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A B S T R A C T

Recent methodological advances in fMRI contrast and readout strategies have allowed researchers to approach
the mesoscopic spatial regime of cortical layers. This has revolutionized the ability to map cortical information
processing within and across brain systems. However, until recently, most layer-fMRI studies have been confined
to primary cortices using basic block-design tasks and macro-vascular-contaminated sequence contrasts. To
become an established method for user-friendly applicability in neuroscience practice, layer-fMRI acquisition
and analysis methods need to be extended to more flexible connectivity-based experiment designs; they must be
able to capture subtle changes in brain networks of higher-order cognitive areas, and they should not be spatially
biased with unwanted vein signals. In this article, we review the most pressing challenges of layer-dependent
fMRI for large-scale neuroscientific applicability and describe recently developed acquisition methodologies that
can resolve them. In doing so, we review technical tradeoffs and capabilities of modern MR-sequence approaches
to achieve measurements that are free of locally unspecific vein signal, with whole-brain coverage, sub-second
sampling, high resolutions, and with a combination of those capabilities. The presented approaches provide
whole-brain layer-dependent connectivity data that open a new window to investigate brain network connec-
tions. We exemplify this by reviewing a number of candidate tools for connectivity analyses that will allow
future studies to address new questions in network neuroscience. The considered network analysis tools include:
hierarchy mapping, directional connectomics, source-specific connectivity mapping, and network sub–-
compartmentalization. We conclude: Whole-brain layer-fMRI without large-vessel contamination is applicable
for human neuroscience and opens the door to investigate biological mechanisms behind any number of psy-
chological and psychiatric phenomena, such as selective attention, hallucinations and delusions, and even
conscious perception.

1. Introduction

Methodological advancements of functional Magnetic Resonance
Imaging (fMRI) contrasts and readout strategies in recent years have
allowed researchers to approach the mesoscopic spatial regime of cor-
tical layers (De Martino et al., 2015; Huber et al., 2017; Kok et al.,
2016; Koopmans et al., 2010; Olman et al., 2012; Polimeni et al.,
2010b). This has allowed investigations of the connectivity and func-
tion in neural microcircuits across cortical layers within cortical areas
(Callaway, 1998; Lund, 1988). Non-human primate studies have shown

that in hierarchically organized brain systems, inter-area neural input
arrives in different layers for bottom-up or top-down connections.
Specifically, feed-forward, bottom-up activity (e.g. V1 → V5/hMT)
terminates predominantly in the middle granular layer, while feedback,
top-down activity (e.g. V1 ⟵ V5/hMT) terminates predominantly in
superficial and/or deeper layers (Angelucci et al., 2002; Felleman and
Van Essen, 1991). Thus, the ability to map brain activity across cortical
layers revolutionizes the ability to tackle cortical information proces-
sing within brain systems and might become an important tool for
cognitive network neuroscience (Lawrence et al., 2019; Stephan et al.,
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2019). Until now, however, most human layer-fMRI studies have been
confined to primary motor and sensory cortex and have used basic fMRI
task block-designs. There are several reasons why layer-fMRI methods
are not applied more widely. One of the major limitations is that large
draining veins in conventional GE-BOLD fMRI methods spatially blur
the fMRI activity, imposing a cortical depth-specific contrast weighting
across the layers - with superficial layers being most heavily weighted
(Uludag and Blinder, 2018). Thus, locally specific interpretations of
individual layer activity are not straightforward with GE-BOLD (Kay
et al., 2019). Alternative non-BOLD fMRI sequences (reviewed in Huber
et al. (2019)), such as the CBV-weighted VASO (Lu et al., 2003)
method, have been shown to be locally more specific and having a
contrast that is more evenly weighted across the cortical depths (Huber
et al., 2015).

Until now, addressing layer-specific neuroscientific research ques-
tions with any layer-fMRI imaging tool (BOLD and nonBOLD) has been
limited by: A) low sensitivity, B) asymmetric voxel sizes, C) restricted
brain coverage, D) unclear potential for network analyses.

A) Low sensitivity: The reduced sensitivity of the early initial layer-
fMRI methods limited its applicability to strong block-design tasks
that evoked massive brain activations in primary brain areas, e.g.
strong visual tasks to evoke activity in primary visual cortex
(Kashyap et al., 2018; Kok et al., 2016; Koopmans et al., 2010;
Marquardt et al., 2018; Polimeni et al., 2010b), strong auditory
tasks to evoke activity in primary auditory cortex (De Martino et al.,
2015), and strong sensorimotor tasks to engage the primary soma-
tosensory and primary motor cortex (Huber et al., 2015; Yu et al.,
2019). If these methods are to contribute to our understanding of
cognitive neuroscience, studies of higher-order regions with more
sophisticated tasks and task designs will be necessary.

B) Asymmetric voxel size: Increasing the sensitivity of the acquisition
methods by means of using asymmetric (non-isotropic) voxel sizes
has allowed more advanced investigations, however, it has limited
the addressable neuroscience questions to small patches of cortex
(Finn et al., 2019; Guidi et al., 2016; Huber et al., 2015; Kashyap
et al., 2018; Koopmans et al., 2010; Menon and Goodyear, 1999; Yu
et al., 2019). Particularly in brain areas with stable folding patterns
across many individual people (e.g. primary motor cortex), the ap-
proach of thicker MRI-slices can help improve sensitivity. However,
to fully grasp the neural representation of laminar activation across
the folded cortical ribbon in higher-order brain areas with variable
folding patterns, isotropic submillimeter resolutions are vital.

C) Small coverage: Restricted field-of-view imaging allows investiga-
tions of high-resolution brain connections in individual brain areas
with great reliability (reviewed in Schluppeck et al. (2018)). The
reduced coverage allows fast data sampling rates and short scan
times. However, the slice positioning and protocol setup at the
scanner is more difficult for the experimenter. And furthermore, it
does not take advantage of the ultimate potential in layer-fMRI to
apply network analysis tools for investigating the information pro-
cessing and the interplay within and across brain areas.

D) Unclear potential for network analyses: Until now, the field of layer-
fMRI has been mostly focusing on acquisition and analysis meth-
odologies. Thus, other aspects of the experimental design have been
kept as conservative as possible. This means that in virtually all
layer-fMRI studies published so far, the investigators focused on 1–3
specific predefined brain areas of healthy participants and in-
vestigated the layer-dependent activity changes in these areas with a
small number of discrete task conditions. The potential of less
conservative experimental setups and area-independent analysis
methods in layer-fMRI is unclear and has not been systematically
applied so far. Thus, layer-fMRI has not yet become an established
tool for use in whole-brain connectivity studies, which are of in-
creasing importance to human neuroscience research.

To increase the utility of CBV-based layer-fMRI acquisition and
analysis methods for the application in human cognitive neuroscience,
all of the above limitations must be addressed. Only, then these
methods can be used in more sophisticated task designs, in higher-order
brain areas, and while capturing subtle changes in brain networks. In
this article, we argue that with the methodological advancements in the
past years, the aforementioned limitations are largely resolved. Layer-
fMRI connectivity measures are now available without venous con-
tamination and with whole-brain coverage. This paves the road for a
new class of neuroscience questions to be investigated. We aim to ex-
emplify how layer-dependent whole-brain fMRI datasets might be used
for a novel family of connectivity analyses by discussing multiple ex-
amples of layer-dependent connectivity analysis procedures that will
shed new light into the internal working principles and functional or-
ganization of the human brain. In this paper, we show several examples
of layer-specific fMRI.

2. Acquisition methods

Data from N=31 participants were used for the examples shown in
this paper participating in a movie watching study (N=12), in a visual
study (N=12) and in a sequence development study (N=5). All ex-
periments were conducted in accordance with the Belmont Report after
participants granted informed consent. Data were acquired in FMRIF/
NIMH/NIMH in Bethesda, USA and at Scannexus in Maastricht, The
Netherlands. Experiments at NIH were conducted according to the US
Federal Regulations that protect human subjects and approved by the
Combined Neuroscience Institutional Review Board protocol 93-M-
0170 (ClinicalTrials.gov identifier: NCT00001360). All experiments of
this study were conducted on SIEMENS 7 T scanners (Siemens
Healthineers, Erlangen, Germany) using the vendor-provided IDEA
environment (VB17A/VE11U/VE12K-UHF). The scanners were
equipped with the standard body gradient coils (maximum effective
gradient strength used here: 48m T/m; maximum slew rate used:
198 T/m/s). For RF transmission and reception, volume-transmit and
32-channel receive head coils (Nova Medical, Wilmington, MA, USA)
were used.

