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In mental health research, it has proven difficult to find
measures of brain function that provide reliable indicators of
mental health and well-being, including susceptibility to
mental health disorders. Recently, a family of data-driven
analyses have provided such reliable measures when applied
to large, population-level datasets. In the current pre-
registered replication study, we show that the canonical
correlation analysis (CCA) methods previously developed
using resting-state magnetic resonance imaging functional
connectivity and subject measures (SMs) of cognition and
behaviour from healthy adults are also effective in measuring
well-being (a ‘positive–negative axis’) in an independent
developmental dataset. Our replication was successful in two
out of three of our pre-registered criteria, such that a primary
CCA mode’s weights displayed a significant positive
relationship and explained a significant amount of variance
in both functional connectivity and SMs. The only criterion
that was not successful was that compared to other modes
the magnitude of variance explained by the primary CCA
mode was smaller than predicted, a result that could indicate a
developmental trajectory of a primary mode. This replication
establishes a signature neurotypical relationship between
connectivity and phenotype, opening new avenues of research
in neuroscience with clear clinical applications.
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1. Introduction
1.1. Background
Understanding how brain functional connectivity is linked to human behaviour is a major goal of
neuroscience for its potential to elucidate the mechanisms of the brain that lead to human cognition
[1]. By modelling functional magnetic resonance imaging (fMRI) data as a region-to-region functional
network, researchers can leverage mathematical tools from the study of complex systems (e.g. graph
theory) to probe these high-dimensional relationships [2–5].

1.2. Original study by Smith et al. (2015)
In their landmark 2015 study, Smith et al. [6] investigated the high-dimensional relationship between
functional connectivity and behavioural and phenotypic measures using data on young adults aged
22–35 from the Human Connectome Project (HCP) [7]. To study the relationship between these
subject measures (SMs) and functional connectomes, the authors calculated a 200-dimension group
independent component analysis (ICA) functional parcellation for the 461 HCP subjects in their study.
From this parcellation, they derived subject-level functional connectomes, which are symmetric
matrices of the edge weights between all 200 nodes. Of the SM data available in the HCP dataset,
Smith et al. chose 158 measures that were quantitatively and qualitatively appropriate for analysis.

Using canonical correlation analysis (CCA), which can simultaneously consider two variable sets
from different modalities to uncover essential hidden and high-dimensional associations between the
sets [8], the authors discovered that one statistically significant CCA mode (the primary mode)
explained more of the observed covariance between functional connectivity and SMs compared to the
other CCA modes. The authors found a strong positive correlation (r = 0.87, p < 10−5) between the
primary CCA mode connectome weights and SM weights. From the primary CCA mode, they
derived a ‘positive–negative axis’ that quantified the correlation of various SMs to the CCA mode,
linking lifestyle, demographic and psychometric SMs to each other and to a specific pattern of brain
connectivity [6]. SMs commonly considered to be positive qualities (e.g. higher income, greater
education level and high performance on cognitive tests) were positively correlated with the primary
CCA mode, and SMs commonly considered to be negative qualities (e.g. substance use, rule-breaking
behaviour and anger) were negatively correlated with the CCA mode.

A hierarchical clustering analysis of the 200 connectome nodes revealed clusters of nodes in four
regions: one cluster in the sensory, motor, insula and dorsal attention regions; and three clusters
covering the default mode network (DMN), subcortical and cerebellar regions [6]. The brain areas that
contributed most strongly to variations in connectivity were similar to those associated with the
DMN, suggesting that functional connectivity within (and, to some degree, between) the DMN may
be important for higher-level cognition and behaviour [8].

Finally, to test the predictive value of their model, the authors conducted a train-test split in which
80% of subject data (randomly selected, respecting family relationships) were used to train a CCA
model, which was then tested on the remaining 20% of the data. This process was repeated 10 times,
with statistical significance estimated via permutation testing (1000 permutations) of family structures
in each iteration. This train-test process yielded a statistically significant mean correlation of r = 0.25
between the primary CCA mode connectome and SM weights in the testing dataset, strongly
supporting the primary CCA mode finding [6].

The findings from Smith et al. [6] suggest that high-dimensional patterns of positive and/or negative
SMs can predict high-dimensional patterns of brain connectivity and vice versa. If one (SM or brain
connectivity) can be used to predict the other, researchers move one step closer toward understanding
the complex relationship between brain, lifestyle and behaviour [9]. Establishing a baseline
neurotypical signature for this relationship will have important implications for understanding
sub-clinical, clinical populations and other populations (e.g. developmental).

As a precursor to the current study, using code published by the original authors, we computationally
replicated their findings in both the HCP 500 and 1200 subject releases to validate our own analysis pipeline [10].

1.3. Conceptual replication in an independent dataset
In the current study, we aim to conceptually replicate Smith et al.’s positive–negative axis and primary
CCA mode findings in novel data from the Adolescent Brain Cognitive Development (ABCD) study.
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This is not a replication in the sense that we seek to find results identical to those of the original authors
(an exact computational replication of the original study is documented in our preprint [10]). Rather, we
apply the methodology of Smith et al. to the ABCD dataset to determine if there exists a strong correlation
between connectomes and SMs and a dominant CCA mode that explains a significant amount of
covariance within a dataset with very different subject and scanner characteristics. The longitudinal
ABCD study is an ongoing effort to study the environmental influences on behavioural and brain
development in pre-adolescents, recruiting and following over 11 000 children aged 9–10 over a period
of 10 years [11]. This multi-site study leverages multiple imaging modalities, including resting-state
fMRI, to characterize brain development, providing a large neuroimaging dataset for exploration
using the tools of network neuroscience.

