodological advances in fMRI contrast and readout strategies have allowed researchers to approach 
the mesoscopic spatial regime of cortical layers. This has revolutionized the ability to map cortical information 
processing within and across brain systems. However, until recently, most layer-fMRI studies have been confined 
to primary cortices using basic block-design tasks and macro-vascular-contaminated sequence contrasts. To 
become an established method for user-friendly applicability in neuroscience practice, layer-fMRI acquisition 
and analysis methods need to be extended to more flexible connectivity-based experiment designs; they must be 
able to capture subtle changes in brain networks of higher-order cognitive areas, and they should not be spatially 
biased with unwanted vein signals. In this article, we review the most pressing challenges of layer-dependent 
fMRI for large-scale neuroscientific applicability and describe recently developed acquisition methodologies 
that can resolve them. In doing so, we review technical tradeoffs and capabilities of modern MR-sequence ap-
proaches to achieve measurements that are free of locally unspecific vein signal, with whole-brain coverage, sub- 
second sampling, high resolutions, and with a combination of those capabilities. The presented approaches 
provide whole-brain layer-dependent connectivity data that open a new window to investigate brain network 
connections. We exemplify this by reviewing a number of candidate tools for connectivity analyses that will 
allow future studies to address new questions in network neuroscience. The considered network analysis tools 
include: hierarchy mapping, directional connectomics, source-specific connectivity mapping, and network sub-
–compartmentalization. We conclude: Whole-brain layer-fMRI without large-vessel contamination is applicable 
for human neuroscience and opens the door to investigate biological mechanisms behind any number of psy-
chological and psychiatric phenomena, such as selective attention, hallucinations and delusions, and even 
conscious perception.   

1. Introduction 

Methodological advancements of functional Magnetic Resonance 
Imaging (fMRI) contrasts and readout strategies in recent years have 
allowed researchers to approach the mesoscopic spatial regime of 
cortical layers (De Martino et al., 2015; Huber et al., 2017; Kok et al., 
2016; Koopmans et al., 2010; Olman et al., 2012; Polimeni et al., 
2010b). This has allowed investigations of the connectivity and function 
in neural microcircuits across cortical layers within cortical areas 

(Callaway, 1998; Lund, 1988). Non-human primate studies have shown 
that in hierarchically organized brain systems, inter-area neural input 
arrives in different layers for bottom-up or top-down connections. Spe-
cifically, feed-forward, bottom-up activity (e.g. V1 → V5/hMT) termi-
nates predominantly in the middle granular layer, while feedback, 
top-down activity (e.g. V1 ⟵ V5/hMT) terminates predominantly in 
superficial and/or deeper layers (Angelucci et al., 2002; Felleman and 
Van Essen, 1991). Thus, the ability to map brain activity across cortical 
layers revolutionizes the ability to tackle cortical information processing 
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within brain systems and might become an important tool for cognitive 
network neuroscience (Lawrence et al., 2019; Stephan et al., 2019). 
Until now, however, most human layer-fMRI studies have been confined 
to primary motor and sensory cortex and have used basic fMRI task 
block-designs. There are several reasons why layer-fMRI methods are 
not applied more widely. One of the major limitations is that large 
draining veins in conventional GE-BOLD fMRI methods spatially blur the 
fMRI activity, imposing a cortical depth-specific contrast weighting 
across the layers - with superficial layers being most heavily weighted 
(Uludag and Blinder, 2018). Thus, locally specific interpretations of 
individual layer activity are not straightforward with GE-BOLD (Kay 
et al., 2019). Alternative non-BOLD fMRI sequences (reviewed in Huber 
et al. (2019)), such as the CBV-weighted VASO (Lu et al., 2003) method, 
have been shown to be locally more specific and having a contrast that is 
more evenly weighted across the cortical depths (Huber et al., 2015). 

Until now, addressing layer-specific neuroscientific research ques-
tions with any layer-fMRI imaging tool (BOLD and non-BOLD) has been 
limited by: A) low sensitivity, B) asymmetric voxel sizes, C) restricted 
brain coverage, D) unclear potential for network analyses.  

A) Low sensitivity: The reduced sensitivity of the early initial layer- 
fMRI methods limited its applicability to strong block-design 
tasks that evoked massive brain activations in primary brain 
areas, e.g. strong visual tasks to evoke activity in primary visual 
cortex (Kashyap et al., 2018; Kok et al., 2016; Koopmans et al., 
2010; Marquardt et al., 2018; Polimeni et al., 2010b), strong 
auditory tasks to evoke activity in primary auditory cortex (De 
Martino et al., 2015), and strong sensorimotor tasks to engage the 
primary somatosensory and primary motor cortex (Huber et al., 
2015; Yu et al., 2019). If these methods are to contribute to our 
understanding of cognitive neuroscience, studies of higher-order 
regions with more sophisticated tasks and task designs will be 
necessary. 

B) Asymmetric voxel size: Increasing the sensitivity of the acquisi-
tion methods by means of using asymmetric (non-isotropic) voxel 
sizes has allowed more advanced investigations, however, it has 
limited the addressable neuroscience questions to small patches 
of cortex (Finn et al., 2019; Guidi et al., 2016; Huber et al., 2015; 
Kashyap et al., 2018; Koopmans et al., 2010; Menon and Good-
year, 1999; Yu et al., 2019). Particularly in brain areas with stable 
folding patterns across many individual people (e.g. primary 
motor cortex), the approach of thicker MRI-slices can help 
improve sensitivity. However, to fully grasp the neural repre-
sentation of laminar activation across the folded cortical ribbon 
in higher-order brain areas with variable folding patterns, 
isotropic submillimeter resolutions are vital. 

C) Small coverage: Restricted field-of-view imaging allows in-
vestigations of high-resolution brain connections in individual 
brain areas with great reliability (reviewed in Schluppeck et al. 
(2018)). The reduced coverage allows fast data sampling rates 
and short scan times. However, the slice positioning and protocol 
setup at the scanner is more difficult for the experimenter. And 
furthermore, it does not take advantage of the ultimate potential 
in layer-fMRI to apply network analysis tools for investigating the 
information processing and the interplay within and across brain 
areas.  

D) Unclear potential for network analyses: Until now, the field of 
layer-fMRI has been mostly focusing on acquisition and analysis 
methodologies. Thus, other aspects of the experimental design 
have been kept as conservative as possible. This means that in 
virtually all layer-fMRI studies published so far, the investigators 
focused on 1–3 specific predefined brain areas of healthy par-
ticipants and investigated the layer-dependent activity changes in 
these areas with a small number of discrete task conditions. The 
potential of less conservative experimental setups and area- 
independent analysis methods in layer-fMRI is unclear and has 

not been systematically applied so far. Thus, layer-fMRI has not 
yet become an established tool for use in whole-brain connec-
tivity studies, which are of increasing importance to human 
neuroscience research. 

To increase the utility of CBV-based layer-fMRI acquisition and 
analysis methods for the application in human cognitive neuroscience, 
all of the above limitations must be addressed. Only, then these methods 
can be used in more sophisticated task designs, in higher-order brain 
areas, and while capturing subtle changes in brain networks. In this 
article, we argue that with the methodological advancements in the past 
years, the aforementioned limitations are largely resolved. Layer-fMRI 
connectivity measures are now available without venous contamina-
tion and with whole-brain coverage. This paves the road for a new class 
of neuroscience questions to be investigated. We aim to exemplify how 
layer-dependent whole-brain fMRI datasets might be used for a novel 
family of connectivity analyses by discussing multiple examples of layer- 
dependent connectivity analysis procedures that will shed new light into 
the internal working principles and functional organization of the 
human brain. In this paper, we show several examples of layer-specific 
fMRI. 

2. Acquisition methods 

Data from N = 31 participants were used for the examples shown in 
this paper participating in a movie watching study (N = 12), in a visual 
study (N = 12) and in a sequence development study (N = 5). All ex-
periments were conducted in accordance with the Belmont Report after 
participants granted informed consent. Data were acquired in FMRIF/ 
NIMH/NIMH in Bethesda, USA and at Scannexus in Maastricht, The 
Netherlands. Experiments at NIH were conducted according to the US 
Federal Regulations that protect human subjects and approved by the 
Combined Neuroscience Institutional Review Board protocol 93-M-0170 
(ClinicalTrials.gov identifier: NCT00001360). All experiments of this 
study were conducted on SIEMENS 7 T scanners (Siemens Healthineers, 
Erlangen, Germany) using the vendor-provided IDEA environment 
(VB17A/VE11U/VE12K-UHF). The scanners were equipped with the 
standard body gradient coils (maximum effective gradient strength used 
here: 48 m T/m; maximum slew rate used: 198 T/m/s). For RF trans-
mission and reception, volume-transmit and 32-channel receive head 
coils (Nova Medical, Wilmington, MA, USA) were used. 

