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Although we must experience our lives chronologically, storytellers often manipulate the order in which they relay events. How the brain
processes temporal information while encoding a nonlinear narrative remains unclear. Here, we use functional magnetic resonance
imaging during movie watching to investigate which brain regions are sensitive to information about time in a narrative and test
whether the representation of temporal context across a narrative is more influenced by the order in which events are presented or
their underlying chronological sequence. Results indicate that medial parietal regions are sensitive to cued jumps through time over
and above other changes in context (i.e., location). Moreover, when processing non-chronological narrative information, the precuneus
and posterior cingulate engage in on-the-fly temporal unscrambling to represent information chronologically. Specifically, days that
are closer together in chronological time are represented more similarly regardless of when they are presented in the movie, and this
representation is consistent across participants. Additional analyses reveal a strong spatial signature associated with higher magnitude
jumps through time. These findings are consistent with prior theorizing on medial parietal regions as central to maintaining and
updating narrative situation models, and suggest the priority of chronological information when encoding narrative events.

Key words: fMRI; narratives; naturalistic stimuli; representational similarity analysis; temporal processing.

Introduction
Narratives are not bound by time. In real-world storytelling, we
often communicate events in a non-chronological fashion. For
example, when we talk about the events of our day with a friend,
we may realize we missed a key detail and go back to fill that
gap. Or when we meet someone new, we learn about their history
through stories about different times in their life. Sometimes,
such as in literature or film, events are presented out of order for
dramatic effect (i.e., in medias res).

Because nonlinear narratives stand in contrast to the purely
chronological way we experience our daily lives, making sense
of them likely requires different or additional mental processing.
Indeed, prior work suggests that we default to a chronological
interpretation of events such that we assume events occur in
the order they are presented, and events that are out of order
induce slower reading and reaction times as well as decreased
memory accessibility (Zwaan 1996; Claus and Kelter 2006; Briner
et al. 2012; Xu and Kwok 2019). Notably, there is evidence that
the implied time between events influences encoding such that
people are slower to process higher magnitude jumps through
time (Zwaan 1996).

To partially ease this processing burden, when we commu-
nicate events in a non-chronological fashion, we often use
explicit temporal cues (e.g., “last week,” “earlier today,” or “several
years ago”). These cues provide the necessary information for
the listener to infer the relationship between events, such as
their causal structure, which is key to understanding narratives

(Zwaan et al. 1995; Zacks and Tversky 2001; Whitney et al. 2009;
Song, Park, et al. 2021b). Yet while past behavioral and brain
imaging research has demonstrated the importance of temporal
cues and context for structuring and organizing events in memory
(Speer and Zacks 2005; Clewett and Davachi 2017; Cohn-Sheehy
and Ranganath 2017), less is known about how a nonlinear
narrative is processed in real time (“encoded,” in memory terms)
from a neural perspective. How does the brain represent nonlinear
narratives during ongoing experience of the narrative?

Several candidate brain regions may be sensitive to temporal
cues in a narrative context. Regions of the medial temporal lobe,
such as the hippocampus and parahippocampal cortex, have long
been associated with processing time and space (Kragel et al.
2015; Ranganath and Hseih 2016; Milivojevic et al. 2016). Parietal
regions, including the posterior cingulate, precuneus, and angular
gyrus, have also been implicated in time orientation and memory
for time (Inhoff and Ranganath 2017; Skye et al. 2022). Impor-
tantly, these regions overlap with default mode regions associated
with processing temporal and other types of context in paradigms
using narrative and video stimuli (Whitney et al. 2009; Tylén et al.
2015; Chen et al. 2016; Chen et al. 2017; Kauttonen et al. 2018;
Foudil et al. 2020; Reagh and Ranganath 2021).

Here, our aim was to elucidate how the brain uses temporal
cues to encode a nonlinear narrative. We hypothesized that tem-
poral cues prompt an “unscrambling” process in which events are
reorganized into their chronological order on the fly (i.e., while
experiencing the narrative). To effectively test this hypothesis,
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we needed a nonlinear narrative stimulus with explicit temporal
cues. To this end, we used a functional magnetic resonance imag-
ing (fMRI) dataset from the Naturalistic Neuroimaging Database
(Aliko et al. 2020), in which 20 participants were scanned while
watching the movie 500 Days of Summer, which follows two roman-
tically involved individuals through 500 days of their relationship.
The movie jumps forward and backward through time between
different stages of the relationship, using written time cards (days
1–500) at the start of each scene to signal to viewers where they
are in the narrative timeline. Using both univariate and multi-
variate approaches, we identified a set of brain areas, including
parietal regions, that are sensitive to these temporal cues over
and above other narrative shifts (i.e., changes in location). We
found evidence that regions of the medial parietal lobe represent
narrative time chronologically, despite events being presented out
of order, and this chronological representation is common across
participants. Furthermore, we found evidence that many of these
same regions carry a unique spatial signature of activity to higher
magnitude jumps through time. Overall, results suggest that the
brain uses temporal cues during a nonlinear narrative to actively
unscramble events in order to encode them in their chronological
order.

Materials and methods
Participants
Our analyses focused on 20 participants (10 females; mean
age = 27.7 years, age range=19–53 years) from the publicly avail-
able Naturalistic Neuroimaging Database (https://openneuro.
org/datasets/ds002837/versions/2.0.0) who watched the movie
500 Days of Summer (duration ∼91 min), which they had not
seen previously (Aliko et al. 2020). Participants were screened for
MRI safety and met inclusion criteria such as right-handedness,
English as their first language, no history of psychiatric or
neurological illness, no medication, no hearing impairment, and
normal or corrected vision. The study was approved by the local
institutional review board.

Stimulus and procedure
Participants attended 2 sessions scheduled on separate days: one
session devoted to behavioral questionnaires and one session
devoted to a movie-watching fMRI scan. We focus here on
the fMRI data only. Functional scans during movie-watching
were conducted with as few breaks as possible. Following
scanning, participants filled out other questionnaires related
to the experience they had watching the movie (data not used
here).