We selected the ABCD dataset to replicate Smith et al. for multiple reasons. The 22- to 35-year-old
subjects in the HCP dataset, which was fairly homogeneous in terms of subject demographics and
scan quality [7], are vastly different from the pre-adolescents in the ABCD dataset in terms of brain
development and demographics. Thus, this dataset presents a tremendous opportunity to search for
the presence of a positive–negative axis in a heterogenous set of subjects who are still in
neurodevelopmental stages. Additionally, the ABCD dataset is one of the largest available that has
comparable SMs to the HCP dataset; since the original study was only conducted using 461 subjects,
this increases the statistical power of the analysis. A study by Xia et al. used neuroimaging data of
youth (8–22 years old) and found positively correlated patterns of functional connectivity and
psychiatric symptoms across four dimensions of psychopathology. Each dimension was associated
with a distinct pattern of abnormal connectivity while still showing common features (e.g. loss of
network segregation) distinguishing them from normal brain function. To account for potential
confounds, the authors controlled for age, sex, race and motion and they also found that these
findings replicated in an independent dataset [12]. The implications of their study are threefold: (i) it
is possible to perform a CCA-type analysis on highly heterogeneous youth data and obtain
interpretable results; (ii) the analysis is sensitive enough to distinguish relationships among groups of
related SMs and functional connectomes; and (iii) there appears to be a common neurobiological
mechanism underlying vulnerability to a wide range of psychiatric symptoms, echoing the positive–
negative axis finding. Given their findings, we felt that the ABCD dataset was appropriate for the
current study despite the age difference and heterogeneity compared to HCP data.

Finding a primary CCA mode and positive–negative axis in the ABCD data would have implications
beyond speaking to the robustness of the original study and the presence of the phenomena in a dataset
other than HCP. It would suggest that the high-dimensional relationship between brain connectivity and
phenotype may be independent of age, demographics, scanner type, preprocessing methods and even
the SMs, which can vary in how they index cognitive constructs. Such observations would be pivotal
for the establishment of a signature neurotypical relationship between connectivity and phenotype,
which could then be applied to a variety of clinical populations potentially increasing its practical
application in medicine. Most importantly, finding the positive–negative axis in the baseline ABCD
dataset would enable researchers to study it longitudinally over subsequent ABCD releases for the
next 10 years. In doing so, researchers could explore how the positive–negative axis changes with
regard to age, behavioural characteristics, mental and physical health outcomes, education,
demographics and environment, and possibly even determine which factors form the basis for the
positive–negative axis. We aim to design the analysis pipeline such that it can easily be re-run by
other researchers who wish to explore how these factors impact the CCA results over time as
subsequent ABCD datasets are released. Given these potential implications, we feel that replicating
the positive–negative axis in a heterogeneous dataset is important not only to lend validity to the
original study but also to open new avenues of research in neuroscience.
1.3.1. Replication overview

In this conceptual replication, we followed the same methodology as Smith et al. to perform a CCA on
ABCD subject connectomes and SM data (for full details, refer to §2). After applying similar
preprocessing steps to the resting-state scan data, we derived a 200-dimension group-ICA functional
parcellation. This parcellation was used to calculate subject-level connectomes, which were aggregated
to form the connectome matrix used in the CCA. The choice of parcellation can have significant
effects on connectivity results [13]. For replication purposes we chose to identify functional networks
using the same ‘soft’ (e.g. data-derived spatial ICA) parcellation scheme as Smith et al., which has
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been shown to have greater predictive power compared to a priori functional and anatomical
parcellations [5,14].

The ABCD study has over 60 000 SMs (this includes items from individual questions in an assessment
to scan quality control (QC) measures), which we quantitatively filtered as per the original study. After
removing quantitatively inappropriate SMs, we performed a one-to-one matching of ABCD SMs to their
counterparts in the HCP dataset. This process identified 89 ABCD SMs, of which 74 were deemed
appropriate for the CCA. We regressed out confounds similar to those in the original study prior to
conducting the CCA.

After conducting the CCA, we performed multiple post hoc analyses from the original study,
including generating a positive–negative axis that correlates the SMs (all of those included in the
CCA, and four which were not) with the primary CCA mode; a hierarchical analysis of the
connectomes, and determining which functional connections correlate most strongly with the primary
CCA mode; a clustering analysis to identify the major brain regions into which the 200 nodes fall; and
a train-test split to evaluate the predictive performance of the CCA model on unseen data.

Our criteria for a successful replication of the primary CCAmode (i.e. the strongest mode) were as follows:

(1) The primary CCA mode explains a statistically significant amount of variance in the connectomes
and SMs relative to the null distribution generated via permutation testing.

(2) The primary CCA mode z-scores for connectomes and SMs are at least a factor of 2 and 3 greater,
respectively, than the next largest z-scores for connectomes and SMs (from any of the other modes).

(3) A statistically significant correlation exists between the primary CCA mode SM and connectome
weights ( p < 0.001).

These criteria attempt to account for the large differences in the ABCD and HCP datasets by focusing on
conceptually replicating the primary finding of the original study in the novel dataset, rather than
replicating specific numerical results exactly. Although we are particularly interested in finding a
single dominant CCA mode, given the large sample size of the ABCD dataset, it is possible that
multiple significant modes exist. The appearance of these modes would not necessarily indicate a
failure to replicate but would warrant a careful analysis of the results since in PCA/CCA there can be
an arbitrary rotation among components that can spread the original result validly across the multiple
significant modes [8]. Since the positive–negative axis, hierarchical analysis and train-test split were
conducted post hoc in the original study, there was no definition for what constituted a successful
replication for these aspects of the study.

2. Methods
This article received in-principle acceptance (IPA) at Royal Society Open Science. Following IPA, the
accepted Stage 1 version of the manuscript, not including results and discussion, was pre-registered on
the OSF (http://doi.org/10.17605/OSF.IO/HMC35). Minor deviations from the protocol are identified
in footnotes, and detailed explanations of deviations are provided in §3.3.