All functional data were acquired with VASO contrast (Hua et al., 
2013; Huber et al., 2014b; Lu et al., 2003) and a 3D-EPI readout (Poser 
et al., 2010). Slab-oversampling was applied in the second phase di-
rection. 3D slice aliasing was minimized by using a sharp slab-excitation 
pulse profile with a bandwidth-time-product of 25. The readout pa-
rameters were: in-plane FLASH GRAPPA 3 (Talagala et al., 2016), with 
regularization strengths chi = 1–5000 (for instructions how to do this, 
see here: https://layerfmri.com/grapparegularization/), TE =25 ms, 
partial Fourier = 6/8 with POCS reconstruction of 8 iterations. Online 
reconstruction was performed using a GRAPPA kernel size 6×5×3. 
Resolutions of fMRI protocols varies between 0.5×0.5×0.6 and 
0.8×0.8×0.8 mm3. For anatomical reference, 3 averages of 0.5 mm iso 
MP2RAGE data with partial brain coverage were acquired. For optimal 
use in layer-fMRI (https://layerfmri.com/mp2rage), background noise 
(outside the brain) was minimized with a regularization term 
lambda = 0.1, fold-over-artifacts were minimized by using an excitation 
pulse BWTP of 25, and no partial Fourier was applied in the second 
phase encoding direction. Physiological traces of respiration and 
heartbeat were recorded for the first 12 participants that underwent the 
visual task. Further recordings were discontinued because in the thermal 
noise-dominated regime of 0.8 mm voxel size here, we did not observe 
any improvements by conducting RETROICOR (Li et al., 2000) physio-
logical noise correction (Hall et al., 2017). All fMRI images were motion 
corrected using SPM12 (UCL, UK) (Penny et al., 2007). Volume 
realignment and interpolation were performed with a 4th-order spline. 
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In order to minimize effects of variable distortions (non-rigid motion), 
the motion was estimated in a manually drawn mask. The 8 outermost 
slices were excluded from the analysis to minimize any residual 3D-EPI 
related slab fold-over artifacts and reslicing artifacts, when necessary. 
Raw VASO time series usually consist of interleaved acquisitions of MR 
signal with and without blood nulling. Thus, the analysis pipeline treats 
odd and even time points separately for the motion correction and 
subsequently divides the images by each other in order to correct for 
BOLD contaminations in VASO (Huber et al., 2014b). 

Boundary lines of the gray matter (GM) ribbon to cerebrospinal fluid 
(CSF) and white matter (WM) were estimated with FreeSurfer (v6.0) 
(Fischl, 2012) from wholebrain 0.7 mm MP2RAGE data that had been 
acquired in previous studies and were registered here to the functional 
EPI space using ANTS (Avants et al., 2008). These boundaries were used 
as visual guidance to manually segment GM in EPI space slice-by-slice, 
as described in the manual (https://layerfmri.com/getting-layersin- 
epi-space). A coordinate system across cortical layers and columnar 
structures was estimated in LAYNII (https://github.com/layerfM 
RI/LAYNII). LAYNII is an open source C++ software suite for 
computing layer and column functions. We estimated the depth of 
equidistantly distributed layers1 . With the resolution of 0.8 mm, we 
obtained 4–6 independent data points across the thickness of the cortex. 
Across these data points, we created 20 layers2 across the thickness of 
the cortex on a 4-fold finer grid than the effective resolution. The entire 
pipeline of this analysis is described here: https://layerfmri.com/analysi 
spipeline. Cortical ‘columnar’ structures were also determined in LAY-
NII’s LN_3DCOLUMN program with the following algorithm: For each 
voxel, the next closest (Euclidean distance) voxel in each other layer is 
determined. This group of voxels is considered a ‘columnar’ structure. 
This means that every voxel has a unique column assignment. For more 
information on the algorithm see here: https://layerfmri.com/columns. 
Note that the terminology of ‘columns’ refers to the geometric columnar 
shape of fMRI voxel groups. It does not necessarily refer to groups of 
neurons with the identical receptive field (a.k.a. hypercolumn, macro 
column, functional column, cortical module, motion columns (Zim-
mermann et al., 2011)). 

2.1. MR-sequences for layer-activity CBV mapping with large coverage 

Previous layer-fMRI CBV-weighted sequences could not capture 
more than 5–18 slices resulting in small field of views (6–12 cm), even 
when using anisotropic voxels (Guidi et al., 2016; Huber et al., 2020b, 
2015; 2017; 2016; 2018). Recent developments in VASO readout stra-
tegies now allow substantial coverage improvements to capture func-
tional connectivity in larger brain networks. In the following 
sub-sections, we describe these approaches, while also mentioning 
their caveats. 

2.1.1. SS-SI-VASO covering large brain networks 
The CBV-weighting in VASO is based on T1-selective nulling of the 

blood signal, while keeping the extravascular signal with its different T1 
preserved for image creation (Hua et al., 2013; Lu et al., 2003). Thus, 
VASO is inherently a single-slice method, as multi-slice acquisitions 
would suffer from inconsistent or insufficient blood nulling across slices. 
With 3D-readout methodologies, the readout window can be substan-
tially increased up to a time window of 0.5–1 seconds (T1) without 
compromising blood nulling across the entire imaging volume (Hua 
et al., 2013; Poser and Norris, 2009, 2011). Extending the readout 

acquisition window even further by another 1–4 seconds (≈ T1) is 
technically possible, however, it comes along with some challenges. 
Namely, the longer TRs mean that the timing of the inversion-recovery 
relaxation is faster than the k-space acquisition. Compared to previous 
VASO sequences, these limitations have been recently mitigated with a 
series of new approaches:  

1) Dead-times between VASO and BOLD images have been removed. 
This increases the imaging duty cycle of the sequence, at the cost of 
an asymmetric readout. This means that, in post-processing, an 
additional temporal interpolation step needs to be included. 

2) More efficient variable-flip angle regimes were designed to manip-
ulate the signal strength along the second phase-encoding direction 
in 3D-EPI. It was proposed using an exponentially increasing flip 
angle for the first half of k-space and keeping a relatively high flip 
angle constant for the second half of k-space. The flip angle increase 
is chosen to match the T1-decay of GM. The level of asymmetry is 
chosen such that the negative side lobes of the complex point-spread 
function in the segment direction are compensated for with the level 
of overflipping in the second half of k-space. While this approach 
allows substantial increases in the readout duration, it can come 
along with edge-enhancement artifacts in other T1-compartments, 
such as at WM/CSF borders.  

3) The readout duration can be extended such that only the k-space 
center is acquired at the blood nulling time. This means that the 
outer k-space segments will have a contribution of residual intra-
vascular signal, which can result in CBF contributions for the high 
spatial frequencies. Since CBF is believed to be dominated from 
capillary water exchange only, this will not compromise the layer- 
specificity of the sequence. However, this form of VASO signal 
amplification comes along with a reduced quantifiability of deter-
mining CBV in units of ml per 100 mL of tissue. 

These optimizations allow increases in coverage up to 28 slices (2 
slices oversampling) with isotropic 0.8 mm resolution and a sampling 
rate of 1.7 s and 2.8 s. See Fig. 1A for a graphical depiction of the 
sequence. 

Note that as long as there is a reference image acquired without the 
inversion pulse, but with the identical readout, the T1-related signal 
changes can be separated from T2*-related signal changes to ultimately 
extract CBV signal traces without BOLD contaminations. This BOLD 
correction is based on a dynamic division analysis under the assumption 
that, at 7 T, the GE-BOLD effect is dominated by extravascular T2*- 
changes, as previously validated in (Huber et al., 2014a). 

2.1.2. MAGEC-VASO for whole brain CBV imaging 
While VASO was originally proposed as a blood-nulling method (Lu 

et al., 2003), it has in the last 15 years been generalized to a general 
T1-contrast without specific blood-nulling requirements. Early VASO 
versions without blood nulling used a T1-selective GM-nulling procedure 
to estimate an inverse VASO contrast (Shen et al., 2009; Wu et al., 2008). 
Later on, the VASO formalism was further generalized to extract CBV 
changes at any inversion time (Ciris et al., 2014; Wu et al., 2007). This 
literature has shown that the experimental trick of blood-nulling is not 
the only way of obtaining a CBV-weighting. In fact, as long as there is a 
different T1-weighting between the extravascular signal and intravas-
cular signal, any volume redistribution between these pools of 
z-magnetization, will result in a VASO signal change. Thus, instead of 
using an inversion pulse, T1-weighting can also be introduced by vari-
able flip angles that create a dynamic steady-state across k-space seg-
ments along the 3D-EPI trajectory. This approach has the advantage that 
the T1weighting can be maintained in a dynamic equilibrium for as long 
as needed. 

Analogously to the MAGIC VASO method (Lu et al., 2004) with 
multiple inversion pulses, the variable flip angle approach is called 
Multiple Acquisitions with Global Excitation Cycling (MAGEC) VASO. Since 

1 Note on terminology: In the context of fMRI, these estimates of cortical 
depth do not refer to cytoarchitectonically defined cortical layers (https://laye 
rfmri.com/terminology).  