Participants watched the movie 500 Days of Summer. We chose
to use data from this stimulus for its unique nonlinear narra-
tive structure that makes it useful for studying temporal pro-
cessing during narrative encoding (Grall and Finn 2022). The
movie follows two romantically involved individuals, Tom and
Summer, through 500 days of their relationship. The nonlinear
structure of the movie means that the scenes are not presented
in chronological order and that the movie jumps forward and
backward through time between different stages of the relation-
ship. Written time cards with the upcoming day (1–500) of the
relationship occur throughout the movie at these time jumps,
which signal to viewers where they are in the narrative timeline.
Notably, the movie is not completely scrambled: presentation
and chronological order are correlated across days (Spearman’s
ρ = 0.76, p < 0.001) such that days that occur later in chronolog-
ical time also tend to be presented later in the movie (Fig. 1A).

The movie also contains several locations that are repeatedly
revisited throughout the movie (e.g., the office where both Tom
and Summer work, Tom’s apartment, a particular park bench,
etc.). We leveraged these recurring locations to test how the brain
represents spatial context in a narrative as a complement and
partial control for our investigations of temporal context.

Data acquisition and preprocessing
Functional and anatomical images were obtained on a 1.5T
Siemens MAGNETOM Avanto with a 32-channel head coil. Whole-
brain images were acquired (40 slices per volume, 3.2 mm
isotropic resolution) with a multiband echo-planar imaging (EPI)
sequence (repetition time (TR) = 1 s, echo time (TE )= 54.8 ms,
flip angle (FA )= 75 ◦) with 4× multiband factor and no in-plane
acceleration. For each participant, 5470 brain volumes were
collected, corresponding to a movie runtime of 01:31:10. There
was at least one break during the movie for each participant
due to the software limitations in this EPI sequence of 1 h of
consecutive scanning.

Data were preprocessed using AFNI (Cox 1996) including
despiking, slice-time correction, coregistration, and nonlinear
alignment to the MNI152 template brain. All analyses were
conducted in volume space and projected to surface space for
visualization purposes only. Time series were smoothed with
isotropic full-width half-maximum of 6 mm and detrended
with regressors for motion, white matter, cerebrospinal fluid,
and run length. Timing corrections were applied to account
for breaks in the moving viewing, and artifacts detected using
spatial independent component analysis were regressed out.
For more details on data acquisition and preprocessing, please
refer to Aliko et al. 2020. Last, we functionally aligned these
preprocessed data using shared response modeling (Chen et al.
2015) as implemented in BrainIAK (Kumar et al. 2021). First, we fit a
model to capture the reliable whole-brain responses to the movie
across participants in a lower dimensional feature space (number
of features = 50). We then applied this model to reconstruct the
individual voxelwise time courses for each participant. The entire
movie time series from all participants was used to train the
model, which was then applied back to each full individual
time series. This procedure serves as an additional denoising
step and makes spatiotemporal patterns more consistent across
participants.

fMRI data analysis
Estimating the effect of a nonlinear narrative: Univariate
analyses
Following preprocessing, we took a general linear model (GLM)
approach using AFNI (3dDeconvolve and 3dttest++ functions) to
estimate the effect of time jumps and location changes for each
subject with subsequent t-tests for inference at the group level
(Friston et al. 2002). All first-level models included continuous
regressors for luminance and audio root mean square to account
for potentially confounding low-level stimulus features, both of
which were derived from the movie using the pliers toolbox for
automatic feature extraction (McNamara et al. 2017). For our
primary first-level model, we wanted to identify brain regions
active in response to jumps through narrative time. Therefore, we
created an event-related regressor that marked all points in the
narrative where there is a jump from one day-scene to another
on the timeline of 500 days. “Day-scene,” here, refers to any
unique instance of a day as presented on the timeline, whereas
“day” refers to the point in the timeline. For example, “Day 488”
appears twice during the movie and represents 1 day, but each
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Fig. 1. Nonlinear narrative structure of the stimulus. A) The nonlinear timeline of 500 Days of Summer depicting all day-scenes and day-scene jumps
included in our analyses. This visualization uses the idea of story curves to compare and communicate the order in which events are narrated in the movie
(presentation order) versus the order in which they actually occurred (chronological order; Kim et al. 2017). B) The distribution of jump magnitudes,
visualized in terms of raw magnitude values (number of days between consecutive day-scenes) and log-transformed magnitude values.

instance that day is presented constitutes a distinct day-scene.
The movie contains 37 total day-scenes; we used n = 34 here (2
excluded for insufficient length and one excluded because the
first 12 s contained brief, uncued childhood flashbacks, muddling
its assignment to a particular place in the timeline). Each jump
was modeled as an event lasting 1 s (1 TR) because this duration
roughly corresponds to the length of time that the cue card is on
the screen.

Importantly, time jumps between day-scenes are also associ-
ated with visual discontinuities (i.e., screen cuts) and changes
in location in the movie. To isolate the effect of time jumps, we
created another event-related regressor that marked points in the
narrative where there is a change in location that occurs within
a day-scene, i.e., location changes that are divorced from cued
jumps in the timeline (also modeled as 1 s [1 TR] in duration
since these are instantaneous scene cuts). By contrasting day-
scene jumps against location changes within day-scene, we can
identify regional brain responses that are particularly sensitive
to jumps across time over and above changes in location. This
contrast also controls for the influence of low-level scene cuts,
which are present for both types of jumps. With this first-level
model output, we conducted one-sample t-tests to investigate
the group-level effect of day-scene jumps against baseline and
location changes within day-scene against baseline. We then
investigated the contrast between day-scene jumps and location
changes within day-scene at the group level using paired t-tests
(within-subject). All voxelwise GLM results are shown following
correction for multiple comparisons using false discovery rate

(FDR, q < 0.05) and thresholded at a nominal cluster size of ≥20
voxels for visualization.