2.1. Participants
The sample composition of the ABCD Release 2.0.1 before and after filtering out subjects is shown in
table 1. The filtering process for excluding subjects is discussed in §2.3. Prior to excluding subjects, the
sample contained a total of 11 875 pre-adolescents between ages 9 and 10. After filtering, the sample
contained 7810 subjects.1

The ABCD dataset contained multiple types of sibships (children with the same parents):
monozygotic (MZ) and dizygotic (DZ) twins, as well as siblings and single children. As in the
original study, the sibship data were used to generate permutations of the ABCD SM data for
statistical testing. Twins were designated as MZ or DZ based on genomic data, and, when zygosity
was unavailable, twins were simply treated as siblings. There were 315 subjects that were designated
as twins (n = 285) or triplets (n = 30) but were missing zygosity data; these subjects were considered
non-twin siblings for our study to match the procedure followed by Smith et al. Prior to filtering,
there were 738 MZ, 1082 DZ, 1908 non-twin siblings (1593 non-twin siblings plus 315 twins/triplets
treated as non-twin siblings) and 8147 single children.
1Due to changes in the subject filtering criteria used in the final analysis, the revised sample size was 5013. See §3.3
for details.

http://doi.org/10.17605/OSF.IO/HMC35
http://doi.org/10.17605/OSF.IO/HMC35


Table 1. A breakdown of the ABCD demographics before and after filtering (outlined in §2.3). � = data not available for all
subjects, percentages of available data are reported.

before filtering after filtering21

no. subjects 11 875 7810

sex�

no. male 6188 (52.1%) 3894 (49.9%)

no. female 5681 (47.9%) 3914 (50.1%)

age in years (mean, std dev, range) 9.91 9.96

0.622 0.622

9.0–10.92 9.0–10.92

race/ethnicity�

white 6174 (52.1%) 4375 (56.1%)

black 1779 (15.0%) 1016 (13.0%)

Hispanic 2407 (20.3%) 1466 (18.8%)

Asian 252 (2.1%) 138 (1.8%)

other 1245 (10.5%) 805 (10.3%)

sibships (no. of subjects in each category) MZ: 738 MZ: 562

DZ: 1082 DZ: 777

non-twin siblings: 1908 non-twin siblings: 1245

single children: 8147 single children: 5226
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After filtering, there were 219 subjects that were designated as twins (n = 197) or triplets (n = 22), but
were missing zygosity data; again, these subjects were considered as non-twin siblings for our study. The
final sibship counts were: 562 MZ, 777 DZ, 1245 non-twin siblings (1026 non-twin siblings plus 219
twins/triplets treated as non-twin siblings) and 5226 single children.
2.2. Data acquisition

2.2.1. Imaging data

The ABCD functional MRI scans were acquired at 21 sites across the United States, using 3 T scanners
from three manufacturers: Siemens, Philips and GE. The fMRI acquisition parameters were designed
to be as similar as possible across all scanners: 90 × 90 matrix, 60 slices, spatial resolution 2.4 mm
isotropic, TR = 0.8 s, multiband acceleration = 6 and multiband echo planar imaging. Subjects were
scanned four times in 5-min scan lengths for a total of 20 min of resting-state scan time. T1- and T2-
weighted scans with 1.0 mm isotropic resolution were also acquired and used for co-registration
purposes. See [15] for more information on the ABCD fMRI scanning protocol.
2.2.2. Subject measure data

The ABCD SM battery includes a wide range of assessments of imaging data, biomarkers, cognitive
function, substance use and abuse, mental and physical health and the youth’s family and
environment [16–19]. Given the longitudinal nature of the ABCD study, the battery was designed
such that researchers can characterize subjects’ changes in key domains over time. Measures were
selected if they could be used through early adulthood or had parallel versions which were
appropriate for older ages without their results becoming invalid over time due to repeated
assessments or practice effects. A comprehensive computerized battery was administered at baseline
during an in-person meeting; shorter follow-up assessments were administered over the phone at six-
month intervals and more comprehensive follow-up assessments at annual and biennial in-person
meetings. Assessments included youth self-assessments, parent assessments of youth, parent self-
assessments and teacher assessments of youth. For our analysis, only baseline SM data were used.
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2.3. Data preprocessing
The ABCD fMRI data were obtained from the National Institute of Mental Health Data Archive (NDA). We
usedCollection 3165 (https://nda.nih.gov/edit_collection.html?id=3165), processedby theOregonHealth&
Science University Developmental Cognition And Neuroimaging Lab (DCAN, https://doi.org/10.5281/
zenodo.2587210), which included preprocessed and concatenated resting-state fMRI data.2 Preprocessing
steps in the DCAN pipeline were in accordance with the HCP recommended minimal preprocessing [20].
Briefly, the T1- and T2-weighted anatomical images were used to generate subject-specific surface meshes.
The functional data were corrected for motion and gradient distortions, and then co-registered to the T1-
weighted image and projected into CIFTI grey ordinate space, which combines data from cortical grey
matter projected onto surface mesh and subcortical grey matter in volumetric space [20]. All subsequent
preprocessing and analysis steps were conducted within CIFTI space. Finally, a nuisance regression and
bandpass filter (0.009–0.08 Hz) were applied to remove artefacts related to head motion and respiration
[21,22]. Global signal regression was not performed. In addition to the fMRI preprocessing steps applied
in Collection 3165, we further removed structured artefacts using an ICA-FIX procedure [23,24].3

Collection 3165 also provides censor files for each subject, which denote time points that exceed 0.3 mm in
head motion and only segments of 5 or more time points are preserved. To generate the final time-series
files, we first removed time points flagged by the censor files and then truncated the data to include only
the first 10 min to ensure that all subjects had the same number of time points. After truncating, we
excluded subjects from analysis for having less than 10 min of data. This was performed in order to
properly process the scans in the group-ICA pipeline and to mimic the HCP dataset in which all scans
were of the same length (albeit a much longer 60 min).

It is important to note that the ABCD imaging data used in the current study were processed with the
DCAN pipeline which is nearly identical to the HCP minimal processing pipeline but has an additional
nuisance regression for respiratory artefacts. In addition, we elected to perform motion censoring since
children generally move more than adults during resting-state fMRI scans [25]. Aside from these
differences, the ABCD resting-state data were prepared in an analogous manner to the HCP resting-
state data in the original study.

The SM data were obtained from the NDA ABCD RDS release (http://doi.org/10.15154/1504431).
The SMs were provided in a subjects-by-SMs matrix (.Rds file), containing all subjects and their
available baseline and follow-up SM data up to the ABCD 2.0.1 release. The data were already
processed with qualitative variables factored, summary variables generated and missing data removed
(for complete details, see https://github.com/ABCD-STUDY/analysis-nda).