2 The number of twenty layers was chosen based on previous experience in 
finding a compromise between data size and smoothness (https://layerfmri. 
com/how-many-layers-should-i-reconstruct). 
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MAGEC VASO does not rely on a given inversion time, the readout can 
be prolonged as much as needed (at the cost of TR). This allows for 
increased coverage with up to 72–104 slices (and more) at 0.8 mm 
isotropic resolution and with TR of 6.5–8 s. See Fig. 1A for a graphical 
depiction of the MAGEC sequence discussed here. Since the blood 
z-magnetization is not completely nulled here, the MAGEC approach can 
contain small CBF-dependent VASO signal amplifications. Since CBF is 
believed to be dominated from capillary water exchange only, this will 
not compromise the layer-specificity. It rather improves the sensitivity. 
As long as there is a reference image acquired without this T1-weighting, 
the T1-related signal changes can be separated from T2*-related signal 
changes to ultimately extract CBV signal traces without BOLD 

contaminations. For further discussions of the MAGEC sequence, see 
https://layerfmri.page.link/WholeBrain_ISMRM20. 

2.1.3. In-plane segmented 3D-EPI 
Using conventional 7 T systems with 32-channel receive arrays and 

body gradients, the effective resolution of single-shot EPI is encoding- 
limited by the readout speed relative to the T2*-decay rate. Given the 
typical size of a human head, and the constraints set by peripheral nerve 
stimulation, this limits the resolution of single-shot EPI to approximately 
0.8 mm. Segmented EPI approaches can overcome this limitation at the 
cost of longer TRs (Jin and Kim, 2008; Menon and Goodyear, 1999) 
(which, however, might limit some neuroscience applications whose 

Fig. 1. CBV Imaging Method with VASO. 
Panel A) schematically depicts the working principle of the CBV-fMRI methods reviewed here. The CBV sensitivity of VASO is based on volume distributions between 
different T1-compartments of intravascular and extravascular space in a T1-weighted sequence. For layer-fMRI applications, it is customary that VASO is acquired 
interleaved with BOLD data (see different contrast in brain insets). For SS-SI-VASO, the T1-contrast is generated with an initial 180◦-inversion pulse. For MAGEC- 
VASO, the T1-contrast is facilitated with variable flip angles interleaved with readout modules. 
Panel B) depicts the expected vascular origin of VASO, compared to GE-BOLD. Most of the oxygenation changes that GE-BOLD is sensitive to are happening in large 
draining veins (blue) that unidirectionally smear the functional contrast across layers. CBV changes, however, are believed to be dominated by micro-vessels that are 
closely located at the laminar-aligned neurons and synapses. Because of the high localization specificity of VASO, its functional activity maps can reveal laminar 
stripe patterns or superficial and deeper layers (here in human M1 (Huber et al., 2017)). 
Panel C) depicts data acquisition trade-offs of imaging coverage (a.k.a. FOV), isotropic resolution, and sampling efficiency (a.k.a. TR). While it is possible to perform 
CBV-weighted laminar fMRI with whole-brain coverage, at sub-second sampling rates, and with high resolution of 0.5 mm, it is not yet possible to achieve all of this 
at the same time. 

L. Huber et al.                                                                                                                                                                                                                                   

https://layerfmri.page.link/WholeBrain_ISMRM20


Progress in Neurobiology 207 (2021) 101835

5

task design requires short TRs). The correspondingly higher achievable 
spatial resolution can be used to provide better understanding of the 
underlying localization specificity and contrast-generating mechanisms. 
Here, we discuss such a segmented 3D-EPI approach (Stirnberg et al., 
2017, 2020) to exemplify the laminar and columnar specificity and 
vessel sensitivity in conventional GE-BOLD and VASO. A matrix of 
316×316×26 was used with 2 shots per kz-segment (TR = 3.9 s). 

In-plane segmentation can be susceptible to shot-specific variations 
in B0. If this is not taken care of, it can cause image ghosting of the 
resulting functional time series. Here we tried to minimize the in-plane 
segmentation related ghosting with multiple parallel strategies: a.) A 
variable echo-time shift was included for each segment to match the 
signal and phase of segments in the presence of T2* decay and a spatially 
inhomogeneous phase (as implemented by Stirnberg et al. (2020)). b.) 
The IR-loop and the segmentation loop were harmonized to have the 
same signal across in-plane segments (Stirnberg et al., 2019). c) The 
phase navigators for phase correction across segments and across odd 
and even lines were excluded from the EPI module and acquired as a 

global adjustment at the beginning of the time series (Stirnberg et al., 
2017). d.) We used the advanced algorithms of the vendor to implement 
phase offset correction (OnlinePCCrossCorrAcrossSegmentsEPI) as 
described by Heid (2000). 

2.2. Characteristics of layer-dependent connectivity acquisition methods 

Fig. 1 illustrates the acquisition challenges in layer-dependent fMRI. 
For large coverage protocols, it can be beneficial to interleave the 
contrast generation periods with readout periods. In MAGEC VASO 
(Fig. 1A), the CBV-weighting is introduced between every 3D-EPI 
readout block instead of a sole single inversion pulse. This allows an 
increase of the acquisition window and, thus enables more slices to be 
acquired. Similarly, for in-plane segmented readout strategies, multiple 
contrast-generating inversion pulses are applied per image. One of the 
most critical and most investigated challenges of layer-fMRI acquisition 
is the unwanted vascular bias of large draining veins. Fig. 1B concep-
tualizes the corresponding localization specificity in conventional GE- 

Fig. 2. High resolution methods without large vein biases. 
The purpose of this figure is to illustrate the layer-dependent localization specificity of CBV-weighted fMRI methods. 
Panel A) illustrates the location of CBV change during a flickering checkerboard task at nominal 0.5 mm resolution. The underlay is the mean VASO signal with its 
inherent T1-contrast, which facilitates straightforward layerification in EPI space. The zoomed section shows that CBV changes are confined to the middle layers of 
the calcarine sulcus, without unwanted sensitivity to pial veins. 
Panel B) shows the lack of sensitivity to local veins in VASO while not in the GE-BOLD signal. The underlay is a 0.2 × 0.2 × 0.5 mm FLASH image (3 averages) to 
illustrate the location of the Stria of Genari and the location of large intracortical veins (arrows in shades of gray). Layer-profiles reveal that the VASO signal change is 
dominated by the Stria of Genari (green arrow), the location of expected input from thalamus for this task. GE-BOLD signal, on the other hand, is dominated by 
superficial layers. This is presumably due to unwanted sensitivity to large draining veins. These data suggest that CBV-fMRI can be advantageous to reveal laminar- 
specific correlates of neural activity. 
In contrast to layer-profiles, the columnar profiles show that VASO and BOLD exhibit very similar activity distributions. At the location of large diving veins (gray 
arrows), BOLD signal seems to be slightly larger. This effect is small compared to the overall variance along the cortical ribbon. These data suggest that the vein bias 
in GE-BOLD signal is not as severe in columnar fMRI as in layer-fMRI. 
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BOLD and blood volume sensitive VASO. It can be seen that VASO has a 
higher localization specificity, without strong signal leakage effects of 
large pial veins. However, it has a lower detection threshold with fewer 
significantly activated voxels. Two stripes of layer-dependent activity 
are visible in VASO, representing the input and output activity of layers 
II/III and layer Vb/VI, respectively. 

To make layer-fMRI connectivity mapping more attractive to 
neuroscience application research, it is desired to achieve a series of 
quality features including: high-sensitivity, whole-brain coverage, 
0.5 mm resolutions, sub-second TRs, and minimal venous biases. While 
advanced layer-fMRI acquisition strategies can achieve each of those 
quality features individually, constraints can arise when all of these 
features are tried to be achieved simultaneously. Fig. 1C illustrates the 
layer-fMRI parameter space as a triangle of pushing coverage, resolution 
and TR. 

Fig. 2 highlights the advantage of CBV-based fMRI for layer-fMRI 
applications with an example of the primary visual cortex. It can be 
seen how the CBV signal change is dominated from the middle cortical 
layers at the location of the Stria of Genari (green arrow). GE-BOLD 
signal, on the other hand, shows the largest signal peaks in the super-
ficial layers, most probably due to unwanted signal spillage from deeper 
layers. The signal variations along the columnar dimension, however, 
does not seem to be that much affected by signal spillage. This might be 

coming from the fact that most of the larger intra-cortical veins are 
orthogonally-oriented to the cortical surface. These results suggest that 
the CBV-contrast is most vital to interpret single-contrast variations 
across cortical layers. For the interpretation of single-contrast columnar 
variations, a corresponding specificity advantage of CBV is less clear. 

Fig. 3 illustrates the capability of whole-brain layer-fMRI sequences 
to reliably capture connectivity measures across the brain. It can be seen 
how CBV-fMRI allows the extraction of conventional functional net-
works without unwanted biases of the pial vasculature. 

While the above mentioned advancements of VASO imaging can 
account for erstwhile shortcomings of imaging coverage and resolution, 
they do not account for other potential limitations. As such, it has been 
previously suggested that the VASO signal, can contain an unwanted 
sensitivity to potential dynamic changes in CSF volume (Donahue et al., 
2006; Jin and Kim, 2010; Lu et al., 2013; Scouten and Constable, 2007). 
Thus, when strong global tasks are used (E.g., CO2 respiration chal-
lenges; hypercapnia) during which sulcal CSF volume is significantly 
affected, their influence on the VASO signal need to be accounted for. 
Most popular strategies involve, a) TR-matching for similar GM and CSF 
contrast (Huber et al., 2015), b) double inversion (Donahue et al., 2006), 
c) or repeating the experiments with multiple T1-weighting strengths 
(Scouten and Constable, 2007). 