All functional data were acquired with VASO contrast (Hua et al.,
2013; Huber et al., 2014b; Lu et al., 2003) and a 3D-EPI readout (Poser
et al., 2010). Slab-oversampling was applied in the second phase di-
rection. 3D slice aliasing was minimized by using a sharp slab-excita-
tion pulse profile with a bandwidth-time-product of 25. The readout
parameters were: in-plane FLASH GRAPPA 3 (Talagala et al., 2016),
with regularization strengths chi= 1–5000 (for instructions how to do
this, see here: https://layerfmri.com/grapparegularization/), TE
=25ms, partial Fourier= 6/8 with POCS reconstruction of 8 itera-
tions. Online reconstruction was performed using a GRAPPA kernel size
6×5×3. Resolutions of fMRI protocols varies between 0.5×0.5×0.6
and 0.8×0.8×0.8mm3. For anatomical reference, 3 averages of
0.5 mm iso MP2RAGE data with partial brain coverage were acquired.
For optimal use in layer-fMRI (https://layerfmri.com/mp2rage), back-
ground noise (outside the brain) was minimized with a regularization
term lambda=0.1, fold-over-artifacts were minimized by using an
excitation pulse BWTP of 25, and no partial Fourier was applied in the
second phase encoding direction. Physiological traces of respiration and
heartbeat were recorded for the first 12 participants that underwent the
visual task. Further recordings were discontinued because in the
thermal noisedominated regime of 0.8mm voxel size here, we did not
observe any improvements by conducting RETROICOR (Li et al., 2000)
physiological noise correction (Hall et al., 2017). All fMRI images were
motion corrected using SPM12 (UCL, UK) (Penny et al., 2007). Volume
realignment and interpolation were performed with a 4th-order spline.
In order to minimize effects of variable distortions (non-rigid motion),
the motion was estimated in a manually drawn mask. The 8 outermost
slices were excluded from the analysis to minimize any residual 3D-EPI
related slab fold-over artifacts and reslicing artifacts, when necessary.
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Raw VASO time series usually consist of interleaved acquisitions of MR
signal with and without blood nulling. Thus, the analysis pipeline treats
odd and even time points separately for the motion correction and
subsequently divides the images by each other in order to correct for
BOLD contaminations in VASO (Huber et al., 2014b).

Boundary lines of the gray matter (GM) ribbon to cerebrospinal
fluid (CSF) and white matter (WM) were estimated with FreeSurfer
(v6.0) (Fischl, 2012) from wholebrain 0.7mm MP2RAGE data that had
been acquired in previous studies and were registered here to the
functional EPI space using ANTS (Avants et al., 2008). These bound-
aries were used as visual guidance to manually segment GM in EPI
space slice-by-slice, as described in the manual (https://layerfmri.com/
getting-layersin-epi-space). A coordinate system across cortical layers
and columnar structures was estimated in LAYNII (https://github.com/
layerfMRI/LAYNII). LAYNII is an open source C++ software suite for
computing layer and column functions. We estimated the depth of
equidistantly distributed layers1 . With the resolution of 0.8 mm, we
obtained 4–6 independent data points across the thickness of the cortex.
Across these data points, we created 20 layers2 across the thickness of
the cortex on a 4-fold finer grid than the effective resolution. The entire
pipeline of this analysis is described here: https://layerfmri.com/
analysispipeline. Cortical ‘columnar’ structures were also determined
in LAYNII’s LN_3DCOLUMN program with the following algorithm: For
each voxel, the next closest (Euclidean distance) voxel in each other
layer is determined. This group of voxels is considered a ‘columnar’
structure. This means that every voxel has a unique column assignment.
For more information on the algorithm see here: https://layerfmri.
com/columns. Note that the terminology of ‘columns’ refers to the
geometric columnar shape of fMRI voxel groups. It does not necessarily
refer to groups of neurons with the identical receptive field (a.k.a. hy-
percolumn, macro column, functional column, cortical module, motion
columns (Zimmermann et al., 2011)).

2.1. MR-sequences for layer-activity CBV mapping with large coverage

Previous layer-fMRI CBV-weighted sequences could not capture
more than 5–18 slices resulting in small field of views (6–12 cm), even
when using anisotropic voxels (Guidi et al., 2016; Huber et al., 2020b,
2015; 2017; 2016; 2018). Recent developments in VASO readout stra-
tegies now allow substantial coverage improvements to capture func-
tional connectivity in larger brain networks. In the following sub-sec-
tions, we describe these approaches, while also mentioning their
caveats.

2.1.1. SS-SI-VASO covering large brain networks
The CBV-weighting in VASO is based on T1-selective nulling of the

blood signal, while keeping the extravascular signal with its different T1

preserved for image creation (Hua et al., 2013; Lu et al., 2003). Thus,
VASO is inherently a single-slice method, as multi-slice acquisitions
would suffer from inconsistent or insufficient blood nulling across
slices. With 3D-readout methodologies, the readout window can be
substantially increased up to a time window of 0.5–1 seconds (T1)
without compromising blood nulling across the entire imaging volume
(Hua et al., 2013; Poser and Norris, 2009, 2011). Extending the readout
acquisition window even further by another 1–4 seconds (≈ T1) is
technically possible, however, it comes along with some challenges.
Namely, the longer TRs mean that the timing of the inversion-recovery
relaxation is faster than the k-space acquisition. Compared to previous

VASO sequences, these limitations have been recently mitigated with a
series of new approaches:

1) Dead-times between VASO and BOLD images have been removed.
This increases the imaging duty cycle of the sequence, at the cost of
an asymmetric readout. This means that, in post-processing, an
additional temporal interpolation step needs to be included.

2) More efficient variable-flip angle regimes were designed to manip-
ulate the signal strength along the second phase-encoding direction
in 3D-EPI. It was proposed using an exponentially increasing flip
angle for the first half of k-space and keeping a relatively high flip
angle constant for the second half of k-space. The flip angle increase
is chosen to match the T1-decay of GM. The level of asymmetry is
chosen such that the negative side lobes of the complex point-spread
function in the segment direction are compensated for with the level
of overflipping in the second half of k-space. While this approach
allows substantial increases in the readout duration, it can come
along with edge-enhancement artifacts in other T1-compartments,
such as at WM/CSF borders.

3) The readout duration can be extended such that only the k-space
center is acquired at the blood nulling time. This means that the
outer k-space segments will have a contribution of residual in-
travascular signal, which can result in CBF contributions for the high
spatial frequencies. Since CBF is believed to be dominated from
capillary water exchange only, this will not compromise the layer-
specificity of the sequence. However, this form of VASO signal
amplification comes along with a reduced quantifiability of de-
termining CBV in units of ml per 100mL of tissue.

These optimizations allow increases in coverage up to 28 slices (2
slices oversampling) with isotropic 0.8mm resolution and a sampling
rate of 1.7 s and 2.8 s. See Fig. 1A for a graphical depiction of the se-
quence.

Note that as long as there is a reference image acquired without the
inversion pulse, but with the identical readout, the T1-related signal
changes can be separated from T2

∗-related signal changes to ultimately
extract CBV signal traces without BOLD contaminations. This BOLD
correction is based on a dynamic division analysis under the assump-
tion that, at 7 T, the GE-BOLD effect is dominated by extravascular
T2
∗changes, as previously validated in (Huber et al., 2014a).

2.1.2. MAGEC-VASO for whole brain CBV imaging
While VASO was originally proposed as a blood-nulling method (Lu

et al., 2003), it has in the last 15 years been generalized to a general T1-
contrast without specific blood-nulling requirements. Early VASO ver-
sions without blood nulling used a T1-selective GM-nulling procedure to
estimate an inverse VASO contrast (Shen et al., 2009; Wu et al., 2008).
Later on, the VASO formalism was further generalized to extract CBV
changes at any inversion time (Ciris et al., 2014; W.C., W. et al. (2007)).
This literature has shown that the experimental trick of blood-nulling is
not the only way of obtaining a CBV-weighting. In fact, as long as there
is a different T1-weighting between the extravascular signal and in-
travascular signal, any volume redistribution between these pools of z-
magnetization, will result in a VASO signal change. Thus, instead of
using an inversion pulse, T1-weighting can also be introduced by vari-
able flip angles that create a dynamic steady-state across k-space seg-
ments along the 3D-EPI trajectory. This approach has the advantage
that the T1weighting can be maintained in a dynamic equilibrium for as
long as needed.

Analogously to the MAGIC VASO method (Lu et al., 2004) with
multiple inversion pulses, the variable flip angle approach is called
Multiple Acquisitions with Global Excitation Cycling (MAGEC) VASO.
Since MAGEC VASO does not rely on a given inversion time, the
readout can be prolonged as much as needed (at the cost of TR). This
allows for increased coverage with up to 72–104 slices (and more) at
0.8 mm isotropic resolution and with TR of 6.5–8 s. See Fig. 1A for a

1 Note on terminology: In the context of fMRI, these estimates of cortical
depth do not refer to cytoarchitectonically defined cortical layers (https://
layerfmri.com/terminology).