Estimating the effect of a nonlinear narrative:
Within-subjects multivariate (pattern similarity)
analyses
To examine how relationships across events are encoded during a
nonlinear narrative, we used representational similarity analysis
(Fig. 2; Kriegeskorte et al. 2008). We constructed two hypothesized
models representing possible relationships between day-scenes
in the movie according to either (i) the order in which those
day-scenes were presented in the movie (presentation order) or
(ii) the order in which those day-scenes actually occurred in the
timeline (chronological order). For both models, we calculated
similarity values based on day-scene ranks rather than raw day
numbers to preserve an even distribution of distances between
days. With these two input vectors of day-scene ranks (one reflect-
ing the presentation order of day-scenes and the other reflecting
the chronological order of day-scenes), we applied a “nearest-
neighbors” approach (Finn et al. 2020) by taking the difference
between each pair of day-scene ranks and inverting the values for
ease of interpretation such that higher similarity scores between
day-scenes correspond to pairs where we expect a higher correla-
tion between neural representations. The two resulting temporal
model matrices offer the following competing predictions: (i) day-
scenes that are presented consecutively (regardless of when they
occurred chronologically) are represented more similarly than
those that are more distant in presentation order, or (ii) day-scenes
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Fig. 2. Overview of within-subject pattern similarity analysis to investigate neural representations of temporal and spatial contexts. A) Models of two
competing representations of time across a narrative. For the presentation order model, the day-scenes that are closer together as they are presented
in the movie are predicted to be represented more similarly than day-scenes presented more distally. For the chronological order model, day-scenes
that are closer together in chronological time are predicted to be represented more similarly than day-scenes that are farther apart in chronological
time. B) Predicted representation of locations in the narrative such that each location is similar to itself when revisited throughout the story. C) For each
region and day-scene, voxelwise data were averaged over TRs closely following each jump in time and then these spatial patterns were correlated across
day-scenes. This matrix was then correlated with each model matrix (A, B; excluding the diagonal) to derive RSA ρ-values for each participant for each
ROI. D) Regions of interest from the Neurosynth parcellation including (1) dorsomedial prefrontal cortex (dmPFC), (2) ventromedial prefrontal cortex
(vmPFC), (3) superior temporal sulcus (STS), (4) Temporoparietal junction (TPJ), (5) precuneus/posterior cingulate cortex (prec/pCC), (6) posterior portion
of the posterior cingulate cortex (post-pCC), (7) hippocampus, (8) parahippocampal cortex (PHC), (9) primary auditory cortex (A1), and (10) primary visual
cortex (V1). A1 and V1 were analyzed as control regions in which we would not necessarily expect to see an influence of temporal context on neural
representations.

that are closer together chronologically (regardless of when they
are presented in the movie) are represented more similarly than
those that are more distant in chronological order (Fig. 2A).

We calculated neural pattern similarity within 10 a priori
selected regions of interest (ROIs) derived from the 50-node
Neurosynth parcellation (de la Vega et al. 2016; Fig. 2D). These
ROIs represent regions previously associated with processing
temporal and/or spatial context and/or integrating narrative
information across long timescales and include the dorsomedial
prefrontal cortex, ventromedial prefrontal cortex, superior
temporal sulcus, temporoparietal junction, posterior cingulate,
precuneus, parahippocampal cortex, and hippocampus. We
biased our choice of ROIs toward regions associated with the
default mode because of this network’s known role in processing
naturalistic narratives, although we note that other areas of
heteromodal association cortex may also play a role in temporal
processing (e.g., superior parietal lobe, dorsolateral prefrontal
cortex). We also included ROIs in the primary auditory cortex and
primary visual cortex as control/comparison regions.

We focused on the data corresponding to the 12 s immedi-
ately following each day-scene jump (TRs 3–15, where TR = 1 s;

starting at TR 3 to discard the timecard shown on screen during
these jumps). We used this data segment for two reasons: one,
because we are interested in brain responses to jumps across time,
using data from early in the day-scene better isolates potential
unscrambling processes evoked by the jump; and two, taking a
matched amount of data from each day-scene removes potential
confounding effects of the (often substantial) differences in total
duration across day-scenes. (Twelve seconds, or 15 s/TRs following
the end of the cue card, corresponds to the length of the shortest
day-scene.) For each participant, we averaged voxelwise activity
across these TRs for each day-scene to get a vector representing
voxel activity values associated with adjusting to that day in
the timeline. We then estimated neural pattern similarity matri-
ces by correlating (Pearson’s r) voxelwise values between each
pair of day-scene vectors. We then correlated (Spearman’s ρ)
the upper triangle (excluding the diagonal) of each participant’s
neural similarity matrix with the upper triangle of each model
matrix (presentation or chronological order) to derive the ultimate
representational similarity correlation value (Fig. 2C). This within-
subjects procedure was repeated for each ROI, resulting in 20 rep-
resentational similarity values (1 per participant) for each model
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for each ROI. Each distribution of 20 values was submitted to a
one-tailed, one-sample t-test to determine whether the represen-
tational similarity with that model for that ROI was significantly
greater than zero. For all ROI t-statistics that emerged as signif-
icant within model (FDR, q < 0.05; corrected for 10 comparisons
across ROIs), we further tested whether there was a significant
difference between presentation and chronological order models
using paired (within-subject) t-tests.

We followed a similar procedure to examine the representation
of spatial locations across the narrative. To do this, we identified
all locations in the movie that were visited at least twice and
on two separate day-scenes and their corresponding TRs (n = 11
unique locations). We refer to each unique visit to a location as
a location-scene, similar to our day-scene distinction described
above. From this list, we created a binarized model matrix which
predicts that scenes taking place in the same location are repre-
sented more similarly than scenes taking place in different loca-
tions (Fig. 2B). Using the same ROIs as above, we calculated neural
pattern similarity by taking the voxelwise average of all TRs
associated with each location-scene and correlating (Pearson’s r)
these voxelwise values between each location-scene pair. Then,
we correlated (Spearman’s ρ) the upper triangle of this location-
based neural similarity matrix with the upper triangle of the
location model matrix for each participant and ROI. The distribu-
tions of correlation values for each ROI (n = 20; 1 per participant)
were submitted to one-sample t-tests, and all estimates were FDR
corrected for multiple comparisons across 10 ROIs. To compare
the relative strength between models to predict representational
similarity, we ran a linear mixed-effects model with “model” (i.e.,
presentation order, chronological order, spatial location) as the
fixed factor and participant as a random factor. All post-hoc
comparisons were FDR-adjusted.