Fig. 3. Functional connectivity data with large coverage VASO methods. 
With the variable flip angle MAGEC-VASO approach, the number of slices can be increased as desired. This comes at the cost of TR. Here, 104 slices were acquired in 
8.3 s at 0.8 mm isotropic resolution, without z-GRAPPA acceleration. The panels show characteristic functional networks during a movie watching task (average of 
four repetitions of 14 min each). Activation was estimated in three steps: 1.) extracting signal traces from 98 participants of the 7 T− HCP movie dataset, 2.) 
resampling them to the same TR used for layer-fMRI acquisitions, 3.) using the HCP signal traces as regressors (in the design matrix) of a conventional GLM-analysis. 
Panel A) depicts the ‘parietal network’, panel B) depicts the ‘default mode network’, panel C) depicts the ‘fronto-parietal network’, and panel D) depicts the ‘visual 
network’. The activation maps reveal clear layer-specific structures. For example, the zoomed section of the intraparietal sulcus exhibits a double-stripe pattern 
(green arrows) following the cortical ribbon. 
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3. Connectivity methods 

3.1. Tasks to illustrate functional connectivity methods 

Three different functional task classes are discussed here.  

1) Method validation tasks: For validation and illustration of recent 
fMRI sequence developments, we used basic visual and sensorimotor 
tasks. In visual experiments, we used a block-design moving star field 
task (Huk et al., 2002) alternating between 30 s rest, 30 s static stars 
and 30 s swirly stars. This task was chosen because it evokes robust 
and strong signal changes in early visual areas (including V1 and 
hMT+) across participants. Participants were instructed to fixate on 
the center of the screen. Each run lasted 12 min and was repeated 2–4 
times. 

In sensorimotor experiments, we used a block-design finger-tap-
ping task. Participants were instructed to mimic a video of a 
moving hand performing this movement. Tapping and rest pe-
riods were alternated every 30 s. Each run lasted 12 min and was 
repeated 1–2 times (totaling 2–3). Such basic visual and senso-
rimotor tasks are established in the field of fMRI method de-
velopments as testbeds to validate the performance of new fMRI 
sequences.  

2) Resting-state tasks: In order to illustrate the schematics of layer-fMRI 
functional connectivity analyses, we conducted resting-state exper-
iments. During these experiments, we instructed the participants to 
keep their heads still and not fall asleep. All participants, that un-
derwent the visual stimulation tasks, also participated in two 12 min 
resting-state experiments (in the same scan session), while imaging 
the same part of the brain.  

3) Movie watching: In order to illustrate the applicability of layer-fMRI 
acquisition methods with ‘naturalistic tasks’, we conducted 12 ses-
sions of movie watching. It has been suggested that movie watching 
is beneficial over alternative block-designed or resting-state tasks for 
various reasons:  

a) Movie watching can engage multiple brain systems at the same time 
and thus allows the researcher to extract more information in shorter 
time (Huth et al., 2012).  

b) Participants move less during movie watching compared to resting- 
state (Vanderwal et al., 2015). 

c) Watching the same movie multiple times results in highly repro-
ducible time-locked brain activity patterns (Mandelkow et al., 2017). 
Thus, movie watching tasks allows the experimenter to repeat the 
data acquisition. This can be highly beneficial in layer-fMRI, e.g. to 
average datasets before conducting functional connectivity analyses, 
or to consecutively acquire different portions of the brain and then 
retrospectively combine the data for synthetic whole-brain connec-
tivity analyses. 

d) Movie watching can be advantageous to capture individual differ-
ences compared to resting-state 
(Vanderwal et al., 2017).  

e) Movie watching-induced activity is expected to be time-locked 
across participants (Kauppi et al., 2010). Thus, inter-participant 
correlation analyses can be performed to extract functional connec-
tivity results without biases of participantspecific global physiolog-
ical noise. 

Here, we used an already established collection of 5 short video clips 
(https://layerfmri.page.link/7Tmovie). This collection of video clips has 
been used in the 7 T HCP project (https://www.humanconnectome.or 
g/study/hcpyoung-adult/article/first-release-of-7t-mr-image-data). 
More information about the movie task can be found at the HCP docu-
mentation under this link. 

3.2. Proposed analysis algorithms to investigate directional connectivity in 
layer-dependent connectivity data 

To show the type of new information about functional connectivity 
that can be extracted with layer-fMRI acquisition methods, we discuss a 
series of proposed analysis algorithms. 

3.2.1. Network extraction with naturalistic tasks (in relation to Fig. 3) 
To illustrate the data quality and sensitivity of whole-brain layer- 

fMRI VASO during movie watching tasks, we extracted functional acti-
vation time courses of the most common functional networks with the 
following inter-subject correlation procedure:  

a) We used 98 datasets (not including siblings) from the 7 T HCP 
database. These data were acquired with GE-BOLD at 1.6 mm with 
whole brain coverage.  

b) Signal traces were extracted from the functional network masks 
provided in Smith et al. (2009) and averaged across participants.  

c) These data were temporally downsampled to match the layer-fMRI 
TR.  

d) The resulting signal traces were then used as regressors (design 
matrix) in a conventional GLM-analysis in FSL-FEAT (Smith et al., 
2004). 

3.2.2. ROIs-based directional functional connectivity (in relation to Fig. 4) 
To demonstrate how seed-based analyses can be used to confirm 

layer-specific inter-area connections using resting-state fluctuations, we 
focus on the early visual system here. First, ROIs of the brain areas LGN, 
V1 and hMT +were defined based on functional and structural local-
izers (see Fig. 4). Then, time series of the seed ROIs were extracted from 
all layers and orthogonalized to the time series of a corresponding 
control region (see Fig. 4). This means that the resulting time series 
solely contained temporal events that were unique to the seed of the 
ROI, without global temporal events (e.g. physiological noise). These 
time series were used as regressors in a conventional GLM-analysis (FSL- 
FEAT (Smith et al., 2004)). The resulting activation and connectivity 
estimates were extracted as beta values and z-scores. 

3.2.3. Feed-forward vs. Feedback classification (in relation to Figs. 5 and 
6) 

According to the expectations of a canonical microcircuit (Felleman 
and Van Essen, 1991), feed-forward driven input terminates mostly in 
middle cortical layers, while feedback input terminates in superficial 
and deeper layers. With the new whole-brain layer-fMRI VASO con-
nectivity data available nowadays, this simplified layer-model allows 
researchers to develop binary classification algorithms that determine 
whether any given columnar set of voxels is better described as pre-
dominantly feed-forward driven vs. predominantly feedback driven. 

Here, two templates of feedback vs. feed-forward driven layer- 
profiles were predetermined (blue and red in Fig. 6). In the feed- 
forward driven case, the template profile has one peak close to the 
center of GM. In the feedback driven case, the template profile has two 
peaks. One peak is located in the superficial layers and a secondary peak 
is located in the middle and deeper layers. Any columnar unit can then 
be classified as being feed-forward or feedback driven depending on 
whether the correlation of the profile is higher for either one of the 
template profiles. Each column’s feedback or feed-forward dominance 
can be represented by color maps that code for the relative correlation 
strength to either of the two template profiles. Here, each column’s layer 
profile was estimated in two ways:  

a) For an ROI independent approach to determining the feed-forward 
vs. feedback nature of a column, we estimated the hubness of 
every layer within every columnar unit. Similar to the implementa-
tion in AFNIs 3dTcorrMap (Cox, 1996), we calculated the correlation 
of the time series of each individual layer with all other layers. When 
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the correlation of any given layer is high, this suggests that this layer 
represents the overall ongoing correlation in the entire columnar 
unit. When the correlation of any given layer is low, it indicates that 
this layer is not contributing a lot to the overall ongoing fluctuations 
in that columnar unit. The resulting feed-forward vs. feedback driven 
map of this ROI independent classification can be used to indicate 
which areas have resting-state fluctuation that are predominantly 
coming from feed-forward or feedback input. For a graphical 
depiction of this algorithm, see Fig. 5.  

b) Alternatively, the feed-forward vs. feedback classification was also 
estimated in a seed-based approach. The time courses of manually 
selected seed regions were extracted and used as a regressor in a 
GLM-analysis. The resulting beta-value maps were used to extract 
activity layer-profiles for every columnar structure. Finally, those 
beta-value layer-profiles were used to classify the feed-forward vs. 
feedback dominance. This procedure was repeated for 8 manually 
selected seed regions along the visual processing stream. The 
resulting feed-forward vs. feedback driven map of this seed-based 
classification algorithm can be used to determine which areas 
receive feed-forward input from the seed and which area receives 
feedback input from the seed. For a graphical depiction of this al-
gorithm, see Fig. 6. 

3.2.4. Layer-specific connectome mapping (in relation to Fig. 7) 
At conventional 1.5− 3 mm fMRI resolutions, with whole brain 

coverage, functional connectivity is often investigated by means of 
connectivity matrices, also described as functional connectomes. Here, we 
show how layer-dependent functional connectivity data can add addi-
tional dimensionalities and valuable directionality information to 
connectivitymatrix-analyses. Here, the Shen atlas (Shen et al., 2013) of 
268 parcels was used to define approximate masks of brain areas. First, 
the parcels were transformed from MNI space to the individual partici-
pants EPI space with ANTs (Avants et al., 2008) using the non-linear 
warping SyN algorithm. Next, the time series of every layer was 
extracted individually for every brain area. Finally, Pearson correlation 
values of every time course with every other time course were estimated 
and depicted in connectivity matrix style. 