2 The number of twenty layers was chosen based on previous experience in
finding a compromise between data size and smoothness (https://layerfmri.
com/how-many-layers-should-i-reconstruct).
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graphical depiction of the MAGEC sequence discussed here. Since the
blood z-magnetization is not completely nulled here, the MAGEC ap-
proach can contain small CBF-dependent VASO signal amplifications.
Since CBF is believed to be dominated from capillary water exchange
only, this will not compromise the layer-specificity. It rather improves
the sensitivity. As long as there is a reference image acquired without
this T1-weighting, the T1-related signal changes can be separated from
T2
∗-related signal changes to ultimately extract CBV signal traces

without BOLD contaminations. For further discussions of the MAGEC
sequence, see https://layerfmri.page.link/WholeBrain_ISMRM20.

2.1.3. In-plane segmented 3D-EPI
Using conventional 7 T systems with 32-channel receive arrays and

body gradients, the effective resolution of single-shot EPI is encoding-
limited by the readout speed relative to the T2

∗-decay rate. Given the
typical size of a human head, and the constraints set by peripheral
nerve stimulation, this limits the resolution of single-shot EPI to ap-
proximately 0.8mm. Segmented EPI approaches can overcome this
limitation at the cost of longer TRs (Jin and Kim, 2008; Menon and
Goodyear, 1999) (which, however, might limit some neuroscience ap-
plications whose task design requires short TRs). The correspondingly
higher achievable spatial resolution can be used to provide better un-
derstanding of the underlying localization specificity and contrast-

Fig. 1. CBV Imaging Method with VASO.
Panel A) schematically depicts the working principle of the CBV-fMRI methods reviewed here. The CBV sensitivity of VASO is based on volume distributions between
different T1-compartments of intravascular and extravascular space in a T1-weighted sequence. For layer-fMRI applications, it is customary that VASO is acquired
interleaved with BOLD data (see different contrast in brain insets). For SS-SI-VASO, the T1-contrast is generated with an initial 180°-inversion pulse. For MAGEC-
VASO, the T1-contrast is facilitated with variable flip angles interleaved with readout modules.
Panel B) depicts the expected vascular origin of VASO, compared to GE-BOLD. Most of the oxygenation changes that GE-BOLD is sensitive to are happening in large
draining veins (blue) that unidirectionally smear the functional contrast across layers. CBV changes, however, are believed to be dominated by micro-vessels that are
closely located at the laminar-aligned neurons and synapses. Because of the high localization specificity of VASO, its functional activity maps can reveal laminar
stripe patterns or superficial and deeper layers (here in human M1 (Huber et al., 2017)).
Panel C) depicts data acquisition trade-offs of imaging coverage (a.k.a. FOV), isotropic resolution, and sampling efficiency (a.k.a. TR). While it is possible to perform
CBV-weighted laminar fMRI with whole-brain coverage, at sub-second sampling rates, and with high resolution of 0.5mm, it is not yet possible to achieve all of this
at the same time.
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generating mechanisms. Here, we discuss such a segmented 3D-EPI
approach (Stirnberg et al., 2016, 2017) to exemplify the laminar and
columnar specificity and vessel sensitivity in conventional GE-BOLD
and VASO. A matrix of 316×316×26 was used with 2 shots per kz-
segment (TR=3.9 s).

In-plane segmentation can be susceptible to shot-specific variations
in B0. If this is not taken care of, it can cause image ghosting of the
resulting functional time series. Here we tried to minimize the in-plane
segmentation related ghosting with multiple parallel strategies: a.) A
variable echo-time shift was included for each segment to match the
signal and phase of segments in the presence of T2* decay and a spa-
tially inhomogeneous phase (as implemented by Stirnberg et al.
(2016)). b.) The IR-loop and the segmentation loop were harmonized to
have the same signal across in-plane segments (Stirnberg et al., 2019).
c) The phase navigators for phase correction across segments and across
odd and even lines were excluded from the EPI module and acquired as
a global adjustment at the beginning of the time series (Stirnberg et al.,
2017). d.) We used the advanced algorithms of the vendor to implement
phase offset correction (OnlinePCCrossCorrAcrossSegmentsEPI) as de-
scribed by Heid (2000).

2.2. Characteristics of layer-dependent connectivity acquisition methods

Fig. 1 illustrates the acquisition challenges in layer-dependent fMRI.
For large coverage protocols, it can be beneficial to interleave the
contrast generation periods with readout periods. In MAGEC VASO
(Fig. 1A), the CBV-weighting is introduced between every 3D-EPI
readout block instead of a sole single inversion pulse. This allows an
increase of the acquisition window and, thus enables more slices to be
acquired. Similarly, for in-plane segmented readout strategies, multiple
contrast-generating inversion pulses are applied per image. One of the
most critical and most investigated challenges of layer-fMRI acquisition
is the unwanted vascular bias of large draining veins. Fig. 1B con-
ceptualizes the corresponding localization specificity in conventional
GE-BOLD and blood volume sensitive VASO. It can be seen that VASO
has a higher localization specificity, without strong signal leakage ef-
fects of large pial veins. However, it has a lower detection threshold
with fewer significantly activated voxels. Two stripes of layer-depen-
dent activity are visible in VASO, representing the input and output
activity of layers II/III and layer Vb/VI, respectively.

To make layer-fMRI connectivity mapping more attractive to neu-
roscience application research, it is desired to achieve a series of quality
features including: high-sensitivity, wholebrain coverage, 0.5mm re-
solutions, sub-second TRs, and minimal venous biases. While advanced
layer-fMRI acquisition strategies can achieve each of those quality
features individually, constraints can arise when all of these features are
tried to be achieved simultaneously. Fig. 1C illustrates the layer-fMRI
parameter space as a triangle of pushing coverage, resolution and TR.

Fig. 2 highlights the advantage of CBV-based fMRI for layer-fMRI
applications with an example of the primary visual cortex. It can be
seen how the CBV signal change is dominated from the middle cortical
layers at the location of the Stria of Genari (green arrow). GE-BOLD
signal, on the other hand, shows the largest signal peaks in the super-
ficial layers, most probably due to unwanted signal spillage from deeper
layers. The signal variations along the columnar dimension, however,
does not seem to be that much affected by signal spillage. This might be
coming from the fact that most of the larger intra-cortical veins are
orthogonally-oriented to the cortical surface. These results suggest that
the CBV-contrast is most vital to interpret single-contrast variations
across cortical layers. For the interpretation of single-contrast columnar
variations, a corresponding specificity advantage of CBV is less clear.

Fig. 3 illustrates the capability of whole-brain layer-fMRI sequences
to reliably capture connectivity measures across the brain. It can be
seen how CBV-fMRI allows the extraction of conventional functional
networks without unwanted biases of the pial vasculature.

While the above mentioned advancements of VASO imaging can

account for erstwhile shortcomings of imaging coverage and resolution,
they do not account for other potential limitations. As such, it has been
previously suggested that the VASO signal, can contain an unwanted
sensitivity to potential dynamic changes in CSF volume (Donahue et al.,
2006; Jin and Kim, 2010; Lu et al., 2013; Scouten and Constable, 2007).
Thus, when strong global tasks are used (E.g., CO2 respiration chal-
lenges; hypercapnia) during which sulcal CSF volume is significantly
affected, their influence on the VASO signal need to be accounted for.
Most popular strategies involve, a) TR-matching for similar GM and CSF
contrast (Huber et al., 2015), b) double inversion (Donahue et al.,
2006), c) or repeating the experiments with multiple T1-weighting
strengths (Scouten and Constable, 2007).

3. Connectivity methods

3.1. Tasks to illustrate functional connectivity methods

Three different functional task classes are discussed here.

1) Method validation tasks: For validation and illustration of recent
fMRI sequence developments, we used basic visual and sensorimotor
tasks. In visual experiments, we used a block-design moving star
field task (Huk et al., 2002) alternating between 30 s rest, 30 s static
stars and 30 s swirly stars. This task was chosen because it evokes
robust and strong signal changes in early visual areas (including V1
and hMT+) across participants. Participants were instructed to
fixate on the center of the screen. Each run lasted 12min and was
repeated 2–4 times.

In sensorimotor experiments, we used a block-design finger-tap-
ping task. Participants were instructed to mimic a video of a
moving hand performing this movement. Tapping and rest periods
were alternated every 30 s. Each run lasted 12min and was re-
peated 1–2 times (totaling 2–3). Such basic visual and sensor-
imotor tasks are established in the field of fMRI method devel-
opments as testbeds to validate the performance of new fMRI
sequences.

2) Resting-state tasks: In order to illustrate the schematics of layer-
fMRI functional connectivity analyses, we conducted resting-state
experiments. During these experiments, we instructed the partici-
pants to keep their heads still and not fall asleep. All participants,
that underwent the visual stimulation tasks, also participated in two
12min resting-state experiments (in the same scan session), while
imaging the same part of the brain.