2.3.1. Subject filtering based on imaging data

To determine which subjects were appropriate for our analysis, we applied the following data inclusion
criteria, and included only subjects that met all of the criteria:4

(1) Availability of resting-state scan data and motion summary data in the NDA ABCD collection 3165.

a. Subject must have preprocessed and concatenated resting-state fMRI data.
b. Subject must have a motion summary file associated with the resting-state scan data, and motion

data and censoring data must be present in the file.
(2) Subject must have at least 10 min of ‘good’ resting-state scan time (i.e. 750 remaining time points after

frame removal/motion correction with a maximum frame displacement (FD) threshold of 0.3 mm).
(3) Subject’s mean FD must not be anomalous in the overall distribution (i.e. it does not fall within the

top 0.25% or bottom 0.25% of the motion distribution).
(4) Subject’s scans must meet QC requirements, based on QC data included in the SM data matrix.

a. At least one T1 anatomical scan which passed both QC and protocol compliance checks, for
registration.
b. At least two resting-state scans that passed both QC and protocol compliance checks.
2Rather than using the fully preprocessed derivatives distributed in Collection 3165, we elected to generate our own using the same
pipeline. See §3.3 for details.
3We neglected to specify which ICA-FIX classifier we would use in the accepted preregistration. We therefore opted to submit the data
to two analysis streams: one using an ICA-FIX classifier trained on ABCD data, which is presented in the main paper, and another
using the ICA-FIX classifier trained on HCP, which was used in Smith et al. and for which our results are presented in electronic
supplementary material, S2.3.
4The revised criteria used in our final analysis are presented in §3.3.

https://nda.nih.gov/edit_collection.html?id=3165
https://nda.nih.gov/edit_collection.html?id=3165
https://doi.org/10.5281/zenodo.2587210
https://doi.org/10.5281/zenodo.2587210
http://doi.org/10.15154/1504431
http://doi.org/10.15154/1504431
https://github.com/ABCD-STUDY/analysis-nda
https://github.com/ABCD-STUDY/analysis-nda
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Subjects that were missing any of the aforementioned data (scan, motion or QC metrics data), had less
than 10 min of ‘good’ scan time after motion censoring, had anomalous FD motion values, and/or
did not pass the QC thresholds were removed from our sample. The cutoffs for anomalous mean FD
motion values were 0.1663 mm for the top 0.25% and 0.0212 mm for the bottom 0.25%

After this initial filtering, 434 subjects were dropped due to criteria one, 1743 due to criteria two,
9 due to criteria three and 40 due to criteria four, for a total of 2226 subjects flagged for removal. As a
result, 78125 out of the original 10 0386 subjects remained as possible candidates for our analysis after
this stage of filtering.

2.3.2. Subject measure filtering

Following the same procedure as Smith et al., a quantitative filtering was performed in order to remove
SM data unsuitable for CCA due to insufficient variance, too much missing data, or potential outliers that
could skew the CCA [6,8]. Only the baseline measurements for subjects were kept (based on the earliest
dated record for each subject), and all follow-up assessments were removed from consideration.

A SM was kept only if all of the following criteria, derived from Smith et al., were met:

(1) There was enough data available.

(a) Defined as at least 50% of subjects having data for a given SM.
(2) There was sufficient variation in the SM.

(a) Defined as less than 95% of subjects having the same SM value.
(3) The SM did not contain an extreme outlier value based on the most extreme value from the median.

(a) Specifically, a SM contained an extreme outlier if: max(Ys) greater than 100�mean(Ys), where Xs is
a vector of all subjects’ values for an SM s, and vector Ys = (Xs − median(Xs))

2.

The ABCD 2.0.1 release included a total of 64 148 SMs. After applying these criteria, 5699 SMs were
dropped due to criteria one, 2765 due to criteria two and 41 383 due to criteria three, for a total of
49 847 SMs dropped, resulting in 14 301 out of the original 64 148 SMs passing as quantitatively
appropriate for our analysis. For a list of all SMs and why they were dropped according to the
quantitative criteria, see electronic supplementary material, file 1.

From the remaining 14 301 SMs, we then identified ABCD SMs to include in our study via a one-to-
one matching of the remaining ABCD SMs with the 461 HCP SMs published by the original authors
(https://www.fmrib.ox.ac.uk/datasets/HCP-CCA/). When possible, exact SM matches were selected
(for example, both studies used the NIH Toolbox, and thus have identical SMs for this construct);
otherwise, SMs were selected to be as similar as possible. Where multiple candidate matching SMs
were present, we included all reasonable matches. This one-to-one matching identified 89 ABCD SMs
which were deemed to be exact or approximate matches to HCP SMs in the original study.

In the original study, a total of nine confound variables were identified and regressed out of the SM
matrix (reconstruction software version, head motion, weight, height, systolic and diastolic blood
pressures, haemoglobin A1C level, brain volume and intracranial volume) [6]. However, some of these
SMs were not available in the ABCD dataset or were deemed unsuitable by the quantitative exclusion;
specifically, the ABCD dataset did not contain the systolic or diastolic blood pressures, haemoglobin
A1C, or quarter/release (i.e. the type of reconstruction software used) data for subjects. Subject height
was not included as a confound because it did not satisfy SM quantitative inclusion criteria three. In
addition, we included SMs for scanner manufacturers and ABCD scan sites to account for any site- or
scanner-dependent variation. Thus, the following ABCD SMs were identified as confounds to be
regressed out of the SM data prior to the analysis (the ABCD SM name, as listed on the NDA, is
given in parentheses):

1. Scanner site (abcd_site).
2. MRI scanner manufacturer (mri_info_manufacturer).
3. Mean frame displacement (remaining_frame_mean_FD).
4. Weight (antho_weight_calc).
5Actual sample size at this step was N = 5013. See §3.3 for details.
6Note that while the ABCD 2.0.1 release contains a sample size of 11 875 subjects, the DCAN Collection 3165 only contains imaging
data from 10 038 subjects.

https://www.fmrib.ox.ac.uk/datasets/HCP-CCA/
https://www.fmrib.ox.ac.uk/datasets/HCP-CCA/
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5. BMI (anthro_bmi_calc).
6. Cube-root of total brain volume (smri_vol_subcort.aseg_wholebrain).
7. Cube-root of total intracranial volume (smri_vol_subcort.aseg_intracranialcolume).