Estimating the effect of a nonlinear narrative:
Across-subjects multivariate (pattern similarity)
analyses
To determine whether neural representations of a nonlinear
timeline are similar across participants, we conducted an across-
subjects analysis that accounts for relationships across days
using the following steps (Fig. 3). First, for each ROI, we used the
average of TRs 3–15 after each day-scene jump in each participant
(the same averaging mentioned above) to build a voxel-by-
day-scene-by-participant array. Next, for each participant, we
correlated (Spearman’s ρ) each day-scene vector with the average
of all other participants’ day-scene vectors following a leave-one-
out procedure. Therefore, for each participant day-scene, there
are 34 correlation values representing the similarity between that
participant’s day-scene representation and the group-average
day-scene representation of all day-scenes.

If there is a common signature of either presentation order
or chronological order across participants, we would expect that,
as the distance between days increases, the correlation between
individual and group-average spatial day-scene representations
should decrease. (This is the same idea as the within-subject anal-
ysis above, but this time in a shared, across-subject context.) To
then determine whether there is a stronger shared representation
of presentation or chronological order, we correlated day-scene
distance values (either presentation or chronological) with the
ρ-values representing day-scene similarity between each partici-
pant and the average of all other participants. We calculated these
for each participant and each day-scene, which resulted in corre-
lation values (34 per participant) that summarize the relationship
between across-subject day-scene spatial similarity and temporal

distance. We submitted these summative correlation values to
an LME model with participant and day-scene index specified as
random factors to determine which distance order (presentation
or chronological) is a stronger predictor of cross-subject pattern
similarity.

Encoding nonlinear timeline jump magnitude:
Univariate and multivariate analyses
Given prior evidence suggesting that jump magnitude plays a
role in how we process nonlinear timelines (Zwaan 1996), we
conducted an additional univariate analysis to assess whether
brain activity varies based on jump magnitude. In the context of
our narrative stimulus, jump magnitude refers to the temporal
distance between day-scene jumps such that a jump from day
1 to day 290 has a higher magnitude (289) than a jump from
day 2 to day 10 (8). We re-ran the previously mentioned first-
level model but with day-scene jump as an amplitude-modulated
regressor, which allowed us to determine whether brain activity
at day-scene jumps scales with jump magnitude. It is important
to note that the distribution of jump magnitudes is uneven such
that there are few large jumps and many smaller jumps (Fig. 1B,
left). Moreover, we do not expect brain activity to scale linearly
with jump size such that a jump of 289 days will correspond to a
289 times higher increase in brain activity amplitude compared to
a jump of 1 day. Therefore, we log-transformed the distribution of
jump values for both this analysis and the following multivariate
analysis (Fig. 1B, right). Again, all voxelwise GLM results are shown
following correction for multiple comparisons using FDR (q < 0.05)
and thresholded at a nominal cluster size of ≥20 voxels for
visualization.

We also tested whether the effect of jump magnitude manifests
in multivariate patterns of spatial activity (rather than in activity
amplitude as tested by the univariate analysis described above).
There are two general possibilities for how multivariate activity
patterns could encode jump magnitude. First, there could be a
distinct influence of larger time jumps (as compared to smaller
time jumps) as participants reorient themselves to a distal portion
of the narrative timeline. This possibility could in turn manifest
as either (i) a shared spatial signature for large jumps (with more
variability among smaller jumps) or (ii) an idiosyncratic signature
for each particular large jump (with a shared spatial signature for
smaller jumps). Both of these possibilities can be tested simulta-
neously with a model that incorporates absolute jump magnitude
into the calculation of pairwise similarity values. (This class of
models has been referred to as “Anna Karenina” models; Fig. 7B,
right; Finn et al. 2020). Specifically, for each pair of day-scene
jumps, we calculated the average of their jump magnitude ranks.
This resulted in a model that predicts that larger day-scene jumps
are represented more similarly within an ROI, while smaller day-
scene jumps are represented more idiosyncratically. Of note, the
same model is equally capable of testing for possibility 1ii in the
sense that a strong negative representational similarity value with
this model would indicate evidence for a shared signature for
processing smaller time jumps (but no such coherent signature
for processing larger time jumps).

Second, it could be the case that jumps of similar magnitude,
regardless of whether they are large or small, will have a similar
multivariate signature (akin to what has been termed the “nearest
neighbors” model; Fig. 7B, left; Finn et al. 2020). This possibility
can be tested with a model that uses relative jump magnitude to
calculate pairwise similarity values. Specifically, to construct this
model, we took the difference between the magnitude ranks of
each pair of jumps, which predicts that all day-scene jumps that
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Fig. 3. Overview of across-subjects pattern similarity analysis. A) To determine whether representations of narrative time are common across subjects, we
first calculated the voxelwise average of the first 12 s after each day-scene jump for a given ROI to get a voxel-by-day-scene array for each participant.
Then, for each participant, we correlated each day-scene pattern from that individual with the average pattern for each day-scene from all other
participants following a leave-one-out procedure. Finally, we correlated the resulting similarity values with the difference between day-scene ranks
(ranked in either presentation or chronological order) to summarize the relationship between across-participant neural similarity and temporal distance.
This results in 34 correlation values per participant (one for each day-scene). B) As temporal distance becomes greater, we would expect similarity values
to decrease such that there should be a negative slope for each day. Therefore, comparing the strength of these negative slopes between the presentation-
and chronological-order models will suggest which model better captures across-participant similarity of neural representations. Note that not all day-
scenes can have the full range of temporal distances, such as those in the middle of the timeline, and therefore there are fewer values at higher temporal
distances.

are similar in their magnitude will be represented similarly within
ROIs.

With these magnitude models, we then applied the same
within-participant RSA procedure described above (Estimating the
effect of a nonlinear narrative: Within-subjects multivariate (pattern
similarity) analyses section) to assess the evidence for each
model.

Results
Our goal was to elucidate how the brain encodes a nonlinear
narrative. Specifically, we sought to uncover brain regions that
are sensitive to temporal cues in a nonlinear narrative and test
whether neural representations of event relationships are more
influenced by the presentation order or chronological order of
events.