3) Movie watching: In order to illustrate the applicability of layer-fMRI
acquisition methods with ‘naturalistic tasks’, we conducted 12 ses-
sions of movie watching. It has been suggested that movie watching
is beneficial over alternative block-designed or resting-state tasks for
various reasons:

a) Movie watching can engage multiple brain systems at the same time
and thus allows the researcher to extract more information in
shorter time (Huth et al., 2012).

b) Participants move less during movie watching compared to resting-
state (Vanderwal et al., 2015).

c) Watching the same movie multiple times results in highly re-
producible time-locked brain activity patterns (Mandelkow et al.,
2017). Thus, movie watching tasks allows the experimenter to re-
peat the data acquisition. This can be highly beneficial in layer-
fMRI, e.g. to average datasets before conducting functional con-
nectivity analyses, or to consecutively acquire different portions of
the brain and then retrospectively combine the data for synthetic
whole-brain connectivity analyses.

d) Movie watching can be advantageous to capture individual differ-
ences compared to resting-state
(Vanderwal et al., 2017).

e) Movie watching-induced activity is expected to be time-locked
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across participants (Kauppi et al., 2010). Thus, inter-participant
correlation analyses can be performed to extract functional con-
nectivity results without biases of participantspecific global phy-
siological noise.

Here, we used an already established collection of 5 short video
clips (https://layerfmri.page.link/7Tmovie). This collection of video
clips has been used in the 7 T HCP project (https://www.
humanconnectome.org/study/hcpyoung-adult/article/first-release-of-
7t-mr-image-data). More information about the movie task can be
found at the HCP documentation under this link.

3.2. Proposed analysis algorithms to investigate directional connectivity in
layer-dependent connectivity data

To show the type of new information about functional connectivity
that can be extracted with layer-fMRI acquisition methods, we discuss a
series of proposed analysis algorithms.

3.2.1. Network extraction with naturalistic tasks (in relation to Fig. 3)
To illustrate the data quality and sensitivity of whole-brain layer-

fMRI VASO during movie watching tasks, we extracted functional ac-
tivation time courses of the most common functional networks with the
following inter-subject correlation procedure:

a) We used 98 datasets (not including siblings) from the 7 T HCP da-
tabase. These data were acquired with GE-BOLD at 1.6mm with
whole brain coverage.

b) Signal traces were extracted from the functional network masks
provided in Smith et al. (2009) and averaged across participants.

c) These data were temporally downsampled to match the layer-fMRI
TR.

d) The resulting signal traces were then used as regressors (design
matrix) in a conventional GLM-analysis in FSL-FEAT (Smith et al.,
2004).

3.2.2. ROIs-based directional functional connectivity (in relation to Fig. 4)
To demonstrate how seed-based analyses can be used to confirm

layer-specific inter-area connections using resting-state fluctuations, we

Fig. 2. High resolution methods without large vein biases.
The purpose of this figure is to illustrate the layer-dependent localization specificity of CBV-weighted fMRI methods.
Panel A) illustrates the location of CBV change during a flickering checkerboard task at nominal 0.5mm resolution. The underlay is the mean VASO signal with its
inherent T1-contrast, which facilitates straightforward layerification in EPI space. The zoomed section shows that CBV changes are confined to the middle layers of
the calcarine sulcus, without unwanted sensitivity to pial veins.
Panel B) shows the lack of sensitivity to local veins in VASO while not in the GE-BOLD signal. The underlay is a 0.2×0.2× 0.5mm FLASH image (3 averages) to
illustrate the location of the Stria of Genari and the location of large intracortical veins (arrows in shades of gray). Layer-profiles reveal that the VASO signal change is
dominated by the Stria of Genari (green arrow), the location of expected input from thalamus for this task. GE-BOLD signal, on the other hand, is dominated by
superficial layers. This is presumably due to unwanted sensitivity to large draining veins. These data suggest that CBV-fMRI can be advantageous to reveal laminar-
specific correlates of neural activity.
In contrast to layer-profiles, the columnar profiles show that VASO and BOLD exhibit very similar activity distributions. At the location of large diving veins (gray
arrows), BOLD signal seems to be slightly larger. This effect is small compared to the overall variance along the cortical ribbon. These data suggest that the vein bias
in GE-BOLD signal is not as severe in columnar fMRI as in layer-fMRI.
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focus on the early visual system here. First, ROIs of the brain areas LGN,
V1 and hMT+were defined based on functional and structural lo-
calizers (see Fig. 4). Then, time series of the seed ROIs were extracted
from all layers and orthogonalized to the time series of a corresponding
control region (see Fig. 4). This means that the resulting time series
solely contained temporal events that were unique to the seed of the
ROI, without global temporal events (e.g. physiological noise). These
time series were used as regressors in a conventional GLM-analysis
(FSL-FEAT (Smith et al., 2004)). The resulting activation and con-
nectivity estimates were extracted as beta values and z-scores.

3.2.3. Feed-forward vs. Feedback classification (in relation to Figs. 5 and 6)
According to the expectations of a canonical microcircuit (Felleman

and Van Essen, 1991), feed-forward driven input terminates mostly in
middle cortical layers, while feedback input terminates in superficial
and deeper layers. With the new whole-brain layer-fMRI VASO con-
nectivity data available nowadays, this simplified layer-model allows
researchers to develop binary classification algorithms that determine
whether any given columnar set of voxels is better described as pre-
dominantly feed-forward driven vs. predominantly feedback driven.

Here, two templates of feedback vs. feed-forward driven layer-pro-
files were predetermined (blue and red in Fig. 6). In the feed-forward
driven case, the template profile has one peak close to the center of GM.

In the feedback driven case, the template profile has two peaks. One
peak is located in the superficial layers and a secondary peak is located
in the middle and deeper layers. Any columnar unit can then be clas-
sified as being feed-forward or feedback driven depending on whether
the correlation of the profile is higher for either one of the template
profiles. Each column’s feedback or feed-forward dominance can be
represented by color maps that code for the relative correlation strength
to either of the two template profiles. Here, each column’s layer profile
was estimated in two ways:

a) For an ROI independent approach to determining the feed-forward
vs. feedback nature of a column, we estimated the hubness of every
layer within every columnar unit. Similar to the implementation in
AFNIs 3dTcorrMap (Cox, 1996), we calculated the correlation of the
time series of each individual layer with all other layers. When the
correlation of any given layer is high, this suggests that this layer
represents the overall ongoing correlation in the entire columnar
unit. When the correlation of any given layer is low, it indicates that
this layer is not contributing a lot to the overall ongoing fluctuations
in that columnar unit. The resulting feed-forward vs. feedback
driven map of this ROI independent classification can be used to
indicate which areas have resting-state fluctuation that are pre-
dominantly coming from feed-forward or feedback input. For a

Fig. 3. Functional connectivity data with large coverage VASO methods.
With the variable flip angle MAGEC-VASO approach, the number of slices can be increased as desired. This comes at the cost of TR. Here, 104 slices were acquired in
8.3 s at 0.8mm isotropic resolution, without z-GRAPPA acceleration. The panels show characteristic functional networks during a movie watching task (average of
four repetitions of 14min each). Activation was estimated in three steps: 1.) extracting signal traces from 98 participants of the 7 T−HCP movie dataset, 2.)
resampling them to the same TR used for layer-fMRI acquisitions, 3.) using the HCP signal traces as regressors (in the design matrix) of a conventional GLM-analysis.
Panel A) depicts the ‘parietal network’, panel B) depicts the ‘default mode network’, panel C) depicts the ‘fronto-parietal network’, and panel D) depicts the ‘visual
network’. The activation maps reveal clear layer-specific structures. For example, the zoomed section of the intraparietal sulcus exhibits a double-stripe pattern
(green arrows) following the cortical ribbon.
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graphical depiction of this algorithm, see Fig. 5.
b) Alternatively, the feed-forward vs. feedback classification was also

estimated in a seed-based approach. The time courses of manually
selected seed regions were extracted and used as a regressor in a
GLM-analysis. The resulting beta-value maps were used to extract
activity layer-profiles for every columnar structure. Finally, those
beta-value layer-profiles were used to classify the feed-forward vs.
feedback dominance. This procedure was repeated for 8 manually
selected seed regions along the visual processing stream. The re-
sulting feed-forward vs. feedback driven map of this seed-based
classification algorithm can be used to determine which areas re-
ceive feed-forward input from the seed and which area receives
feedback input from the seed. For a graphical depiction of this al-
gorithm, see Fig. 6.

3.2.4. Layer-specific connectome mapping (in relation to Fig. 7)
At conventional 1.5−3mm fMRI resolutions, with whole brain

coverage, functional connectivity is often investigated by means of
connectivity matrices, also described as functional connectomes. Here,
we show how layer-dependent functional connectivity data can add
additional dimensionalities and valuable directionality information to
connectivitymatrix-analyses. Here, the Shen atlas (Shen et al., 2013) of
268 parcels was used to define approximate masks of brain areas. First,
the parcels were transformed from MNI space to the individual parti-
cipants EPI space with ANTs (Avants et al., 2008) using the non-linear

warping SyN algorithm. Next, the time series of every layer was ex-
tracted individually for every brain area. Finally, Pearson correlation
values of every time course with every other time course were esti-
mated and depicted in connectivity matrix style.