All 7 confound SMs were demeaned and any missing data were imputed as zero. Additional confounds
were generated by demeaning and squaring confound SMs 3–7, for a total of 12 confound variables. This
was done to account for any potentially nonlinear effects of these SMs [6]. These 7 confound SMs were
excluded from the CCA; however, they were regressed out of the SMs that were ultimately input to the
CCA. Smith et al. identified and excluded an additional 45 variables that were considered ‘undesirable’ as
they were ‘not sufficiently likely to be measures relating to brain function’ or ‘minor measures highly
correlated with more major-related measures’. We matched eight of our SMs with these variables (sex,
age, race, handedness, family income level, parent employment status, parent education level, parent
marital status). To be consistent with the original study, they were excluded from the analysis.

After excluding the seven confounds and eight undesirable SMs, 74 SMs remained for use as the
input to our analysis.7 At this point, we removed any subjects that were missing more than 50% of
the final 74 SMs (n = 2).8 Thus, the final SM matrix had dimensions 7810 by 74 (subjects-by-SMs).9

Although only this selected subset of 74 SMs was used as inputs in the CCA, we examined the
following 4 SMs in our post hoc positive–negative axis: BMI, age, household income level and parent
education level. These SMs were selected because they were analysed post hoc in the original study
and because we deemed the ABCD measures quantitatively appropriate for correlation analysis. BMI
and age are continuous variables whose magnitude has interpretable meaning. Household income
level and education level were factored such that higher scores correspond to higher income or higher
education level. For a list of the final 74 SMs, see appendix A; for the one-to-one ABCD/HCP SM
matching, see electronic supplementary material, file 2.
2.3.3. Group-ICA of ABCD resting-state fMRI data

Using the preprocessed resting-state scan data, we calculated a 200-dimension group-ICA functional
parcellation using FSL’s MELODIC tool [26]. We used MELODIC’s temporal concatenation option for
multi-session fMRI data (https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/MELODIC). After calculating the
group-ICA, we used FSL’s dual regression utility to derive the individual subject parcellated time
series. Specifically, dual-regression stage-1 was used to estimate the node-time series, in which the
200-dimension group-ICA map was used as a spatial regressor against the full time-series data for
each subject, estimating one parcellated time series per subject. The result is 200 nodes’ time series of
750 time points (for 600 s of scan time) for each subject. Finally, we derived the subject-level
functional connectivity matrices (netmats) via network modelling using the FSLNets toolbox (https://
fsl.fmrib.ox.ac.uk/fsl/fslwiki/FSLNets). Netmats were estimated for each of the 7810 subjects10 using
partial correlation with L2 regularization (rho = 0.01) via FSLNets’ Ridge Regression netmat option
(ridgep). The symmetric netmats had dimensions 200 × 200, where each entry of the matrix was a
number representing the strength of the edge between two nodes (indicated by the row and column
indices). The netmat values were converted from Pearson’s r values to z-scores via Fisher’s
transformation, and a group average partial correlation network matrix was estimated by averaging
the z-scored netmats across all 7810 subjects. Full correlation netmats were also calculated using
FSLNets’ full correlation option (corr), and a group average full correlation network was estimated by
averaging the z-scored full correlation netmats across all 7810 subjects.

As in Smith et al., the subject-level functional connectivity matrices were combined to create a single
subjects-by-edges matrix. This was accomplished by half-vectorizing each subject’s symmetric functional
connectivity matrix (200 dimensions) to obtain a vector of length n(n − 1)/2 (equal to 19 900 for n = 200
dimensions) per subject, and concatenating these subject-level vectors to produce the final subjects-by-
edges matrix with dimensions 7810 × 19 900.11 Preparation of this matrix can be accomplished with the
code provided in our project repository.
7Our revised subject filtering criteria resulted in 73 final SMs. The SM ‘resiliency_6b’ was removed for having too much missing data
(SM inclusion criterion 1).
8In our revised 5013 subject sample, no subjects were missing more than 50% of the final SMs (n = 0).
9Due to the change in sample size (see §3.3 for details) and SM exclusion the final dimensions of the SM matrix was 5013 × 73.
10The final sample was N = 5013, see §3.3 for details.
11Due to change in sample size, the final subjects-by-edges matrix had the dimensions 5013 × 19 900.

https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/MELODIC
https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/MELODIC
https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FSLNets
https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FSLNets
https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FSLNets
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2.4. Data analysis

2.4.1. Data preparation

The CCA pipeline was based on the code provided by the original authors at their website (https://
www.fmrib.ox.ac.uk/datasets/HCP-CCA/) and the steps described in the original study [6]. The
CCA script was validated through an exact computational replication of the original Smith et al. study
[10]. Aside from differing input connectome and SM data, sizes of matrices and confounds used, our
analysis is identical to that of the original study. We outline the analysis steps here for clarity (shown
graphically in figure 1).

The 7810 × 74 subjects-by-SM data matrix12 was imported into Matlab and stored in matrix S1. Matrix
S2 was formed from S1 by using a rank-based inverse Gaussian transformation, ensuring Gaussianity for
each SM. Matrix S3 was then generated by regressing out the 12 confound variables (see §2.3.2) out of
matrix S2.

In order to run the pre-CCA PCA reduction [6,8] on the SM data, it was first necessary to account for
missing data in matrix S3 (1.73% of data was missing). To do so, we estimated a subjects-by-subjects
covariance matrix one SM at a time for matrix S3, where, for any pair of two subjects, SMs missing in
either subject resulted in the comparison being ignored. The approximated covariance matrix was
then projected onto the nearest valid positive-definite covariance matrix using the nearestSPD toolbox
[27] in Matlab, resulting in matrix S4 (dimensions 7810 × 74), which had no missing data and thus
accounted for missing data without needing to impute missing SM values. There was a strong
correlation (r = 0.9999) between the before and after covariance matrices.

S4 was input to a 70-dimension PCA, generating matrix S5 which was the SM data matrix input to the
CCA. Although a 100-dimension PCA (as in the original study) was not possible due to having fewer
valid SMs than in the original study, Smith et al. noted that there were no statistically significant
differences in the final CCA model when the pre-CCA reduction of SMs and netmats was run with a
much smaller number of PCA components (specifically, 30 instead of 100).