3.2.5. Iterative ICA (in relation to Fig. 8) 
Functional brain networks usually incorporate multiple local and 

distant brain areas at a macroscopic spatial scale. It has been shown, 
however, that functional networks can be further separated into smaller 
sub-networks (Braga and Buckner, 2017; Heinzle et al., 2011; Smith 
et al., 2009). With CBV-based, submillimeter fMRI data, it becomes 
possible to investigate the topographical sub-division patterns of larger 
functional networks into smaller and smaller units, without unwanted 
signal leakage from macro veins. Here, we used iterative FSL Melodic 
(Multivariate Exploratory Linear Optimized Decomposition into Inde-
pendent Components) ICA decomposition (Beckmann and Smith, 2004) 
to extract functional networks across multiple macroscopic and 

Fig. 4. Resting-state directional connectivity in the visual system. 
This figure depicts one proposed way of using resting-state time series analyses to investigate layer-dependent functional connectivity. 
Panel A) depicts a toy model of expected directional connectivity in the early visual system. The primary visual cortex V1 receives feed-forward input from the 
thalamus mostly in the middle/deep layer IV and it receives feedback input from V5/hMT +mostly in superficial and deeper layers. With 0.8 mm fMRI resolution, 
input to superficial layers (II/III) is expected to be separable from input to layers IV/V/VI. However, layers IV and V/VI might be too close together to be separable 
with 0.8 mm resolution. 
Panel B) schematically illustrates the procedure for layer-dependent time course analysis. First, the time series of the seed ROI is extracted from all layers and is 
orthogonalized to the time series of a control region. This means that the resulting time series solely contains temporal events that are unique to the seed of the ROI, 
without global temporal events (e.g. physiological noise). This time series is used as a regressor in a conventional GLM-analysis. The resulting activation and 
connectivity score are extracted as beta values or z-scores. 
Panel C) illustrates how the ROIs were defined in this study. While the thalamus and hMT + are defined based on functional localizers, V1 is defined based on the 
occurrence and borders of the Stria of Gennari (black arrows). 
Panel D) depicts the resulting connectivity profiles across layers. As expected from the model in panel A), feed-forward connectivity is dominantly terminating in 
middle and deeper layers (black arrow), while feedback input has additional connectivity in the superficial layers (brown arrow). The blue profile refers to a seed- 
region in the contra-lateral V1 and can be interpreted as a measure of overall ongoing fluctuations arising from global physiological noise, thalamic input, V5/ 
hMT + input, and other input, for comparison. 
The layer-dependent functional connectivity analyses conducted here are inspired by previous work from Polimeni (2010a). 
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mesoscopic spatial scales. We focused on individual manually selected 
components and iteratively decompose them into smaller and smaller 
subcomponents. 

a) First, we used a conventional FSL-Melodic ICA decomposition anal-
ysis pipeline with 30 subcomponents. 

b) We individually selected components of interest (e.g. the sensori-
motor network) and temporally regressed out all other components 
(including non-neural noise components). 

c) We repeated the ICA pipeline that subdivided the selected compo-
nents into further sub–components.  

d) We repeated steps b–c multiple times. 

3.2.6. Investigating individual differences with layer-dependent inter- 
subject correlation analyses (in relation to Fig. 9) 

To investigate participant-dependent layer-specific signal variations 
in movie watching tasks, we conducted the following procedure:  

a) fMRI time courses during movie watching tasks were extracted from 
all 98 (non-sibling) 7 T− HCP participants in all ROIs (Shen parcels, 
(Shen et al., 2013)).  

b) These data were temporally downsampled to match the layer-fMRI 
TR.  

c) The downsampled time courses of all 98 7 T− HCP participants were 
used as regressors in a FSL-FEAT (Smith et al., 2004) GLM-analysis of 
our highresolution layer-fMRI VASO data. 

Fig. 5. Mapping the columnar-specific layer hubness across brain areas. 
Panel A) depicts how the cortex is parceled into columnar structures. The resting-state time course of every columnar unit is extracted as a mean value. 
Panel B) illustrates how the layer-specific fMRI fluctuations are used to determine a functional measure of hubness. The term ‘hub’ is used here to describe nodes (e.g. 
layers) with exceptionally higher functional connectivity compared to other nodes. These nodes are thought to play a major role in the coordination of information 
flow within brain networks (Bullmore and Sporns, 2009; Bullmore and Bassett, 2011; Sporns et al., 2007). Here, hubness is defined as the correlation between the 
layer-specific time course and the mean time course of all remaining layers. Calculating the hubness of every layer in a column allows the generation of hubness 
layer-profiles. These profiles can be characterized based on their respective peak location in granular vs. agranular layers. 
Panel C) depicts an example of clustering the brain into feed-forward driven areas with largest hubness measures in the granular layer versus feedback driven areas 
with largest hubness measures in infra-granular or supra-granular layers. A bilateral gradient between frontal and parietal areas can be seen. 
Panel D) illustrates similarities of this anterior-posterior pattern with measures of cortical thickness and myelination. 
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d) Beta-values were extracted for every brain area and plotted as layer- 
profiles.  

e) These participant-specific layer-profiles were then used to determine 
peak locations and draw conclusions about the feed-forward vs. 
feedback nature of selected areas within the network. 

For a graphical depiction of this analysis, see Fig. 9. 

3.3. Characteristics of layer-dependent connectivity analysis approaches 

High-quality layer-fMRI data, as shown in Figs. 1–3, open the door to 
a new class of connectivity analyses that have not been possible without 

layer-fMRI specificity. These data are still emerging and are just starting 
to become available. Nevertheless, we review a number of these new 
connectivity analysis methods, which we believe might become relevant 
for a larger research field in the near future (see Fig. 4–9). Layer- 
dependent functional connectivity data can be used for:  

a) Mapping and confirming layer-dependent connectivity patterns with 
seed-based correlation analysis (see Fig. 4 and (Huber et al., 2017; 
Polimeni et al., 2010a; Wu et al., 2018)). Such analyses were pre-
viously only accessible in invasive animal research (Chen et al., 
2017; Jung et al., 2019). 

Fig. 6. Hierarchy mapping procedure by means of a seed-based layer-dependent clustering analysis. 
Panel A) First, characteristic layer-dependent profiles are determined. At 0.8 mm resolution, feedback activity in superficial layers (II/III) and deeper layers (IV/VI) 
can be separated as two separate peaks (red). Feed-forward activity in the deep layer IV can be seen as a single peak in middle/deeper cortical depth (blue). At 
0.8 mm resolution, the layer IV peak cannot be separated from the layer V/VI peak with Nyquist sampling. Thus, the feed-forward hump looks very similar to the 
deeper feedback hump. Here, the feed-forward and feedback profiles are used in a differential analysis. This means that even though any given layer profile usually 
contains a superposition of feed-forward and feedback peaks, ultimately it only matters to which of the two templates the profile is more similar to. 
Panel B) For a given seed region, the layer-profile is determined for all column in the field of view. Here ‘columns’ are considered as smooth 1 mm patches of the 
cortex. Each column’s layer-profile can then be clustered into one of the predefined classes based on the highest correlation similarity (relative correlation strength). 
Columns with layer-profiles that are dominated from superficial and deeper layers can be considered to mostly receive feedback input from the seed region. Columns 
with layer-profiles that are solely dominated from middle layers can be considered to mostly receive feed-forward input. In an iterative approach, the seed region can 
be picked based on the location of the clusters from the previous step. 
Panel C) Example clusters for a number of seed-regions (indicated with green arrows). It can be seen that clusters of feed-forward and feedback dominance are 
bilaterally organized along the geodesic distance. Note that the separation into two cluster groups results in an algorithm-enforced simplified view of the brain 
hierarchy. In fact, it is not expected that single columns are either 100 % feed-forward driven or 100 % feedback driven. Instead, it is expected that most of the 
columns exhibit a superposition of the two. The algorithm, however, enforces two binary clusters solely based on the maximum similarity to the templates. This is 
also visible in the color scale of the two clusters. 
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b) Data-driven hierarchy mapping with iterative seed-based connec-
tivity clustering along cortical processing streams (see Fig. 5 with 
cation).  

c) Layer-dependent hubness mapping to characterize the functional 
embedding of brain areas in larger networks (see Fig. 6 with 
caption).  

d) Layer-dependent mapping of the functional human connectome to 
obtain valuable information for directional graph theory analyses 
(see Fig. 7 with caption).  

e) Iterative decompartmentalization of cortical systems to investigate 
the topographical working principles of macroscopic functional 
networks (see Fig. 8 with caption).  

f) Investigating the layer-dependent source of individual differences 
with time-locked naturalistic tasks (see Fig. 9 with caption).  

g) Generalized psychophysiological interaction analysis (gPPI) to 
investigate interactions between signals originating from different 
depths (see (Sharoh et al., 2019)). 