3.2.5. Iterative ICA (in relation to Fig. 8)
Functional brain networks usually incorporate multiple local and

distant brain areas at a macroscopic spatial scale. It has been shown,
however, that functional networks can be further separated into smaller
sub-networks (Braga and Buckner, 2017; Heinzle et al., 2011; Smith
et al., 2009). With CBV-based, submillimeter fMRI data, it becomes
possible to investigate the topographical sub-division patterns of larger
functional networks into smaller and smaller units, without unwanted
signal leakage from macro veins. Here, we used iterative FSL Melodic
(Multivariate Exploratory Linear Optimized Decomposition into In-
dependent Components) ICA decomposition (Beckmann and Smith,
2004) to extract functional networks across multiple macroscopic and
mesoscopic spatial scales. We focused on individual manually selected
components and iteratively decompose them into smaller and smaller
subcomponents.

a) First, we used a conventional FSL-Melodic ICA decomposition ana-
lysis pipeline with 30 subcomponents.

b) We individually selected components of interest (e.g. the sensor-
imotor network) and temporally regressed out all other components

Fig. 4. Resting-state directional connectivity in the visual system.
This figure depicts one proposed way of using resting-state time series analyses to investigate layer-dependent functional connectivity.
Panel A) depicts a toy model of expected directional connectivity in the early visual system. The primary visual cortex V1 receives feed-forward input from the
thalamus mostly in the middle/deep layer IV and it receives feedback input from V5/hMT+mostly in superficial and deeper layers. With 0.8mm fMRI resolution,
input to superficial layers (II/III) is expected to be separable from input to layers IV/V/VI. However, layers IV and V/VI might be too close together to be separable
with 0.8mm resolution.
Panel B) schematically illustrates the procedure for layer-dependent time course analysis. First, the time series of the seed ROI is extracted from all layers and is
orthogonalized to the time series of a control region. This means that the resulting time series solely contains temporal events that are unique to the seed of the ROI,
without global temporal events (e.g. physiological noise). This time series is used as a regressor in a conventional GLM-analysis. The resulting activation and
connectivity score are extracted as beta values or z-scores.
Panel C) illustrates how the ROIs were defined in this study. While the thalamus and hMT+are defined based on functional localizers, V1 is defined based on the
occurrence and borders of the Stria of Gennari (black arrows).
Panel D) depicts the resulting connectivity profiles across layers. As expected from the model in panel A), feed-forward connectivity is dominantly terminating in
middle and deeper layers (black arrow), while feedback input has additional connectivity in the superficial layers (brown arrow). The blue profile refers to a seed-
region in the contra-lateral V1 and can be interpreted as a measure of overall ongoing fluctuations arising from global physiological noise, thalamic input, V5/
hMT+ input, and other input, for comparison.
The layer-dependent functional connectivity analyses conducted here are inspired by previous work from Polimeni (2010a).
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(including non-neural noise components).
c) We repeated the ICA pipeline that subdivided the selected compo-

nents into further sub–components.
d) We repeated steps b–c multiple times.

3.2.6. Investigating individual differences with layer-dependent inter-subject
correlation analyses (in relation to Fig. 9)

To investigate participant-dependent layer-specific signal variations
in movie watching tasks, we conducted the following procedure:

a) fMRI time courses during movie watching tasks were extracted from
all 98 (non-sibling) 7 T−HCP participants in all ROIs (Shen parcels,
(Shen et al., 2013)).

b) These data were temporally downsampled to match the layer-fMRI
TR.

c) The downsampled time courses of all 98 7 T−HCP participants were
used as regressors in a FSL-FEAT (Smith et al., 2004) GLM-analysis
of our highresolution layer-fMRI VASO data.

d) Beta-values were extracted for every brain area and plotted as layer-
profiles.

e) These participant-specific layer-profiles were then used to de-
termine peak locations and draw conclusions about the feed-forward
vs. feedback nature of selected areas within the network.

For a graphical depiction of this analysis, see Fig. 9.

Fig. 5. Mapping the columnar-specific layer hubness across brain areas.
Panel A) depicts how the cortex is parceled into columnar structures. The resting-state time course of every columnar unit is extracted as a mean value.
Panel B) illustrates how the layer-specific fMRI fluctuations are used to determine a functional measure of hubness. The term ‘hub’ is used here to describe nodes (e.g.
layers) with exceptionally higher functional connectivity compared to other nodes. These nodes are thought to play a major role in the coordination of information
flow within brain networks (Bullmore and Sporns, 2009; Bullmore and Bassett, 2011; Sporns et al., 2007). Here, hubness is defined as the correlation between the
layer-specific time course and the mean time course of all remaining layers. Calculating the hubness of every layer in a column allows the generation of hubness layer-
profiles. These profiles can be characterized based on their respective peak location in granular vs. agranular layers.
Panel C) depicts an example of clustering the brain into feed-forward driven areas with largest hubness measures in the granular layer versus feedback driven areas
with largest hubness measures in infra-granular or supra-granular layers. A bilateral gradient between frontal and parietal areas can be seen.
Panel D) illustrates similarities of this anterior-posterior pattern with measures of cortical thickness and myelination.
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3.3. Characteristics of layer-dependent connectivity analysis approaches

High-quality layer-fMRI data, as shown in Figs. 1–3, open the door
to a new class of connectivity analyses that have not been possible
without layer-fMRI specificity. These data are still emerging and are
just starting to become available. Nevertheless, we review a number of
these new connectivity analysis methods, which we believe might be-
come relevant for a larger research field in the near future (see
Fig. 4–9). Layer-dependent functional connectivity data can be used for:

a) Mapping and confirming layer-dependent connectivity patterns with
seed-based correlation analysis (see Fig. 4 and (Huber et al., 2017;

Polimeni et al., 2010a; Wu et al., 2018)). Such analyses were pre-
viously only accessible in invasive animal research (Chen et al.,
2017; Jung et al., 2019).

b) Data-driven hierarchy mapping with iterative seed-based con-
nectivity clustering along cortical processing streams (see Fig. 5
with cation).

c) Layer-dependent hubness mapping to characterize the functional
embedding of brain areas in larger networks (see Fig. 6 with cap-
tion).

d) Layer-dependent mapping of the functional human connectome to
obtain valuable information for directional graph theory analyses
(see Fig. 7 with caption).