The functional connectomes were processed in a similar manner. First, the 7810 × 19 900 subjects-by-
edges data matrix13 was imported into Matlab and stored in N0. From N0, two matrices (N1 and N2) were
generated, and then horizontally concatenated to form matrix N3. N1 was formed by first demeaning N0

column-wise, then globally variance normalizing the matrix. N2 was formed by normalizing each column
of N0 relative to its mean, followed by dropping any columns whose mean values were too low (less than
0.1), then demeaning the matrix column-wise and finally globally variance normalizing it. The 12
confound variables were then regressed out of N3, forming matrix N4. N4 served as the input to the
70-dimension PCA to reduce dimensionality, estimating the top 70 eigenvectors of the connectomes to
form matrix N5, which was the connectome data matrix input to the CCA.
2.4.2. Canonical correlation analysis

The CCA was run using the Matlab canoncorr function (from the Statistics and Machine Learning
Toolbox), using the 70-eigenvector matrices for the SMs (S5) and connectomes (N5) as inputs. The
CCA estimated 70 modes, optimizing de-mixing matrices A and B such that the resulting subject-
weight matrices U=N5

�A and V = S5�B (both had dimensions 7810 × 7014) were maximally similar to
each other. We then determined the correlation between the subject connectome and SM weights for
each of the 70 CCA modes by correlating the corresponding column pairs in matrices U and V. The
Pearson’s r value for each CCA mode indicated the strength for which a mode of covariation exists in
both the subject connectomes and SMs.

To estimate the significance of the correlation between the weights of each CCA mode (i.e. correlation
between the corresponding columns of matrices U and V ), we performed a 100 000 permutation-based
significance test in which the CCA was re-run on each permutation of the SM matrix to generate a null
distribution of CCA results. As in the original study, the permutations (preserving family structure) were
generated using the package hcp2blocks (https://github.com/andersonwinkler/HCP/blob/master/
share/hcp2blocks.m) [28].15 Sibships were determined based on subject zygosity and their parent/
family IDs; all related subjects were matched according to their family IDs. Within these family
12Due to a change in sample size and SM exclusion, the dimensions of S1 were 5013 × 73.
13Due to a change in sample size, the dimensions of N0 were 5013 × 19 900.
14Due to a change in sample size, the final dimensions of N5 and S5 were 5013 × 70.

https://www.fmrib.ox.ac.uk/datasets/HCP-CCA/
https://www.fmrib.ox.ac.uk/datasets/HCP-CCA/
https://www.fmrib.ox.ac.uk/datasets/HCP-CCA/
https://github.com/andersonwinkler/HCP/blob/master/share/hcp2blocks.m
https://github.com/andersonwinkler/HCP/blob/master/share/hcp2blocks.m
https://github.com/andersonwinkler/HCP/blob/master/share/hcp2blocks.m
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Figure 1. Outline of data analysis, highlighting the pre-processing stages for subject measures (left-hand side) and connectomes
(right-hand side) immediately prior to the CCA. N0–N5 and S1–S5 are the names of variables in our Matlab code.
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groupings, MZ twins were permuted, DZ twins were permuted, and non-twin siblings were permuted.
After the subject-level permutations were created, entire families that contained the same types of
sibships and number of children were permuted. As discussed in §2.1, to match the procedures of the
original study, any twins/triplets whose zygosity data were unavailable were treated as non-twin
siblings when generating permutations. Since there are many related subjects in the ABCD dataset
(1339 subjects were twins, 1245 were non-twin siblings) the family structure was maintained when
permuting so that a valid null distribution could be built.

The null distributions were used to calculate thresholds for significance in the percent variance
explained in the connectomes and SMs by each CCA mode. Specifically, the 5th and 95th percentiles
of variance in the null distributions were used to determine which of the first 20 CCA modes
explained a significant percentage of the total variance in the original SM (S2) and connectome (N0)
data matrices. Connectomes and SMs were analysed separately.
2.4.3. Post hoc analyses

To understand which SMs were most strongly correlated with the primary mode and determine the
directionality of the relationship (a positive or negative correlation), we generated a positive–negative
axis that quantified the level of variance explained by each SM. This analysis included the final 74
SMs that were input to the pre-CCA reduction, and 4 additional SMs (BMI, age, household income
level, parent education level; see appendix A) for a total of 78 SMs whose raw data were stored in a
new matrix, S7 (dimensions 7810 × 78 subjects-by-SMs).16 Matrix S8 was then calculated by regressing
the 12 confound variables (identified in §2.4.1) out of matrix S7 (similar to how matrix S3 was
originally calculated). We correlated each column of matrix S8 with the primary mode SM weights
(i.e. the first column of matrix V ) to find Pearson’s r values for each of the 78 SMs against the
primary mode, and then plotted these correlations on an axis. In addition to the Pearson’s r
correlation values, we calculated z-score for each SM and the percentage of variance in the primary
15Instead of using hcp2blocks, we used a modified version of this script to generate our permutation blocks. The code was modified to
handle data from multiple study sites, and can be found at https://github.com/andersonwinkler/ABCD/blob/master/share/
abcd2blocks.m.
16Due to a change in sample size and SM exclusion, the dimensions of S7 were 5013 × 77.

https://github.com/andersonwinkler/ABCD/blob/master/share/abcd2blocks.m
https://github.com/andersonwinkler/ABCD/blob/master/share/abcd2blocks.m
https://github.com/andersonwinkler/ABCD/blob/master/share/abcd2blocks.m
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CCA mode that was explained by each SM. The percent variance was calculated by solving the following
expression for each SM:

VarianceSMi ¼
variance(V1 � pinv(V1) � S8i )

variance(S8i )
;

where pinv() is Matlab’s pseudo-inverse function, vector V1 is a demeaned copy of the primary CCA
mode weights for SMs (a 7810 × 1 vector)17 and vector S8i (also a 7810 × 1 vector)18 is a demeaned
copy of the raw values for the ith SM in matrix S8.