Jumps across time and space evoke widespread
neural activity
To effectively represent time during any narrative, but especially
a nonlinear one, the brain must first recognize when a change
in temporal context has occurred. In our first set of analyses,
we investigated which brain regions are sensitive to jumps in
time and/or space by modeling both cued cuts to a new day-
scene (time) and changes in location that happened within a day-
scene (space). We then ran separate univariate contrasts against
baseline for time jumps and location changes. Several regions
showed increased activity to time jumps (Fig. 4A), including the
posterior cingulate (pCC), bilateral intraparietal sulcus (IPS), pre-
cuneus, retrosplenial, and parahippocampal cortices. Two regions
along the superior parietal and lateral occipitotemporal gyri
showed decreased activity to time jumps. A similar set of regions
showed heightened activity to changes in location, including the
parahippocampal cortex (PHC), lateral superior occipital gyrus,

and precuneus (Fig. 4B). These results align with previous research
finding a consistent role for medial parietal and medial temporal
lobe structures in processing time and space (Whitney et al. 2009;
Cohn-Sheehy and Ranganath 2017; Skye et al. 2022).

Neural activity specific to jumps across time
Having established that jumps across both time and space in
a narrative are associated with heightened activity in certain
cortical regions, we next investigated whether some regions show
a stronger response to one type of jump (Fig. 4C). From this
contrast (time jumps > space jumps), several regions emerged as
more sensitive to jumps through narrative time over and above
changes in location. These included the pCC, bilateral IPS, bilateral
inferior temporal gyrus (ITG), and right dorsolateral prefrontal
cortex (dlPFC). Several regions showed the opposite pattern, that
is, greater activity to location changes over time jumps, including
the retrosplenial and parahippocampal cortex as well as the
lateral occipitotemporal gyrus. This is consistent with previous
evidence showing the parahippocampal cortex’s sensitivity to
spatial information (Aminoff et al. 2013).

Within-subject evidence for neural unscrambling
of events
Following a change in temporal context, the brain must then begin
to encode the next segment of the narrative by creating a new
event representation. To effectively make sense of the story, this
representation likely contains information about the new event’s
position relative to other events. In our next set of analyses, we
asked whether, in a nonlinear narrative, event representations
track events’ position in the narrated story order or whether
the brain engages in active unscrambling of events to encode
them in their underlying chronological position (Fig. 5A). Using
spatial activity patterns in select ROIs during the first 12 s of
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Fig. 4. Brain activity evoked by jumps in time and space. A) Brain activity to cued time jumps. B) Brain activity to jumps in space (i.e. changes in
location within the same day). C) Contrast between time jumps and location changes within the same day-scene (warm colors indicate higher activity
for time jumps; cool colors indicate higher activity for location changes). All results shown at an FDR-corrected threshold of q < 0.05 with a nominal
cluster threshold ≥20 voxels for visualization. Surface plots and axial slices depict identical maps; the latter are included for better visualization of deep
cortical regions (e.g., parahippocampal cortex).

each new day-scene (immediately following the time card that
cued viewers to the new position in the 500-day narrative time-
line), we assessed similarity between neural representations of
day-scenes and two distinct models of temporal context (Fig. 2A):
one predicting higher similarity between events presented closer
together in movie time (presentation order), and one predicting
higher similarity between events that took place closer together
in story time (chronological order).

No ROIs showed significant representational similarity with
the presentation order model (one-tailed t-tests, t’s = −4.3 − 1.1,
p’s > 0.8; all p-values reflect correction for multiple comparisons
across 10 ROIs within each model, FDR q < 0.05). In other words, no
evidence suggests that these ROIs follow a presentation order of
narrative time such that day-scenes that are presented closer
together are represented more similarly. On the other hand,
several ROIs showed significant representational similarity with
the chronological order model, including the precuneus/pCC
(t = 4.64, p = 0.0009), the posterior pCC (t = 2.92, p = 0.01), and
V1 (t = 3.28, p= 0.009). The hippocampus also showed marginal
representational similarity with the chronological order model
(t = 2.03, p = 0.07).

Moreover, direct comparisons within these four ROIs showed
that representational for the chronological model similarity is
stronger than for the presentation model (paired [within-subject]
t-tests, precuneus/pCC, t = 4.97, p < 0.001; pCC, t = 4.70, p < 0.001;
V1, t = 3.66, p = 0.002; hippocampus, t = 3.64, p = 0.002). This pro-
vides evidence for a temporal unscrambling effect such that, in
visual regions but also in higher-order association regions such
as those in the medial parietal cortex, the brain reorganizes
information in line with a chronological sequence of events at
encoding.

Spatial context is represented in medial parietal
and temporal regions
Using the spatial context model (Fig. 2B), which predicts that
scenes taking place in the same location are represented
more similarly than those taking place in different locations,
we identified another set of ROIs that represent location (Fig. 5B):
precuneus/pCC (t = 2.71, p = 0.02), TPJ (t = 2.17, p = 0.04), PHC
(t = 2.55, p = 0.02), A1 (t = 2.52, p = 0.03), and V1 (t = 3.23, p = 0.02).
This aligns with previous findings on the sensitivity of the PHC to
spatial context information (Reagh and Ranganath 2021).
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Fig. 5. Narrative events are represented chronologically over and above when those events were presented in a nonlinear narrative. A) Representational
similarity (Spearman correlations) between the two different temporal models and voxelwise spatial patterns across days. The chronological model
(cf. Fig. 2A) showed significant representational similarity in precuneus/pCC, posterior portion of the pCC, and V1 (FDR q < 0.05, corrected for multiple
tests within the model), and paired (within-subject) t-tests showed that these regions represent chronological order more strongly than presentation
order. B) The spatial model, which tests the degree to which revisited locations are represented similarly across visits (cf. Fig. 2B), showed significant
representational similarity in the precuneus/pCC, A1, and V1 (FDR q < 0.05). C) Post hoc comparisons (FDR-corrected) after linear mixed-effects modeling
across the 3 models within these significant regions showed that representations of the chronological model were stronger than both other models in
the medial parietal regions, but there were no differences across models for V1. ∗∗∗p < 0.001; ∗∗p < 0.01; ∗p < 0.05.
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Medial parietal cortex shows specificity for
chronological representation of events
Follow-up linear mixed-effects models confirmed that, in the
precuneus/pCC (F2, 38 = 7.31, p = 0.002), representational similarity
for the chronological model (b = 0.043, SE = 0.01) was significantly
higher than for the presentation (b = 0.001, SE = 0.01; t = 3.78,
p = 0.002) or location models (b = 0.016, SE = 0.01; t = 2.39, p = 0.03).
There was no difference between the presentation and location
models. This was also the case for the posterior pCC (F2, 38 = 8.62,
p < 0.001), where the chronological model (b = 0.033, SE = 0.01)
was a stronger fit than the presentation (b = −0.006, SE = 0.01;
t = 3.98, p = 0.001) and location (b = 0.004, SE = 0.01; t = 3.01,
p = 0.007) models, with no difference between presentation
and location models. In V1 (F2, 38 = 3.54, p = 0.04), however, no
significant differences were found between the chronological
(b = 0.045, SE = 0.01), presentation (b = 0.013, SE = 0.01), and location
(b = 0.016, SE = 0.01) models. All post hoc comparisons were FDR-
adjusted. This demonstrates that of the models we tested, event
representations during encoding in medial parietal regions (but
not primary visual cortex) are relatively specific to chronological
context over and above presentation or location context.