Fig. 6. Hierarchy mapping procedure by means of a seed-based layer-dependent clustering analysis.
Panel A) First, characteristic layer-dependent profiles are determined. At 0.8mm resolution, feedback activity in superficial layers (II/III) and deeper layers (IV/VI)
can be separated as two separate peaks (red). Feed-forward activity in the deep layer IV can be seen as a single peak in middle/deeper cortical depth (blue). At
0.8mm resolution, the layer IV peak cannot be separated from the layer V/VI peak with Nyquist sampling. Thus, the feed-forward hump looks very similar to the
deeper feedback hump. Here, the feed-forward and feedback profiles are used in a differential analysis. This means that even though any given layer profile usually
contains a superposition of feed-forward and feedback peaks, ultimately it only matters to which of the two templates the profile is more similar to.
Panel B) For a given seed region, the layer-profile is determined for all column in the field of view. Here ‘columns’ are considered as smooth 1mm patches of the
cortex. Each column’s layer-profile can then be clustered into one of the predefined classes based on the highest correlation similarity (relative correlation strength).
Columns with layer-profiles that are dominated from superficial and deeper layers can be considered to mostly receive feedback input from the seed region. Columns
with layer-profiles that are solely dominated from middle layers can be considered to mostly receive feed-forward input. In an iterative approach, the seed region can
be picked based on the location of the clusters from the previous step.
Panel C) Example clusters for a number of seed-regions (indicated with green arrows). It can be seen that clusters of feed-forward and feedback dominance are
bilaterally organized along the geodesic distance. Note that the separation into two cluster groups results in an algorithm-enforced simplified view of the brain
hierarchy. In fact, it is not expected that single columns are either 100 % feed-forward driven or 100 % feedback driven. Instead, it is expected that most of the
columns exhibit a superposition of the two. The algorithm, however, enforces two binary clusters solely based on the maximum similarity to the templates. This is
also visible in the color scale of the two clusters.
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Fig. 7. Whole-brain layer-dependent connectome mapping.
This figure shows a possible analysis approach and representative example data to exemplify what kind of information layer-fMRI can contribute to interpret the
brain’s connectome.
Panel A) depicts the raw VASO EPI data quality for whole-brain layer-dependent connectomics.
Panel B) illustrates how functional connectome matrices are commonly generated: First, the brain is parcelated into a number of brain areas (colored masks overlaid
on brain refer to the Shen (2013) atlas). Then, the average time courses within each brain area is correlated against all other brain area’s time courses. The
combinations of all correlation values are summarized in a functional connectivity matrix. Any value refers to one edge of the brain connectome and represents the
functional connectivity strength between two brain areas.
Panel C) shows that the resolution of layer-fMRI can add an additional dimension in connectome analyses. Since each brain area can be subdivided into multiple
layers (colored masks overlaid on the brain), each node in the whole-brain connectivity matrix represents a layer-to-layer connectivity matrix in itself. One example
node is highlighted (cyan). Here, rows and columns refer to layers. Superficial layers are depicted at the top and on the left, while the deeper layers are depicted on
the bottom and on the right. Off-diagonal elements can be used to interpret directional connectivity. High connectivity values on the bottom left suggest that the
connectivity is dominated from connections between middle/deeper layers of area 2 and superficial layers in area 1. Area 1 sends input into feed-forward layers of
area 2, while area 2 send feedback input to area 1 in the superficial layers.
Panel D–G) depict representative layer-dependent connectivities of common large networks.
Panel D) depicts the ‘visual network’. Selected correlation diagrams between V1 and V5/hMT+confirm data from Fig. 4D. Namely, V1 receives top-down feedback
in superficial layers from V5, while V5 receives bottom-up input in the middle/deeper layers (red circles).
Panel E) depicts the ‘sensory motor network’. As expected from previous layer-fMRI studies (Huber et al., 2017), the primary motor cortex receives input from the
sensory areas solely in superficial layers (dark blue ellipses).
Panel F) shows an example of the ‘default mode network’. Cyan ellipses highlight that the PCC is the only middle-layer dominated ROI. The other ROIs seem to be
more feedback driven. This can be taken as an indication that the PCC is the major hub of the ‘default mode network’, while the other areas are being passively driven
perhaps by PCC activity.
Panel G) depicts the ‘fronto-parietal network’. Orange squares depict how the superficial and deeper layers have strong within-region connectivity and weak
connectivity between each other. They almost look like two independent brain areas. This is consistent with electrophysiology data previously presented in monkeys
(Maier et al., 2010).
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e) Iterative decompartmentalization of cortical systems to investigate
the topographical working principles of macroscopic functional
networks (see Fig. 8 with caption).

f) Investigating the layer-dependent source of individual differences
with time-locked naturalistic tasks (see Fig. 9 with caption).

g) Generalized psychophysiological interaction analysis (gPPI) to in-
vestigate interactions between signals originating from different
depths (see (Sharoh et al., 2019)).

4. Open questions in layer-fMRI connectivity analyses

Figs. 2–9 strongly suggest that it is technically possible to measure
layer-dependent functional connectivity straightforwardly and reliably
across the entire brain in living humans. To use such data for routine
system neuroscience interpretations, additional aspects need to be
considered that are discussed below.

4.1. Shared sources of signal fluctuations

As in conventional functional connectivity-based analyses at lower

resolutions, ‘connectivity’ is estimated based on the temporal similarity
of functional time series. This method is prone to overestimating the
connectivity strength if multiple areas are affected by the same source
of erroneous signal fluctuations. One prominent cause of unwanted
signal fluctuation can be respiration induced signal changes, which can
introduce biases of false positive connectivity between neurally un-
connected brain areas. In layer-fMRI analyses, this can have a higher
effect in the superficial layers with a larger vascular density compared
to deeper layers with reduced vascular density. Another source of un-
wanted signal fluctuations, when estimating the connectivity of two
brain areas of interest, is a common input from a third unknown area. In
this case, the common input would induce the same fluctuations in both
ROIs and make them look more connected. Figs. 47 depict a number of
potential approaches to minimize the effect of these unwanted sources
of shared variance. One approach would be to restrict connectivity
interpretations to differential analyses. Unwanted sources of fluctua-
tions can be removed, by orthogonalizing the seed region’s time course
with an appropriate control region (Fig. 4B). Another approach of dif-
ferential layer-dependent connectivity analysis is depicted in Figs. 5
and 6. Using a template matching approach refrains from

Fig. 8. Network decomposition and sub-decomposition with iterative ICA.
This figure aims to illustrate a connectivity algorithm to investigate the submillimeter topology of common macroscopic networks.
Panel A) depicts representative ICA components in axial slices covering the sensory motor system.
Panel B) depicts the manually selected network for further decomposition.
Panel C) depicts how ICA can further decompose the selected network from panel B). The sub–components do not separate into different Brodmann areas (E.g., BA1,
BA2, BA3a/b, BA4, BA6), instead they rather separate into body part representations that span across multiple involved brain areas (see blue vs. red arrows). This is
consistent with previously shown results (Kuehn et al., 2017). The collection of four maps on the top of panel C) depict ICA maps as separate figures. The map at the
bottom depicts two of those independent components in different colors superimposed on each other. The blue and red arrows show that a red-blue pattern is visible
across sulci and gyri of BA1, BA 3b, BA 4, and BA6. This pattern looks consistent with finger representation maps of tapping induced activity (inset).
Panel D) depicts yet another iteration of sub-decomposition of the blue network from panel C). The sub–components are now at the spatial scale of the voxel size
(0.8 mm). Seven individual ICA components are depicted as individual maps at the right. The location of each component in the hand knob is highlighted with
colorful arrows. These very components are also shown superimposed to each other in an enlarged panel on the left with the same arrows. The sub-networks do not
appear to separate into different layers (E.g. input and output layers in M1 that are ≈ 1.2mm apart). Instead, they separate into columnar like subnetworks of
0.8–1.2mm distance that are consistent across layers.
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interpretations of absolute connectivity strengths. Instead, it is based on
the differential similarity, i.e. it quantifies which template correlates
stronger with the profile. Yet another approach to minimize the effect
of shared sources of unwanted variance would be to restrict inter-
pretations of layer-dependent connectivity to asymmetric off-diagonal
elements in the connectivity matrices (Fig. 7C). Common sources of
physiological noise would be symmetric to the diagonal axis in both
areas and can thus be identified and removed.

4.2. Inherent connectivity across layers

The brain is highly interconnected (Schuez and Braitenberg, 2002).
Each neuron receives input from up to 10,000 other neurons. Most
brain areas are connected to most other brain areas and all layers are
connected to all other layers (Constantinople and Bruno, 2013;
Felleman and Van Essen, 1991; Harris et al., 2019). Thus, as far as the
time scales of fMRI concerns, it can be challenging to treat different
parcels of the brain (brain areas, layers, columns) as independent en-
tities. In fact, even before the onset of the fMRI signal (500ms–600ms
after stimulus onset), the first input into a specific layer of a given brain

Fig. 9. Potential connectivity procedure to investigate the layer-dependent source of individual differences.
Panel A–B) illustrates the same movie task was used across all participants (98 HCP participants at 1.6 mm and 12 participants with layer-resolutions). This means
that movie related brain activity changes are expected to be synchronized across participants. Some synchronized activity events can be attributed to specific
semantic labels (Huth et al., 2016).
Panel C) depicts how this experimental setup is used to extract layer-dependent information of individual-differences. Time courses of 98 non-sibling HCP parti-
cipants are extracted across ROIs. Here, an example of the interparietal sulcus is depicted. These participant specific signal traces are then used as regressors in a
GLM-analysis of the submillimeter data.
Panel D) depicts individual differences of these time courses for three clusters (k-means) of participants. There are time frames, when all participants have very
similar synchronized fMRI fluctuations (pink arrow) and time frames when they are less similar (green arrow). Layer-profiles reveal that these inter-participant
differences are solely caused by superficial feedback layers. Middle feed-forward layers are more consistent across participants.
Since all participants are looking at the same movie, their retina activity is expected to be identical. In addition, the extraction of the low-level visual features in the
early visual brain areas are expected to be similar. It is not surprising that the personal experience differences of the movie must be contributing to the brain activity
further along the visual hierarchy as feedback input. Here, we focus on the interparietal sulcus because it is robustly detectable across participants and because it is
positioned relatively high in the cortical hierarchy. Thus, it presumably does not only represent low-level visual features that are expected to be independent of
participants. Instead, it is expected to be ‘cognitive’ enough (i.e. receiving high-level input or performing high level output) to also represent participant-specific
components of personal movie experiences. As part of the Fronto-Parietal-Network, this area has been suggested to be most affected by individual differences during
movie watching tasks (Finn et al., 2015; Vanderwal et al., 2017).
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area can spread the signal across all cortical depth and brain areas.
Before the fMRI signal reaches its peak amplitude (6 s–10 s after the
stimulus onset) the neural signal might have travelled to multiple other
brain areas back and forth multiple times already. While this fast in-
terconnectivity theoretically challenges the interpretability of layer-
dependent functional connectivity, it does not seem to be a limiting
factor in practice. Several potential mechanisms have been proposed,
why this might be the case. They are discussed in the following sections.