To facilitate interpretation of our ICA and connectivity results, we submitted the nodes derived from
the group-ICA to a hierarchical clustering algorithm. As in Smith et al., we entered the group-averaged
full correlation network (all 200 nodes) into Ward’s clustering algorithm implemented in Matlab. The
low-dimensional results were then examined and assessed for correspondence with large-scale clusters
observed in Smith et al. (e.g. sensory, motor, dorsal attention and DMNs). To calculate the correlation
between the CCA connectome-modulation weights (from the initial CCA) and the original population
mean connectome, we first obtained the relative weights of involvement of the original set of
connectome edges by correlating the primary CCA mode connectome weight vector U1 (i.e. the first
column of matrix U ) against N0, resulting in the ‘full length’ edge weight vector AF1 (a 19 900 element
vector), effectively mapping the primary CCA mode onto the original connectome data matrix. AF1

was then correlated against the original population mean connectome.
In addition to the 100 000 permutation-based significance test of the main CCA result, a 80–20 split

train-test cross-validation was performed in which approximately 80% (approx. 6249) of subjects were
used in a ‘training’ CCA, and the remaining 20% (approx. 1562) of subjects were left out as a test
validation set.19 Since the ABCD dataset contains sibships, the training and test subsets were
generated without splitting any families across the subsets. To calculate the ‘training’ CCA, we
applied the same steps outlined in §2.4.1 to the training subset of the connectome and SM data to
calculate the de-mixing matrices Atrain and Btrain such that Utrain=N5,train

�Atrain and Vtrain= S5,train�Btrain.
We then evaluated the primary mode of the ‘training’ CCA to determine how similar it was to the

initial CCA result (the first CCA calculated with all 781020 subjects; see §2.4.2). The primary mode
weight vectors for connectomes and SMs (Utrain,1 and Vtrain,1, respectively) were correlated against the
primary mode weight vectors for connectomes and SMs from the original analysis (vectors U1 and V1).

To test the performance of the ‘training’ CCA, the CCA connectome and SM de-mixing matrices,
Atrain and Btrain, from the train dataset were multiplied into the left-out SM and connectome matrices
in order to estimate subject weight matrices Utest and Vtest for the test dataset. The subject weight
matrices were estimated as follows:

Utest � N5,test � Atrain

and

Vtest � S5,test � Btrain:

The matrices N5,test and S5,test were calculated from the testing subset of the connectome and SM data
via steps similar to those outlined in §2.4.1. The connectome and SM weight vectors for the primary
mode of the ‘testing’ CCA (i.e. the first column of Utest and Vtest, denoted Utest,1 and Vtest,1) were then
correlated. In order to measure the significance of correlation between the ‘testing’ CCA primary
mode connectome and SM weight vectors Utest,1 and Vtest,1, we performed a 1000-permutation test
(respecting family structure). This test-train and significance testing process was repeated 10 times,
each time with a randomly selected subset of test and train subjects, and the average correlation of
Utest,1 and Vtest,1 from all 10 runs was calculated.
17Due to a change in sample size, the dimensions of the vector were 5013 × 1.
18Due to a change in sample size, the dimensions of the vector were 5013 × 1.
19Due to a change in sample size, 80% of the sample was N =∼4010 and 20% of the sample was N =∼1003.
20Due to a change in sample size, the first CCA was calculated with 5013 subjects.
21After filtering based on our revised criteria, the final figures were as follows: 5013 subjects (47.9% male, 52.1% female). Age in years
(mean, standard deviation, range): 9.99, 0.625, 9.0–10.21. Race: 59.6% White, 10.4% Black, 17.5% Hispanic, 1.9% Asian, 10.5% Other.
Sibships: 360 MZ, 514 DZ, 810 non-twin siblings (687 siblings+111 twins missing zygosity+12 triplets), 3329 single. See §3.3 for more
information.
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Figure 2. Correlation between SM (subject measures) and connectome weights for CCA Mode 1 (r = 0.53, permutation p < 10−5)
and Mode 2 (r = 0.44, p < 10−5). Each dot represents one subject (n = 5013). As an example SM, points are coloured by subjects’
fluid cognition score as measured by the NIH Toolbox.
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2.5 Code availability
The code to run this entire pipeline is available on this project’s Github repository (https://github.com/
nih-fmrif/abcd_cca_replication). We have also uploaded a compressed archive of the code in the Github
repository to the OSF project (http://doi.org/10.17605/OSF.IO/HMC35) which also contains the full
text of the pre-registration. Questions about the code may be posted as issues on the github project or
emailed to the corresponding author directly.
3. Results
3.1. Canonical correlation analysis
The CCA yielded four modes whose correlation between the SMs and connectomes weights were
statistically significant by permutation test (Mode 1: r = 0.53, p < 10−5; Mode 2: r = 0.44, p < 10−5; Mode
3: r = 0.26, p < 10−4; Mode 4: r = 0.25, p < 0.01, corrected for multiple comparisons of all modes).
Scatterplots in figure 2 illustrate the relationship between SM and connectome weights in CCA Modes
1 and 2 (see electronic supplementary material, figure S1, for Modes 3 and 4). Following the approach
of Smith et al., we colour the points by an example SM; here we chose fluid cognition as measured by
the NIH Toolbox as it was most similar to the fluid intelligence measure used in fig. 1b from Smith
et al. While fluid cognition does not appear to be associated with the relationship between SM and
connectome weights in Mode 1, we observed a positive relationship in Mode 2 such that subjects with
greater Mode 2 weights for both SMs and connectomes have higher fluid cognition scores. However,
the relationship between CCA weights and fluid cognition in figure 2 is meant to be qualitative. In
our post hoc positive–negative axis analysis we quantitatively relate all SMs to the primary CCA mode.

We next examined the variance from the full SM and connectome matrices explained by the CCA
modes by converting the Pearson’s r correlation values between the CCA weights and the demeaned
SM and connectome matrices to R2. We then compared the observed R2 values to the null distribution
of R2 values obtained from our permutation test in which we shuffled the SM matrix 100 000 times.
z-scores for the observed R2 values were calculated by subtracting the observed R2 from the mean of
the null R2 distribution divided by the null standard deviation of R2 values. For the connectome
matrix, Modes 1 and 2 explained a significant amount of variance compared to the permutation-test
derived null distribution (Mode 1: 0.096% variance explained, Z = 2.99; Mode 2: 0.097% variance
explained, Z= 3.16). For the SM matrix, Modes 2 and 3 explained a significant amount of variance
(Mode 2: 5.58%, Z = 8.56; Mode 3: 3.23%, Z = 3.64). Figure 3a,b shows the connectome variance and
SM variance explained for each of the top twenty modes.