4. Open questions in layer-fMRI connectivity analyses 

Figs. 2–9 strongly suggest that it is technically possible to measure 
layer-dependent functional connectivity straightforwardly and reliably 
across the entire brain in living humans. To use such data for routine 
system neuroscience interpretations, additional aspects need to be 
considered that are discussed below. 

4.1. Shared sources of signal fluctuations 

As in conventional functional connectivity-based analyses at lower 
resolutions, ‘connectivity’ is estimated based on the temporal similarity 
of functional time series. This method is prone to overestimating the 
connectivity strength if multiple areas are affected by the same source of 
erroneous signal fluctuations. One prominent cause of unwanted signal 
fluctuation can be respiration induced signal changes, which can 
introduce biases of false positive connectivity between neurally uncon-
nected brain areas. In layer-fMRI analyses, this can have a higher effect 
in the superficial layers with a larger vascular density compared to 
deeper layers with reduced vascular density. Another source of un-
wanted signal fluctuations, when estimating the connectivity of two 
brain areas of interest, is a common input from a third unknown area. In 
this case, the common input would induce the same fluctuations in both 
ROIs and make them look more connected. Figs. 4A depict a number of 
potential approaches to minimize the effect of these unwanted sources of 
shared variance. One approach would be to restrict connectivity in-
terpretations to differential analyses. Unwanted sources of fluctuations 
can be removed, by orthogonalizing the seed region’s time course with 
an appropriate control region (Fig. 4B). Another approach of differential 
layer-dependent connectivity analysis is depicted in Figs. 5 and 6. Using 
a template matching approach refrains from interpretations of absolute 
connectivity strengths. Instead, it is based on the differential similarity, 
i.e. it quantifies which template correlates stronger with the profile. Yet 
another approach to minimize the effect of shared sources of unwanted 
variance would be to restrict interpretations of layer-dependent con-
nectivity to asymmetric off-diagonal elements in the connectivity 
matrices (Fig. 7C). Common sources of physiological noise would be 
symmetric to the diagonal axis in both areas and can thus be identified 
and removed. 

4.2. Inherent connectivity across layers 

The brain is highly interconnected (Schuez and Braitenberg, 2002). 
Each neuron receives input from up to 10,000 other neurons. Most brain 
areas are connected to most other brain areas and all layers are con-
nected to all other layers (Constantinople and Bruno, 2013; Felleman 
and Van Essen, 1991; Harris et al., 2019). Thus, as far as the time scales 
of fMRI concerns, it can be challenging to treat different parcels of the 

brain (brain areas, layers, columns) as independent entities. In fact, even 
before the onset of the fMRI signal (500 ms–600 ms after stimulus 
onset), the first input into a specific layer of a given brain area can 
spread the signal across all cortical depth and brain areas. Before the 
fMRI signal reaches its peak amplitude (6 s–10 s after the stimulus onset) 
the neural signal might have travelled to multiple other brain areas back 
and forth multiple times already. While this fast interconnectivity 
theoretically challenges the interpretability of layer-dependent func-
tional connectivity, it does not seem to be a limiting factor in practice. 
Several potential mechanisms have been proposed, why this might be 
the case. They are discussed in the following sections. 

4.2.1. Mind the magnitude 
While electrophysiology studies show fast neural activity propaga-

tion in the time scales of 30 ms–40 ms across different layers within the 
same brain area (Godlove et al., 2014; Ninomiya et al., 2015), the 
magnitude of the neural activity decays rapidly. The initial neural ac-
tivity in the feed-forward input layers IV of the primary visual cortex is 
by far the strongest activity. The magnitude of the further propagated 
activity in superficial and deeper layers is significantly lower as about 25 
%–40 % (Ninomiya et al., 2015). Even though inter-layer connectivity 
can contribute to the overall signal, it is often negligible in magnitude to 
the original initial layer-specific input. 

4.2.2. The neuro-vascular coupling favors the first input 
Previous time-resolved layer-fMRI studies in animals have shown 

that the onset of the fMRI signal to secondary connected layers has a 
surprisingly small amplitude and is surprisingly late. It has been shown 
with line scanning in the rat barrel cortex that the feed-forward induced 
fMRI signal starts rising in input layer IV ≈ 500 ms after the stimulus 
onset. fMRI activity in secondary connected layers II/III is delayed by 
another ≈ 300 ms–400 ms and has a much smaller magnitude (Yu et al., 
2014). The transition time that it takes until the secondary connected 
layers show fMRI signal change is longer than what is expected from the 
electrophysiology (Godlove et al., 2014; Ninomiya et al., 2015). Simi-
larly, recent layer-dependent work across multiple areas in the sensory 
system has revealed that the fMRI onset of secondarily connected areas 
can be delayed by up to several seconds (Jung et al., 2019). Based on this 
empirical evidence, it has been hypothesized that the fMRI response 
might be more susceptible to the initial input of a brain area. Secondary 
activity in inter-connected layers might need more time to accumulate 
sufficient neural activity until the fMRI signal reaches a significant 
increase. 

4.2.3. Functional connectivity is not the same thing as structural 
connectivity. 

Only because the layers are structurally connected, doesn’t guar-
antee that these connections functionally are engaged. It usually de-
pends on the content of the neural activity fluctuation. In the context of 
conventional fMRI resolutions, the difference between structural and 
functional connectivity has been extensively discussed and widely 
established (Bullmore and Sporns, 2009; Friston, 2011). While func-
tional connectivity depends on structural connectivity, structural con-
nectivity is not a guarantee of functional connectivity. For example, at 
the spatial scale of large brain areas, it is well established that V1 and V5 
are highly interconnected. However, the engagement of this connec-
tivity depends on the motion energy of the stimulus. Thus, when the 
visual stimulus contains a lot of motion components, the connection is 
more engaged as opposed to static stimuli. Thus, despite the high 
structural connectivity between V1 and V5, in resting-state analyses, 
these areas can be investigated as two separate entities. This reasoning 
can be extended from the scale of Brodman areas to the scale of layers 
too (Sotero et al., 2010). Despite the fact that individual layers in every 
column have many structural connections, layer-specific functional 
connections can still be extracted from isolated cortical depths 
(Fig. 3–7). 
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Fig. 7. Whole-brain layer-dependent connectome mapping. 
This figure shows a possible analysis approach and representative example data to exemplify what kind of information layer-fMRI can contribute to interpret the 
brain’s connectome. 
Panel A) depicts the raw VASO EPI data quality for whole-brain layer-dependent connectomics. 
Panel B) illustrates how functional connectome matrices are commonly generated: First, the brain is parcelated into a number of brain areas (colored masks overlaid 
on brain refer to the Shen (2013) atlas). Then, the average time courses within each brain area is correlated against all other brain area’s time courses. The com-
binations of all correlation values are summarized in a functional connectivity matrix. Any value refers to one edge of the brain connectome and represents the 
functional connectivity strength between two brain areas. 
Panel C) shows that the resolution of layer-fMRI can add an additional dimension in connectome analyses. Since each brain area can be subdivided into multiple 
layers (colored masks overlaid on the brain), each node in the whole-brain connectivity matrix represents a layer-to-layer connectivity matrix in itself. One example 
node is highlighted (cyan). Here, rows and columns refer to layers. Superficial layers are depicted at the top and on the left, while the deeper layers are depicted on 
the bottom and on the right. Off-diagonal elements can be used to interpret directional connectivity. High connectivity values on the bottom left suggest that the 
connectivity is dominated from connections between middle/deeper layers of area 2 and superficial layers in area 1. Area 1 sends input into feed-forward layers of 
area 2, while area 2 send feedback input to area 1 in the superficial layers. 
Panel D–G) depict representative layer-dependent connectivities of common large networks. 
Panel D) depicts the ‘visual network’. Selected correlation diagrams between V1 and V5/hMT + confirm data from Fig. 4D. Namely, V1 receives top-down feedback 
in superficial layers from V5, while V5 receives bottom-up input in the middle/deeper layers (red circles). 
Panel E) depicts the ‘sensory motor network’. As expected from previous layer-fMRI studies (Huber et al., 2017), the primary motor cortex receives input from the 
sensory areas solely in superficial layers (dark blue ellipses). 
Panel F) shows an example of the ‘default mode network’. Cyan ellipses highlight that the PCC is the only middle-layer dominated ROI. The other ROIs seem to be 
more feedback driven. This can be taken as an indication that the PCC is the major hub of the ‘default mode network’, while the other areas are being passively driven 
perhaps by PCC activity. 
Panel G) depicts the ‘fronto-parietal network’. Orange squares depict how the superficial and deeper layers have strong within-region connectivity and weak 
connectivity between each other. They almost look like two independent brain areas. This is consistent with electrophysiology data previously presented in monkeys 
(Maier et al., 2010). 
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4.3. Sampling speed of fMRI fluctuations compared to timing of neural 
fluctuations 

Meaningful neural activation modulations are happening across a 
wide range of temporal frequencies. While depth-dependent electro-
physiology studies often focus on the modulation of neural activity, 
connectivity and phase amplitude coupling changes in the range of 
50 ms–300 ms (Godlove et al., 2014; Sotero et al., 2015), optical imag-
ing studies examine meaningful resting-state connectivity across from 
the regime of 100 ms up to the 10 s regime (Ma et al., 2016). Due to the 
hemodynamic delay of the vascular response, conventional resting-state 
fMRI focuses on signal fluctuations in the time frame of 6− 10 s, implying 
that fMRI is usually only sensitive to a small frequency window of a wide 
spectrum of neural fluctuations.3 The acquisition approaches for whole 
brain layer-dependent connectivity analyses discussed in Figs. 1C, 3, and 
7, are optimized for this temporal frequency window of ≥10 s. Since 

resting-state fMRI fluctuations follow the pattern of scale free dynamics 
(He, 2011), the focus on this frequency window is expected to be largely 
representative of functional connections at any temporal scales. Future 
work in combining the MAGEC-VASO approach with acceleration in 
both phase-encoding directions (Huber et al., 2020a) will become 
important to confirm this temporal invariance. 