4.2.1. Mind the magnitude
While electrophysiology studies show fast neural activity propaga-

tion in the time scales of 30ms–40ms across different layers within the
same brain area (Godlove et al., 2014; Ninomiya et al., 2015), the
magnitude of the neural activity decays rapidly. The initial neural ac-
tivity in the feed-forward input layers IV of the primary visual cortex is
by far the strongest activity. The magnitude of the further propagated
activity in superficial and deeper layers is significantly lower as about
25 %–40 % (Ninomiya et al., 2015). Even though inter-layer con-
nectivity can contribute to the overall signal, it is often negligible in
magnitude to the original initial layer-specific input.

4.2.2. The neuro-vascular coupling favors the first input
Previous time-resolved layer-fMRI studies in animals have shown

that the onset of the fMRI signal to secondary connected layers has a
surprisingly small amplitude and is surprisingly late. It has been shown
with line scanning in the rat barrel cortex that the feed-forward induced
fMRI signal starts rising in input layer IV ≈ 500ms after the stimulus
onset. fMRI activity in secondary connected layers II/III is delayed by
another ≈ 300ms–400ms and has a much smaller magnitude (Yu
et al., 2014). The transition time that it takes until the secondary
connected layers show fMRI signal change is longer than what is ex-
pected from the electrophysiology (Godlove et al., 2014; Ninomiya
et al., 2015). Similarly, recent layer-dependent work across multiple
areas in the sensory system has revealed that the fMRI onset of secon-
darily connected areas can be delayed by up to several seconds (Jung
et al., 2019). Based on this empirical evidence, it has been hypothesized
that the fMRI response might be more susceptible to the initial input of
a brain area. Secondary activity in inter-connected layers might need
more time to accumulate sufficient neural activity until the fMRI signal
reaches a significant increase.

4.2.3. Functional connectivity is not the same thing as structural
connectivity.

Only because the layers are structurally connected, doesn’t guar-
antee that these connections functionally are engaged. It usually de-
pends on the content of the neural activity fluctuation. In the context of
conventional fMRI resolutions, the difference between structural and
functional connectivity has been extensively discussed and widely es-
tablished (Bullmore and Sporns, 2009; Friston, 2011). While functional
connectivity depends on structural connectivity, structural connectivity
is not a guarantee of functional connectivity. For example, at the spatial
scale of large brain areas, it is well established that V1 and V5 are
highly interconnected. However, the engagement of this connectivity
depends on the motion energy of the stimulus. Thus, when the visual
stimulus contains a lot of motion components, the connection is more
engaged as opposed to static stimuli. Thus, despite the high structural
connectivity between V1 and V5, in resting-state analyses, these areas
can be investigated as two separate entities. This reasoning can be ex-
tended from the scale of Brodman areas to the scale of layers too (Sotero
et al., 2010). Despite the fact that individual layers in every column
have many structural connections, layer-specific functional connections
can still be extracted from isolated cortical depths (Fig. 3–7).

4.3. Sampling speed of fMRI fluctuations compared to timing of neural
fluctuations

Meaningful neural activation modulations are happening across a
wide range of temporal frequencies. While depth-dependent electro-
physiology studies often focus on the modulation of neural activity,
connectivity and phase amplitude coupling changes in the range of
50ms–300ms (Godlove et al., 2014; Sotero et al., 2015), optical ima-
ging studies examine meaningful resting-state connectivity across from
the regime of 100ms up to the 10 s regime (Ma et al., 2016). Due to the
hemodynamic delay of the vascular response, conventional resting-state
fMRI focuses on signal fluctuations in the time frame of 6−10 s, im-
plying that fMRI is usually only sensitive to a small frequency window
of a wide spectrum of neural fluctuations.3 The acquisition approaches
for whole brain layer-dependent connectivity analyses discussed in
Figs. 1C, 3, and 7, are optimized for this temporal frequency window of
≥10 s. Since resting-state fMRI fluctuations follow the pattern of scale
free dynamics (He, 2011), the focus on this frequency window is ex-
pected to be largely representative of functional connections at any
temporal scales. Future work in combining the MAGEC-VASO approach
with acceleration in both phase-encoding directions (Huber et al.,
2020a) will become important to confirm this temporal invariance.

4.4. Lack of universal layer-dependent models

The seminal meta-study from Felleman and van Essen (Felleman
and Van Essen, 1991) summarizes the layer-dependent feed-forward
connections in layer IV vs. feedback connections mostly in superficial
and deeper layers of the visual system. This simplified model is often
considered to be canonical and evident across the entire neocortex
(Douglas and Martin, 2004), and thus, provides the basis of many layer-
fMRI studies to date. The universal applicability of this simplified layer-
dependent model, however, has been recently called into question
(Constantinople and Bruno, 2013; Harris et al., 2019). Recent neuroa-
natomical studies point to a more complicated layout of layer-depen-
dent hierarchy-defining connections than previously assumed. Future
insight of appropriate layer-dependent models needs to be taken into
account (Markov and Kennedy, 2013) when interpreting layer-depen-
dent functional connectivity data. In any case, the discovery of more
complex layer-specific pathway-models of inter-layer communication
further underscores the importance of high-resolution laminar fMRI for
elucidating principles of the cortical connectome. For more compre-
hensive discussions about the lack of accurate neural models for layer-
fMRI interpretation, please see the discussion section of the layer-fMRI
review article by Stephan et al. (2019).

4.5. Unconfirmed scalability, optimizability, and efficiency of the discussed
connectivity methods

The field of layer-fMRI connectivity is still emerging, and most
methods-focused UHF research labs are still in the process of stream-
lining layer-fMRI connectivity tools for their neuroscience colleagues.
The working principle of the connectivity analysis strategies that are
conceptually illustrated in Figs. 2–9 are reviewed here as a set of hy-
pothetical research tools that will possibly shed new light into the
layerspecific organization of the cortex in future research. Different to
conventional fMRI analysis tools, such as block-designed GLM and
resting-state correlation analyses, these tools did not yet experience a
decade-long evolution of optimizations and validations.

3 For discussions of fMRI studies that focusing on faster time scales, please see
other articles in this special issue.
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4.6. Biases of microvascular density

VASO fMRI is just one method of a large zoo of fMRI acquisition
sequences that have been proposed for application of layer-fMRI, in-
cluding: GE-BOLD, SE-BOLD, GRASE, ASL, etc. All of them (including
VASO) are based on neurovascular coupling and can only capture fMRI
signal changes in vascularized tissue. This means that, whenever a
voxel has a higher vascularization and a higher microvascular density
compared to other voxels, it will exhibit a higher fMRI responsiveness
(a.k.a. vascular reactivity). As a result, layers with a higher vascular
density are expected to be biased toward a larger fMRI signal change,
for any task conditions. Thus, independent of the localization benefits
of VASO compared to other methods, the layer-dependent micro-
vascular density can introduce biases in layer-profiles. One extreme
example would be layer I. Since layer I is almost free of

microvascularization (Duvernoy, 1981; Weber et al., 2008), none of the
layer-fMRI sequences (including VASO) is expected to capture mean-
ingful layer-specific functional signal from layer I. In other layers
(II–VI), the VASO bias of layer-dependent vascular density is expected
to be negligible for the majority of cases. In contrast to the large diving
veins that bias the GE-BOLD signal, the VASO-relevant microvascular
density is rather homogeneous across cortical depth in most brain areas.
As such, in the extra striate cortex, variations of the vascular density are
usually smaller than 15 % across layers II–VI (Kennel et al., 2017;
Weber et al., 2008). There are exceptions, however. In V1 and S1, the
microvascular density can be as much as 25 % higher in layer IV
compared to other layers (II, III, V, and VI), which can eventually in-
troduce biases in VASO profiles.

Due to these variations in layer-dependent microvascular density, it
can be challenging to interpret single-condition layer-profiles without

Fig. 10. Popularity of human layer-fMRI VASO across recent years and around the globe.
Panel A) depicts the frequency of peer-reviewed journal publications using VASO. In the decade following its discovery in 2003, many researchers focused on low-
resolution VASO studies to fully characterize the working principle of its functional contrast. Only with the advent of submillimeter imaging protocols in 2014/2015,
VASO found it’s ‘killer application’: layer-fMRI. 2019 was the first year, when layer-fMRI became the sole driver of VASO fMRI. An itemized list of all layer-fMRI
VASO studies can be found at https://layerfmri.com/VASOworldwide.
Panel B) depicts the overall trend of layer-fMRI for reference, including all fMRI contrasts (VASO, GE-BOLD, SE-BOLD, GRASE, ASL, etc.). Note the different scaling of
the y-axis compared to panel A.
Panel C) depicts the distribution of research labs that use layer-fMRI VASO. The vast majority of layer-fMRI VASO research is being conducted in Europe, followed by
Asia. For an itemized list of all layer-fMRI VASO users with references and example data, see https://layerfmri.com/VASOworldwide.
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reference conditions. This challenge can be mitigated by introducing
the control-analysis steps described in the section shared sources of signal
fluctuations. Alternatively, this bias can be mitigated by explicitly
measuring the layer-dependent vascular reactivity, e.g. by means of gas
calibrations, by means of resting-state, or by means of the residuals of
the task design (Guidi et al., 2016, 2020).