Across-subject evidence for neural unscrambling
of events
To determine whether this chronological representation of
events—i.e. the voxelwise patterns associated with nearby day-
scenes—was common across participants, we correlated each
participant’s day-scene pattern with the average of all other
participants’ day-scene patterns in a leave-one-out procedure.
As the temporal distance (either in presentation order or
chronological order) increases, we would expect the individual-
to-group correlations between day-scene representations to
decrease. Indeed, within the precuneus/pCC ROI, all participants
tend to show negative slopes for most days as temporal
distance increases, and this relationship is more apparent for
a chronological order of events compared to a presentation order
of events (Fig. 6).

To test this relationship, we summarized data within day-
scene for each participant by correlating the individual-to-group
day-scene similarity values with both chronological distances
and presentation distances, resulting in one correlation coeffi-
cient per day-scene per participant. Linear mixed effects mod-
eling (F1, 1306 = 16.96, p < 0.001) revealed the chronological order
of distances (b = −0.11, SE = 0.02) to be a stronger fit than pre-
sentation order (b = −0.06, SE = 0.02; t = −4.12, p < 0.001) in the
precuneus/pCC. This was not the case for the posterior pCC
ROI (F1, 1306 = 2.94, p = 0.09) for which the chronological order of
distances (b = −0.05, SE = 0.02) was stronger than the presenta-
tion order (b = −0.04, SE = 0.02), but not significantly so (t = −1.72,
p = 0.09). Notably, because we expected correlations associated
with temporal distances of zero (i.e. the same day-scene) to be
high, which could potentially bias results, we verified that the pat-
tern of results does not change when excluding data points from
distance zero (e.g. precuneus/pCC, t = −4.19, p < 0.001). Overall,
these results show that, in addition to the within-subject spatial
signature of chronological event order reported above, there is
also evidence for an across-subject spatial signature such that
participants’ neural representations of days close by in chrono-
logical time are consistent with one another.

A unique multivariate signature encodes time
jumps with large magnitude
If encoding temporal context during a nonlinear narrative carries
a different and/or additional processing cost, it stands to reason

that neural activity might scale with or otherwise reflect the
magnitude of each temporal shift.1 In our final set of analyses,
we sought to determine whether brain activity varied according to
jump magnitude (i.e. the size of the jump through time). Notably,
there is an uneven distribution of jump magnitudes with more
small jumps (<100 days) than large jumps (>300 days; Fig. 1B,
left). Because we do not expect brain activity to scale linearly with
the size of the jump, we log transformed the jump magnitude
values before using them in further analyses (Fig. 1B, right).

We first tested the possibility that jump magnitude is reflected
in univariate activity: in other words, larger jumps evoke stronger
neural responses (Fig. 7A). There was some evidence for increased
activity to larger jumps near the auditory cortex and decreased
activity in the visual cortex. A possible explanation for the effect
in the auditory cortex is that there was a non-diegetic page-
flipping sound cue that played at almost every time jump and
lasted longer for larger jumps in time. Together, results suggest
some effect of time jump magnitude on neural activity, although
the limited amount of data and lack of systematic variation in
this feature make it difficult to draw firm conclusions from this
analysis.

While our univariate analyses did not reveal strong effects
of jump magnitude in regions hypothesized to represent time,
it is possible that the effect of jump magnitude is encoded in
multivariate spatial patterns rather than univariate activity. To
test this possibility, we conducted a representational similarity
analysis using two possible model matrices (Fig. 7B). The relative
or “nearest-neighbor” model (according to the framework laid out
in Finn et al. 2020) predicts that any pair of day-scenes with
similar jump magnitudes, no matter if the magnitude is large or
small, should be represented more similarly than day-scenes with
different jump magnitudes. In contrast, the absolute or “Anna
Karenina” (AnnaK; Finn et al. 2020) model predicts that jump mag-
nitudes at one end of the spectrum—i.e., either larger or smaller—
will be represented more similarly than jump magnitudes at the
other end of the spectrum, where there is more variance in rep-
resentations. (In this formulation, a positive correlation with the
model matrix would indicate higher representational similarity
for larger > smaller jumps, while a negative correlation would
indicate higher representational similarity for smaller > larger
jumps.)