4.4. Lack of universal layer-dependent models 

The seminal meta-study from Felleman and van Essen (Felleman and 
Van Essen, 1991) summarizes the layer-dependent feed-forward con-
nections in layer IV vs. feedback connections mostly in superficial and 
deeper layers of the visual system. This simplified model is often 
considered to be canonical and evident across the entire neocortex 
(Douglas and Martin, 2004), and thus, provides the basis of many 
layer-fMRI studies to date. The universal applicability of this simplified 
layer-dependent model, however, has been recently called into question 
(Constantinople and Bruno, 2013; Harris et al., 2019). Recent neuro-
anatomical studies point to a more complicated layout of 
layer-dependent hierarchy-defining connections than previously 

Fig. 8. Network decomposition and sub-decomposition with iterative ICA. 
This figure aims to illustrate a connectivity algorithm to investigate the submillimeter topology of common macroscopic networks. 
Panel A) depicts representative ICA components in axial slices covering the sensory motor system. 
Panel B) depicts the manually selected network for further decomposition. 
Panel C) depicts how ICA can further decompose the selected network from panel B). The sub–components do not separate into different Brodmann areas (E.g., BA1, 
BA2, BA3a/b, BA4, BA6), instead they rather separate into body part representations that span across multiple involved brain areas (see blue vs. red arrows). This is 
consistent with previously shown results (Kuehn et al., 2017). The collection of four maps on the top of panel C) depict ICA maps as separate figures. The map at the 
bottom depicts two of those independent components in different colors superimposed on each other. The blue and red arrows show that a red-blue pattern is visible 
across sulci and gyri of BA1, BA 3b, BA 4, and BA6. This pattern looks consistent with finger representation maps of tapping induced activity (inset). 
Panel D) depicts yet another iteration of sub-decomposition of the blue network from panel C). The sub–components are now at the spatial scale of the voxel size 
(0.8 mm). Seven individual ICA components are depicted as individual maps at the right. The location of each component in the hand knob is highlighted with 
colorful arrows. These very components are also shown superimposed to each other in an enlarged panel on the left with the same arrows. The sub-networks do not 
appear to separate into different layers (E.g. input and output layers in M1 that are ≈ 1.2 mm apart). Instead, they separate into columnar like subnetworks of 
0.8–1.2 mm distance that are consistent across layers. 

3 For discussions of fMRI studies that focusing on faster time scales, please see 
other articles in this special issue. 
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assumed. Future insight of appropriate layer-dependent models needs to 
be taken into account (Markov and Kennedy, 2013) when interpreting 
layer-dependent functional connectivity data. In any case, the discovery 
of more complex layer-specific pathway-models of inter-layer commu-
nication further underscores the importance of high-resolution laminar 
fMRI for elucidating principles of the cortical connectome. For more 
comprehensive discussions about the lack of accurate neural models for 
layer-fMRI interpretation, please see the discussion section of the 
layer-fMRI review article by Stephan et al. (2019). 

4.5. Unconfirmed scalability, optimizability, and efficiency of the 
discussed connectivity methods 

The field of layer-fMRI connectivity is still emerging, and most 
methods-focused UHF research labs are still in the process of stream-
lining layer-fMRI connectivity tools for their neuroscience colleagues. 
The working principle of the connectivity analysis strategies that are 
conceptually illustrated in Figs. 2–9 are reviewed here as a set of hy-
pothetical research tools that will possibly shed new light into the 
layerspecific organization of the cortex in future research. Different to 
conventional fMRI analysis tools, such as block-designed GLM and 

Fig. 9. Potential connectivity procedure to investigate the layer-dependent source of individual differences. 
Panel A–B) illustrates the same movie task was used across all participants (98 HCP participants at 1.6 mm and 12 participants with layer-resolutions). This means 
that movie related brain activity changes are expected to be synchronized across participants. Some synchronized activity events can be attributed to specific se-
mantic labels (Huth et al., 2016). 
Panel C) depicts how this experimental setup is used to extract layer-dependent information of individual-differences. Time courses of 98 non-sibling HCP partic-
ipants are extracted across ROIs. Here, an example of the interparietal sulcus is depicted. These participant specific signal traces are then used as regressors in a 
GLM-analysis of the submillimeter data. 
Panel D) depicts individual differences of these time courses for three clusters (k-means) of participants. There are time frames, when all participants have very 
similar synchronized fMRI fluctuations (pink arrow) and time frames when they are less similar (green arrow). Layer-profiles reveal that these inter-participant 
differences are solely caused by superficial feedback layers. Middle feed-forward layers are more consistent across participants. 
Since all participants are looking at the same movie, their retina activity is expected to be identical. In addition, the extraction of the low-level visual features in the 
early visual brain areas are expected to be similar. It is not surprising that the personal experience differences of the movie must be contributing to the brain activity 
further along the visual hierarchy as feedback input. Here, we focus on the interparietal sulcus because it is robustly detectable across participants and because it is 
positioned relatively high in the cortical hierarchy. Thus, it presumably does not only represent low-level visual features that are expected to be independent of 
participants. Instead, it is expected to be ‘cognitive’ enough (i.e. receiving high-level input or performing high level output) to also represent participant-specific 
components of personal movie experiences. As part of the Fronto-Parietal-Network, this area has been suggested to be most affected by individual differences 
during movie watching tasks (Finn et al., 2015; Vanderwal et al., 2017). 
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resting-state correlation analyses, these tools did not yet experience a 
decade-long evolution of optimizations and validations. 

4.6. Biases of microvascular density 

VASO fMRI is just one method of a large zoo of fMRI acquisition 
sequences that have been proposed for application of layer-fMRI, 
including: GE-BOLD, SE-BOLD, GRASE, ASL, etc. All of them 
(including VASO) are based on neurovascular coupling and can only 
capture fMRI signal changes in vascularized tissue. This means that, 
whenever a voxel has a higher vascularization and a higher microvas-
cular density compared to other voxels, it will exhibit a higher fMRI 
responsiveness (a.k.a. vascular reactivity). As a result, layers with a 
higher vascular density are expected to be biased toward a larger fMRI 
signal change, for any task conditions. Thus, independent of the 

localization benefits of VASO compared to other methods, the layer- 
dependent microvascular density can introduce biases in layer- 
profiles. One extreme example would be layer I. Since layer I is almost 
free of microvascularization (Duvernoy, 1981; Weber et al., 2008), none 
of the layer-fMRI sequences (including VASO) is expected to capture 
meaningful layer-specific functional signal from layer I. In other layers 
(II–VI), the VASO bias of layer-dependent vascular density is expected to 
be negligible for the majority of cases. In contrast to the large diving 
veins that bias the GE-BOLD signal, the VASO-relevant microvascular 
density is rather homogeneous across cortical depth in most brain areas. 
As such, in the extra striate cortex, variations of the vascular density are 
usually smaller than 15 % across layers II–VI (Kennel et al., 2017; Weber 
et al., 2008). There are exceptions, however. In V1 and S1, the micro-
vascular density can be as much as 25 % higher in layer IV compared to 
other layers (II, III, V, and VI), which can eventually introduce biases in 

Fig. 10. Popularity of human layer-fMRI VASO across recent years and around the globe. 
Panel A) depicts the frequency of peer-reviewed journal publications using VASO. In the decade following its discovery in 2003, many researchers focused on low- 
resolution VASO studies to fully characterize the working principle of its functional contrast. Only with the advent of submillimeter imaging protocols in 2014/2015, 
VASO found it’s ‘killer application’: layer-fMRI. 2019 was the first year, when layer-fMRI became the sole driver of VASO fMRI. An itemized list of all layer-fMRI 
VASO studies can be found at https://layerfmri.com/VASOworldwide. 
Panel B) depicts the overall trend of layer-fMRI for reference, including all fMRI contrasts (VASO, GE-BOLD, SE-BOLD, GRASE, ASL, etc.). Note the different scaling of 
the y-axis compared to panel A. 
Panel C) depicts the distribution of research labs that use layer-fMRI VASO. The vast majority of layer-fMRI VASO research is being conducted in Europe, followed by 
Asia. For an itemized list of all layer-fMRI VASO users with references and example data, see https://layerfmri.com/VASOworldwide. 
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VASO profiles. 
Due to these variations in layer-dependent microvascular density, it 

can be challenging to interpret single-condition layer-profiles without 
reference conditions. This challenge can be mitigated by introducing the 
control-analysis steps described in the section shared sources of signal 
fluctuations. Alternatively, this bias can be mitigated by explicitly 
measuring the layer-dependent vascular reactivity, e.g. by means of gas 
calibrations, by means of resting-state, or by means of the residuals of 
the task design (Guidi et al., 2016, 2020). 