4.7. Limits of layer resolvability

Cytoarchitectonically defined cortical layers can be considerably
thinner than the resolutions of any of the data reviewed here.
Individual cortical layers can have thicknesses between 100 μm and
800 μm. Until now, it is not fully understood what the ultimate limit of
the localization specificity in blood volume-based layer-fMRI will be.
While animal studies have shown that layer-dependent CBV responses
can be locally precise to an accuracy level of 200 μm in the rat olfactory
bulb (Poplawsky et al., 2019), the best current spatial resolution of
human layer-fMRI with VASO is ≈ 500 μm (Fig. 2). Thus, it is im-
portant to note that the layer-specific connectivity tools discussed here,
do not represent activity of individual neuron clusters in isolated layers
with Nyquist sampling across cortical depth. Instead, the findings on
directional connectivity reviewed here are based on depth-specific
signals variations that represent variable super-positions of neural ac-
tivity from multiple cytoarchitectonically-defined cortical layers.

5. Accessibility and usability of layer-dependent CBV-fMRI

In the past 5 years, the number of layer-fMRI applications with
VASO has multiplied faster than any other layer-fMRI acquisition
methodology (Fig. 10A). Since the advent of human layer-fMRI VASO in
2014–2015, layer-fMRI has become the sole driver of VASO-fMRI in

humans. While the number of layer-fMRI VASO studies is still building
up, there are 25 published peer-reviewed journal articles on layer-fMRI
VASO until today (see Fig. 10A). This is a significant portion of the
entire field of layer-fMRI (Fig. 10B). While most of the VASO sequence
development has been conducted in a handful of research labs only
(Johns Hopkins, Max-Planck Leipzig, SFIM at NIH, MBIC in Maastricht,
and DZNE in Bonn), the layer-fMRI user-base has significantly extended
beyond these sites. Fig. 10C depicts that there are currently more than
30 labs around the globe that are using layer-fMRI VASO (effective
January 2020). Most of these layer-fMRI VASO labs are in Europe,
followed by Asia. Despite the high 7 T scanner density in North
America, the number of layer-fMRI VASO labs in USA is still emerging.

5.1. Alternative fMRI methods to measure layer-dependent connectivity

The connectivity analysis methods reviewed here, happen to be
exclusively illustrated with example data using VASO. We believe,
however, that the discussed connectivity tools are generally applicable
to any fMRI acquisition contrast that can provide whole brain layer-
specific signals without the sensitivity of macro-veins. Until today,
VASO just happens to the only acquisition sequence that can provide
such signals non-invasively in humans. Other promising candidate
methods that might also be optimized in the future research to be
usable for layer-dependent connectivity analyses are briefly discussed
below4:

a) Model-based GE-BOLD signal deconvolution: Having reasonable

Fig. 11. Comparison of VASO with various GE-EPI and SE-based acquisition method.
Panels A-F) depict the MRI sequences that are compared: VASO, GE-BOLD EPI, SE-BOLD EPI, T1ρ-prep TFE, T2-prep TFE, diffusion-weighted T2-prep TFE.
Panels G-L) depict the raw image with functional activity elicited by finger tapping overlaid (12min experiment). VASO (panel G) and SE-EPI (panel I) show
indications of a double- layer response (black arrows).
Panel M) depicts the respective layer profiles of the compared imaging contrasts.
Panel N) summarizes the respective sensitivity and localized specificity of all contrast mechanisms. Here, specificity and sensitivity are approximated by means of the
profile slope and activity z-score. For depiction of alternative approximations, see (Huber et al., 2017). Panel N shows that the fMRI contrasts typically exhibit either
high sensitivity or high specificity, but not both (dotted line). In this form of comparing the different methods, VASO does not fall on this line. VASO shows a
compromise of moderate sensitivity and moderate specificity.
Panel O) depicts the expected vascular origin of the respective methods.

4 For more detailed discussions of alternative approaches, see other articles in
this special issue.
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assumptions of the biophysical properties of the layer-dependent
vascular architecture, the unwanted venous drainage effect in GE-
BOLD can be accurately estimated and cancelled out from ROI-
specific GE-BOLD layer-profiles (Havlicek and Uludag, 2019;
Heinzle et al., 2016; Markuerkiaga et al., 2016). As soon as this
approach will be advanced to also work on a voxel-by-voxel level, it
might also be able to provide layer-specific data for the connectivity
analyses too.

b) SE-BOLD: Spin-echo EPI has been shown to have an improved lo-
calization specificity compared to GE-EPI for applications in layer-
fMRI (Goense and Logothetis, 2006; Zhao et al., 2006), but are
limited in coverage, energy deposition and acquisition speed
(Koopmans and Yacoub, 2019). A comparison of various spinecho
based contrasts for small FOV acquisition protocols are compared to
VASO in Fig. 11. Recent advancements of those methods using
multisection excitation by simultaneous spin-echo interleaving
(MESSI) with complex-encoded generalized slice dithered enhanced
resolution (cgSlider) simultaneous multislice (Feinberg et al., 2010,
2018) echo-planar imaging (Han et al., 2019) can mitigate these
limitations and bring SE-BOLD methods closer to high-resolution,
whole brain protocols. And thus, they might also become usable for
whole brain connectivity analyses.

c) 3D-GRASE: 3D-GRASE (Feinberg et al., 2008; Olman et al., 2012;
Oshio and Feinberg, 1991) has been shown to have an improved
layer-dependent localization specificity compared to other BOLD
contrasts (De Martino et al., 2013; Kemper et al., 2015). In most
layer-dependent applications, however the imaging coverage in the
segment direction did not exceed more than 12-18 slices. Recent
advancements with using variable flip angles (Kemper et al., 2016)
and compressed sensing (Park et al., 2019) strategies can mitigate
the coverage limitations to some extent.

6. Conclusion

This article provides an overview of submillimeter fMRI metho-
dology to map layer-dependent functional connectivity across brain
areas. With recent sequence advancements in fMRI contrast generation
and readout strategies, it is possible to overcome previous limits of
resolution, coverage, and venous contaminations. The layer-fMRI tools
reviewed here provide a starting point for mapping layer-specific con-
nections across the entire brain, in the context of cognitive neu-
roscience. Layer-fMRI using VASO represents a paradigm shift that
promises to transform the methods driven field of layer-fMRI to the
application domain and will make layer-fMRI a reliable tool of neu-
roscience in two important aspects. First, the ability to image the entire
brain with sufficient sensitivity on UHF scanners around the world
makes layer-fMRI tools applicable for neuroscience cortical circuitry
questions without the need of extensive MR-physics expertise.
Secondly, many influential network theories of brain function that posit
distinct connection across individual cortical layers (e.g., predictive
coding (Stephan et al., 2019), hierarchical processing streams) may
now be directly tested in humans. This will allow a large field of re-
searchers to investigate mechanisms behind any number of neu-
ropsychological and psychiatric phenomena, such as selective attention,
impulse control, learning, adaptation, hallucinations, cognitive control,
conscious perception (Schneider et al., 2019), and multi-sensory in-
tegration (Lawrence et al., 2019), to name a few.

7. Data and software availability

Anonymized MRI data that are presented in this article can be
anonymously downloaded from OpenNeuro. Volume maps of data
presented in Fig. 2 can be downloaded at http://doi.org/10.18112/
openneuro.ds002274.v1.0.2 (go to actualfiles/V1_LAYERING). The raw
and processed data of multiple participants of the study shown in Fig. 4
and 6 are available here: www.doi.org/10.18112/openneuro.

ds001547.v1.1.0. Data shown in Fig. 5 and 8 are publicly available
from previous published studies (Huber et al., 2017). Underlying tables
and lists used for Fig. 10 are available on https://layerfmri.com/
VASOworldwide. All custom written software (source code) and eva-
luation scripts are available on Github (https://github.com/layerfMRI/
repository). The authors are happy to share the MAGEC-VASO 3D-EPI
MR sequence upon request via a SIEMENS C2P agreement. A complete
list of scan parameters used in this study is available on Github (https://
github.com/layerfMRI/Sequence_Github). The source code of the layer-
specific analysis software is available on Github (https://github.com/
layerfMRI/LAYNII) with analysis pipelines explained on www.
layerfmri.com.

All stimulation presentations were implemented in Psychopy and
can be downloaded here: https://github.com/layerfMRI/Phychopygit.
The collection of movie clips is available on https://layerfmri.page.
link/7Tmovie.
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