Following the same procedure as the temporal model repre-
sentational similarity analysis described above, we found that
the nearest-neighbor model did not capture patterns of jump-
magnitude representation in any ROI (Fig. 7C). However, the
AnnaK model revealed a unique signature for larger jumps in
almost all ROIs including the dorsomedial prefrontal cortex
(t = 2.76, p = 0.008), ventromedial prefrontal cortex (t = 2.60,
p = 0.01), precuneus/pCC (t = 4.73, p < 0.001), posterior pCC (t = 4.04,
p < 0.001), temporoparietal junction (t = 5.64, p < 0.001), superior
temporal sulcus (t = 3.99, p < 0.001), hippocampus (t = 4.51,
p < 0.001), PHC (t = 5.79, p < 0.001), and A1 (t = 2.95, p = 0.006).
Moreover, the AnnaK model provided a stronger fit to the data
than the nearest-neighbor model (paired [within-subject] t-test,
t’s = 2.27–9.94, p’s < 0.03). This suggests that there is a unique
signature for higher magnitude jumps across day-scenes that is
spatially encoded within these regions. It is worth noting that the
AnnaK magnitude model similarity estimates (precuneus/pCC:
b = 0.06, SE = 0.01; posterior pCC: b = 0.06, SE = 0.01) are not
significantly different from the chronological model estimates
(cf. Fig. 5A; precuneus/pCC: b = 0.04, SE = 0.01; posterior pCC:
b = 0.03, SE = 0.01) in the medial parietal ROIs (precuneus/pCC:
t = 1.55, p = 0.18; posterior pCC: t = 1.69, p = 0.13) when all models
are assessed with a mixed-effects model with model type
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Fig. 6. Chronological representation of narrative events is consistent across participants in the precuneus/pCC. A) Across-subjects day-scene pattern
similarity with a summary plot for each participant (individual green panels), in which each line represents the similarity of a single day-scene with
the average of all other participant day-scenes as they increase in chronological distance. The dark line represents the average across day-scenes
at each distance (x-axis value). Each participant, on average, tends to show a negative slope as chronological distance increases. This negative slope
is more apparent for chronological distance than for presentation distance (5 participants shown for comparison; blue panels, bottom row), which
suggests a common representation of a chronological order of events compared to presentation order. B) Summarizing across-subjects similarity values
at each temporal distance for both chronological and presentation orders. Linear mixed-effects models showed that chronological distance was a better
predictor of across-subject day-scene representational similarity than presentation distance (p < 0.001). Note that the regression line and correlation
value annotated on these plots are meant for characterizing the general negative slope across temporal distances and were not used in any statistical
analysis.

(chronological, presentation, spatial location, nearest-neighbor
magnitude, and AnnaK magnitude) as a fixed factor and
participants as a random factor (precuneus/pCC: F4, 76 = 8.43,
p < 0.001; posterior pCC: F4, 76 = 7.91, p < 0.001). Altogether, results
suggest that while processing a nonlinear narrative, medial
parietal regions represent both where one is in chronological
time as well as how far one jumped to get there.

Testing for confounding influence of film characteristics at
day jumps
In a post hoc analysis, we investigated whether there was a com-
mon set of film characteristics, or semantic features, present at
the beginning of each day-scene (i.e., immediately following each
day jump) that could explain the chronological model results.
The logic is as follows: if day-scenes nearby in chronological time
are more likely to share certain semantic features—e.g., to take
place in similar locations or to focus on a specific character—then
increased representational similarity between day-scenes might
be due to these shared features rather than to their position in
the narrative timeline per se.

To investigate this possibility, for the first 12 seconds following
each day jump (the same data that entered into all RSAs described
above), we created dummy variables from annotated features
such as the location after the jump, the number of faces on screen,
and the characters (if named) on screen (e.g., for the “office”
location variable, there is a 1 when the movie jumps to the “office,”
and a 0 when jumping elsewhere). We correlated (Pearson’s r)
these features with the chronological and presentation order
of events and calculated the 95% confidence intervals for both
correlation values to ensure that the correlation values overlap,
which would indicate that they are not significantly different from
each other and therefore should not exert a robust confounding
influence on our pattern of results. No significant differences

were found across features of interest including, for example, the
representation of the office location between the presentation
(r = −0.43, 95% CI [−0.66, −0.12]) and chronological (r = −0.54,
95% CI [−0.74, −0.26]) orders or the presence of the male main
character’s face between the presentation (r = 0.17, 95% CI [−0.16,
0.47]) and chronological orders (r = −0.002, 95% CI [−0.33, 0.32]).
Therefore, similar semantic features likely cannot explain the
advantage of the chronological order model over the presentation
order model.

Discussion
Here, leveraging a unique movie stimulus with a cued nonlinear
narrative structure, we investigated how the brain encodes both
time and space with a particular focus on representations of
temporal context. Regions in the medial parietal lobe were par-
ticularly responsive to jumps in the narrative timeline. Notably,
patterns of activity in these same medial parietal regions also
tracked a chronological sequence of events, which suggests that
these regions engage in an “on the fly” temporal unscrambling of
events when they are presented out of order. These same regions
also show a special spatial signature for larger jumps within the
nonlinear narrative timeline.

Much previous research on processing time focuses on memory
for time and how temporal context influences recall and memory
for events, but here we focus on temporal processing at the
encoding stage. Results revealed several regions that are sensitive
to jumps through narrative time over and above their sensitivity
to changes in location, including the pCC, precuneus, IPS, ITG,
and right dlPFC. This adds to a growing body of work associ-
ating medial parietal regions, and particularly the precuneus,
with temporal processing (Peer et al. 2015; Cohn-Sheehy and
Ranganath 2017; Skye et al. 2022). Using lesion-symptom
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Fig. 7. Time jump magnitude is encoded in multivariate spatial patterns. A) Brain activity associated with day-scene jumps as modulated by jump
magnitude (warm [cool] colors indicate increased activity for larger [smaller] jumps; FDR-corrected threshold q < 0.05, nominal cluster threshold ≥20
voxels for visualization). B) Models of 2 competing representations of time jump magnitude across a narrative. For the nearest-neighbor model, all day-
scene jumps of a similar size will be represented more similarly compared to day-scene jumps of more distal sizes. For the AnnaK model, day-scenes
associated with larger (smaller) magnitude jumps will be represented most similarly, and similarity will decrease as jump magnitudes become smaller
(larger). Day-scenes are sorted by the (ranked) magnitude of the jump from the preceding day-scene for visualization. C) Representational similarity
(Spearman correlations) between the magnitude models and voxelwise spatial patterns across day-scenes. The AnnaK model in the direction of a shared
signature for larger jumps showed significant representational similarity across all ROIs except V1 (2-sided, one sample t-test; FDR q < 0.05, corrected
for multiple tests within model), and paired t-tests showed these regions represent the AnnaK model relationships more than the nearest-neighbor
model relationships. ∗∗∗p < 0.001; ∗∗p < 0.01; ∗p < 0.05.

mapping, Skye et al. (2022) pinpointed the precuneus as well
as parahippocampal cortex (PHC) as crucially involved in time
orientation. Here, we see increased PHC activity in response to
both time jumps and location changes. On the order of seconds
or minutes, all changes in location are associated with changes
in time. In our analyses, we attempted to dissociate changes in
time and location on the order of days. Differential sensitivity to
changes in location within a day compared to changes in location
that are concurrent with day jumps suggests that spatial context
is a higher priority cue for PHC activity, while temporal context is
a higher priority cue for medial parietal cortex.