4.7. Limits of layer resolvability 

Cytoarchitectonically defined cortical layers can be considerably 
thinner than the resolutions of any of the data reviewed here. Individual 
cortical layers can have thicknesses between 100 μm and 800 μm. Until 
now, it is not fully understood what the ultimate limit of the localization 
specificity in blood volume-based layer-fMRI will be. While animal 
studies have shown that layer-dependent CBV responses can be locally 
precise to an accuracy level of 200 μm in the rat olfactory bulb (Pop-
lawsky et al., 2019), the best current spatial resolution of human 
layer-fMRI with VASO is ≈ 500 μm (Fig. 2). Thus, it is important to note 
that the layer-specific connectivity tools discussed here, do not represent 
activity of individual neuron clusters in isolated layers with Nyquist 
sampling across cortical depth. Instead, the findings on directional 
connectivity reviewed here are based on depth-specific signals varia-
tions that represent variable super-positions of neural activity from 
multiple cytoarchitectonically-defined cortical layers. 

5. Accessibility and usability of layer-dependent CBV-fMRI 

In the past 5 years, the number of layer-fMRI applications with VASO 
has multiplied faster than any other layer-fMRI acquisition methodology 
(Fig. 10A). Since the advent of human layer-fMRI VASO in 2014–2015, 
layer-fMRI has become the sole driver of VASO-fMRI in humans. While 
the number of layer-fMRI VASO studies is still building up, there are 25 
published peer-reviewed journal articles on layer-fMRI VASO until 
today (see Fig. 10A). This is a significant portion of the entire field of 
layer-fMRI (Fig. 10B). While most of the VASO sequence development 
has been conducted in a handful of research labs only (Johns Hopkins, 
Max-Planck Leipzig, SFIM at NIH, MBIC in Maastricht, and DZNE in 
Bonn), the layer-fMRI user-base has significantly extended beyond these 
sites. Fig. 10C depicts that there are currently more than 30 labs around 
the globe that are using layer-fMRI VASO (effective January 2020). Most 
of these layer-fMRI VASO labs are in Europe, followed by Asia. Despite 
the high 7 T scanner density in North America, the number of layer-fMRI 
VASO labs in USA is still emerging. 

5.1. Alternative fMRI methods to measure layer-dependent connectivity 

The connectivity analysis methods reviewed here, happen to be 
exclusively illustrated with example data using VASO. We believe, 
however, that the discussed connectivity tools are generally applicable 
to any fMRI acquisition contrast that can provide whole brain layer- 
specific signals without the sensitivity of macro-veins. Until today, 
VASO just happens to the only acquisition sequence that can provide 
such signals non-invasively in humans. Other promising candidate 
methods that might also be optimized in the future research to be usable 
for layer-dependent connectivity analyses are briefly discussed below4: 

a) Model-based GE-BOLD signal deconvolution: Having reasonable as-
sumptions of the biophysical properties of the layer-dependent 
vascular architecture, the unwanted venous drainage effect in GE- 

BOLD can be accurately estimated and cancelled out from ROI- 
specific GE-BOLD layer-profiles (Havlicek and Uludag, 2019; Hein-
zle et al., 2016; Markuerkiaga et al., 2016). As soon as this approach 
will be advanced to also work on a voxel-by-voxel level, it might also 
be able to provide layer-specific data for the connectivity analyses 
too.  

b) SE-BOLD: Spin-echo EPI has been shown to have an improved 
localization specificity compared to GE-EPI for applications in layer- 
fMRI (Goense and Logothetis, 2006; Zhao et al., 2006), but are 
limited in coverage, energy deposition and acquisition speed 
(Koopmans and Yacoub, 2019). A comparison of various spinecho 
based contrasts for small FOV acquisition protocols are compared to 
VASO in Fig. 11. Recent advancements of those methods using 
multisection excitation by simultaneous spin-echo interleaving 
(MESSI) with complex-encoded generalized slice dithered enhanced 
resolution (cgSlider) simultaneous multislice (Feinberg et al., 2010, 
2018) echo-planar imaging (Han et al., 2019) can mitigate these 
limitations and bring SE-BOLD methods closer to high-resolution, 
whole brain protocols. And thus, they might also become usable 
for whole brain connectivity analyses.  

c) 3D-GRASE: 3D-GRASE (Feinberg et al., 2008; Olman et al., 2012; 
Oshio and Feinberg, 1991) has been shown to have an improved 
layer-dependent localization specificity compared to other BOLD 
contrasts (De Martino et al., 2013; Kemper et al., 2015). In most 
layer-dependent applications, however the imaging coverage in the 
segment direction did not exceed more than 12-18 slices. Recent 
advancements with using variable flip angles (Kemper et al., 2016) 
and compressed sensing (Park et al., 2019) strategies can mitigate 
the coverage limitations to some extent. 

6. Conclusion 

This article provides an overview of submillimeter fMRI methodol-
ogy to map layer-dependent functional connectivity across brain areas. 
With recent sequence advancements in fMRI contrast generation and 
readout strategies, it is possible to overcome previous limits of resolu-
tion, coverage, and venous contaminations. The layer-fMRI tools 
reviewed here provide a starting point for mapping layer-specific con-
nections across the entire brain, in the context of cognitive neuroscience. 
Layer-fMRI using VASO represents a paradigm shift that promises to 
transform the methods driven field of layer-fMRI to the application 
domain and will make layer-fMRI a reliable tool of neuroscience in two 
important aspects. First, the ability to image the entire brain with suf-
ficient sensitivity on UHF scanners around the world makes layer-fMRI 
tools applicable for neuroscience cortical circuitry questions without the 
need of extensive MR-physics expertise. Secondly, many influential 
network theories of brain function that posit distinct connection across 
individual cortical layers (e.g., predictive coding (Stephan et al., 2019), 
hierarchical processing streams) may now be directly tested in humans. 
This will allow a large field of researchers to investigate mechanisms 
behind any number of neuropsychological and psychiatric phenomena, 
such as selective attention, impulse control, learning, adaptation, hal-
lucinations, cognitive control, conscious perception (Schneider et al., 
2019), and multi-sensory integration (Lawrence et al., 2019), to name a 
few. 

7. Data and software availability 

Anonymized MRI data that are presented in this article can be 
anonymously downloaded from OpenNeuro. Volume maps of data pre-
sented in Fig. 2 can be downloaded at http://doi.org/10.18112/openne 
uro.ds002274.v1.0.2 (go to actualfiles/V1_LAYERING). The raw and 
processed data of multiple participants of the study shown in Fig. 4 and 6 
are available here: www.doi.org/10.18112/openneuro.ds001547. 
v1.1.0. Data shown in Fig. 5 and 8 are publicly available from previ-
ous published studies (Huber et al., 2017). Underlying tables and lists 

4 For more detailed discussions of alternative approaches, see other articles in 
this special issue. 
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used for Fig. 10 are available on https://layerfmri.com/VASOwor 
ldwide. All custom written software (source code) and evaluation 
scripts are available on Github (https://github.com/layerfMRI/reposi 
tory). The authors are happy to share the MAGEC-VASO 3D-EPI MR 
sequence upon request via a SIEMENS C2P agreement. A complete list of 
scan parameters used in this study is available on Github (https://gith 
ub.com/layerfMRI/Sequence_Github). The source code of the 
layer-specific analysis software is available on Github (https://github. 
com/layerfMRI/LAYNII) with analysis pipelines explained on www. 
layerfmri.com. 

All stimulation presentations were implemented in Psychopy and can 
be downloaded here: https://github.com/layerfMRI/Phychopygit. The 
collection of movie clips is available on https://layerfmri.page.lin 
k/7Tmovie. 
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Fig. 11. Comparison of VASO with various GE-EPI and SE-based acquisition method. 
Panels A-F) depict the MRI sequences that are compared: VASO, GE-BOLD EPI, SE-BOLD EPI, T1ρ-prep TFE, T2-prep TFE, diffusion-weighted T2-prep TFE. 
Panels G-L) depict the raw image with functional activity elicited by finger tapping overlaid (12 min experiment). VASO (panel G) and SE-EPI (panel I) show in-
dications of a double- layer response (black arrows). 
Panel M) depicts the respective layer profiles of the compared imaging contrasts. 
Panel N) summarizes the respective sensitivity and localized specificity of all contrast mechanisms. Here, specificity and sensitivity are approximated by means of the 
profile slope and activity z-score. For depiction of alternative approximations, see (Huber et al., 2017). Panel N shows that the fMRI contrasts typically exhibit either 
high sensitivity or high specificity, but not both (dotted line). In this form of comparing the different methods, VASO does not fall on this line. VASO shows a 
compromise of moderate sensitivity and moderate specificity. 
Panel O) depicts the expected vascular origin of the respective methods. 
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