To elaborate on the role of the medial parietal cortex in pro-
cessing time, our results suggest that when encoding a narrative
that is presented in a non-chronological fashion, the precuneus
and pCC actively unscramble events to represent information
chronologically. Specifically, days that were closer together in
chronological time were represented more similarly regardless of
when they were presented in the movie, and these representations
were consistent across participants. This finding fits with previous
theorizing on the role of default-mode regions as the nexus
for complex sense-making over long timescales through the

integration of novel external and prior internal information
(Simony et al. 2016; Yeshurun et al. 2021), and it aligns with the
idea that medial parietal regions act as a hub for maintaining and
updating mental situation models (Speer et al. 2007; Whitney et al.
2009). We posit that this temporal unscrambling function may
support our ability to embed the causal structure of events in a
mental model. In other words, as a story unfolds, narrative events
are discretized and stored such that, when an event is presented
out of order, that event can be slotted into its correct chronological
position, which corresponds to a causal order of events that must
flow forward in time. Causal structure is a central feature of
narratives (Briner et al. 2012; Bordwell et al. 2020), and there is
evidence that people use causal networks of events to encode
and retrieve complex experiences (Lee and Chen 2022), which
can explain how causal connections improve narrative memory
(Brownstein and Read 2007; Radvansky et al. 2014). This line of
reasoning can also explain why we are sensitive to temporal cues
(e.g., “immediately,” “the next day”) when comprehending purely
textual narratives (Zwaan 1996; Speer and Zacks 2005), which,
akin to the robust precuneus and pCC activity in response to
day jumps shown here, provide the necessary information to
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organize events in time and infer causal order. Of note, because
our stimulus did contain explicit temporal cues in the form of day
cards, it remains unclear whether the same on-the-fly unscram-
bling process would occur in situations absent such explicit cues
where the viewer needs to use more subtle clues to guess when
the present scene might have occurred in the overall timeline.

In the context of any narrative, but especially a cued nonlin-
ear narrative such as the one used here, time jumps represent
event boundaries, and a larger jump in time corresponds to
a larger shift in narrative context (Speer et al. 2007; Pu et al.
2022). For example, when the movie presents Day 290 at the
beginning of the film, the viewer must efficiently situate the
scene as a “relationship breakup event,” which operates under
distinct emotional and social conditions compared to “beginning
relationship events.” The strength of these “relationship-phase
schemas” may explain why days closer together in chronological
time are represented more similarly. Indeed, in a recent study on
temporal processing using tightly controlled conditions, Bellmund
et al. 2022 found that event representations in the hippocam-
pus were biased toward prior, constructed knowledge of event
sequences over and above event presentation order and elapsed
time. In the present study, prior knowledge of the structure of
relationships could have facilitated the encoding of nonlinear
events into their chronological sequence. Moreover, this may help
explain the distinct spatial signature for higher magnitude jumps
that we observed. The brain might treat higher-magnitude jumps
specially compared to lower magnitude jumps because they evoke
increased surprisal (Brandman et al. 2021) and perhaps, therefore,
increased processing demands and/or engagement (Song et al.
2021a). Increased cognitive demands could explain slower behav-
ioral processing times for distal events (Zwaan 1996; Claus and
Kelter 2006) but increased ability to discriminate between distal
events (Brown et al. 2009; Pu et al. 2022) due to their distinct
narrative contexts.

One alternative explanation for our temporal unscrambling
effect is that days that are close together in chronological time,
whether early in the relationship timeline or toward the end,
may have shared low-, mid-, and/or high-level characteristics that
drive similarity between their neural representations. While we
controlled for two low-level audiovisual features (namely, lumi-
nance and audio envelope) by regressing these from each subject’s
functional time-series before further analysis, there could be
other features that are consistent across neighboring locations
in the timeline. (Of note, any consistent visual information could
help explain the significant V1 representational similarity values
with the chronological model; cf. Fig. 5A). For example, at the
beginning of the relationship timeline, there may be an over-
representation of jumps to one particular location or the same
character’s face on screen. To account for this, for each day jump,
we annotated features including the location, the number of faces,
the characters (if named), and the shot scale for the faces (i.e.,
the extent to which a character’s face fills the screen). We found
no significant differences in these features between presentation
and chronological event sequences, suggesting that these low-
and mid-level features cannot explain the apparent unscrambling
effect. Another potentially important, high-level characteristic is
emotional valence: if valence covaried with chronological time,
this could have confounded our analyses. However, we consider
this unlikely because the emotional arc of the chronological nar-
rative was not monotonic but rather roughly U-shaped (positive
at the beginning of the relationship, negative surrounding the
breakup, and positive again as the main character moves on and
begins a new relationship; Chu and Roy 2017). Still, these alternate

explanations cannot be robustly ruled out given our single and
limited stimulus, which speaks to the need to corroborate our
results with additional nonlinear narrative stimuli.

In conclusion, we uncovered a set of brain regions associ-
ated with processing jumps across time in a nonlinear narrative.
We found evidence that regions of the medial parietal cortex
actively unscramble narrative events to encode them in a chrono-
logical fashion. These findings held in both within-subjects as
well as across-subjects analyses, suggesting that temporal rep-
resentations are to some extent shared across brains. We also
found that higher magnitude jumps through time evoke a unique
response pattern in these and other brain regions. Altogether,
results emphasize the role of the medial parietal lobe as a hub
for encoding temporal cues and context in narrative settings.

Notes
1It might also stand to reason that jump direction, or whether the
jump traveled forward or backward in time, might be reflected in
brain activity, i.e. backward jumps might increase processing load
because they are in the non-canonical direction. Unfortunately,
this stimulus was not well suited to investigating this possibility
because there were relatively few backward jumps (n = 7) and
most of them were of large magnitude (cf. Fig. 1B), making it
difficult to disentangle the effects of magnitude and direction.
Therefore, we leave an investigation of this possibility for future
work using a stimulus with more systematic variation in the
direction and magnitude of jumps.
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