From these results, we determine that Mode 2 is the primary, ‘strongest’ mode according to our
replication criteria (see §1.3.1), since it maximally explains variance in both SM and connectome
matrices (criterion 1) and exhibits a statistically significant correlation between SM and connectome

https://github.com/nih-fmrif/abcd_cca_replication
https://github.com/nih-fmrif/abcd_cca_replication
https://github.com/nih-fmrif/abcd_cca_replication
http://doi.org/10.17605/OSF.IO/HMC35
http://doi.org/10.17605/OSF.IO/HMC35
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weights (criterion 3). The z-score for SM variance explained by Mode 2 was greater than the next highest
z-score by more than a factor of 2 (criterion 2).

The only replication criterion not met is criterion 2, which addressed the variance explained by the
connectome and SM weights. We expected that the connectome variance explained by the primary
CCA mode would be a factor of 2 greater than the next highest mode. Instead, we observed that
Modes 1 and 2 explained similar amounts of variance in the connectomes (Mode 1: Z = 2.99, Mode 2:
Z = 3.16). Although not part of our criteria, we did note that both of these z-scores were a factor of 2
larger than Mode 3 (Z = −0.34). With regard to the SM matrix, we expected the primary mode’s
variance explained z-score to be a factor of 3 larger than the next highest mode. Instead, we observed
that the z-score of Mode 2 (8.56) was a factor of 2.35 greater than the next highest mode (Mode 3:
Z = 3.64). Thus while our results are numerically similar to our expectations, the magnitude of
variance explained by the primary CCA mode did not reach our a priori hypotheses.

To validate the CCA results, which were calculated on the full SM and connectome matrices, we then
submitted the data to a 80–20 train-test split cross-validation procedure. Here we implemented a CCA on
80% of the sample and then estimated the subject weight vectors for Mode 2 in the left-out 20%. The
weight vectors were then correlated and compared against 1000 permutations where we shuffled the
SM matrix and performed the same analysis. This procedure was repeated 10 times. The mean
correlation between Utest and Vtest was 0.22 ± 0.03, whereas the mean correlation for the permutation
was 0.002. In all 10 iterations, the cross-validated correlations were significantly different from the
null-permuted correlations ( p < 0.001), thus confirming our main CCA results. Further, our 80–20
train-test split results are numerically similar to the results from Smith et al. (i.e. mean correlation
between Utest and Vtest in the original paper was 0.25). Notably, while still statistically significant, the
mean correlation between the Utest and Vtest (r = 0.22) is smaller than the corresponding correlation
from the full CCA (r = 0.44). We attribute this decrease in correlation to the possibility that the CCA
model defined on the full dataset may be overfit and a generalizable correlation between canonical
variates would likely be smaller in magnitude.
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The results presented thus far used data from a preprocessing pipeline that removed structured
artefacts using an ABCD-trained ICA-FIX classifier. However, to remain as close to the original study
as possible, we also repeated the main CCA and variance analysis on data preprocessed with an ICA-
FIX classifier trained using data from the HCP. While there were small numeric differences in the
results from these two pipelines, the overall findings are consistent, suggesting that our results are not
dependent on which ICA-FIX classifier we use. See electronic supplementary material, S2.3.

3.2. Post hoc analyses
We next sought to determine the relationship between the CCA modes and specific SMs and connectome
edges. Here we focus on Mode 2 as this is the primary mode according to our replication criteria (see
§1.3.1).

As in Smith et al., we found a positive–negative axis where positively valenced SMs (e.g. measures of
neurocognition, memory, executive function, parental education) correlated positively with the CCA
mode, whereas negatively valenced SMs (e.g. Child Behaviour Checklist ADHD, rule breaking
behaviour, conduct disorder) correlated negatively with the CCA mode. Interestingly, no negatively
valenced SMs were on the positive end of the spectrum and no positively valenced SMs were found
on the negative end. See figure 4 for a depiction of the ABCD positive–negative axis for Mode 2 and
electronic supplementary material, figure S2, for an unthresholded positive–negative axis that includes
all SMs. Further, we also find consistent positive–negative axis results in the HCP-trained ICA-FIX
pipeline. See electronic supplementary material, figure S5, for the axis thresholded at r = ±0.2 and
electronic supplementary material, figure S6, for the unthresholded axis.

Finally, we examined the relationship between specific connectome edges and the primary CCA
mode (Mode 2). Here we calculated correlations between subject-specific connectomes and the
connectome weights from the primary CCA mode. Figure 5 shows the top 30 edges most strongly
related to the primary mode, with node clusters derived from clustering the full set of connectomes
using Ward’s clustering algorithm. In figure 5 we observe that a variety of nodes are represented
within the strongest edges, including sensory regions as well as higher-order association cortices
topographically similar to the posterior midline and temporo-parietal regions of the DMN.
Interestingly, compared to Smith et al. we do not observe a clear organization in which all nodes
topographically similar to the DMN (e.g. nodes 2, 5, 8, 10, 11, 14, 20, 23, 26 in figure 5) are clustered
together. Instead, these nodes are spread out among different clusters; however, as in Smith et al., the
connectome edges between these nodes are all positively related to the primary CCA mode. See
electronic supplementary material, figure S7, for the top 30 strongest edges associated with the
primary mode in the HCP-trained ICA-FIX pipeline.

3.3. Deviations from protocol
On closer inspection of the ABCD dataset, we realized that deviations from our pre-registration were
necessary to more closely adhere to the analysis methods used in Smith et al. All of the deviations
detailed below were made while preprocessing the data. The final CCA mode calculation, on which
successful replication was defined, was not conducted prior to the deviations and did not influence
our decisions. The accepted Stage 1 protocol is available on the project’s Open Science Foundation
page (http://doi.org/10.17605/OSF.IO/HMC35).

In our pre-registration, we planned to use the fully preprocessed and concatenated ABCD resting-
state data distributed by DCAN. The DCAN pipeline removes motion and respiratory artefacts
through nuisance regression and filtration [21], whereas Smith et al. removed structured artefacts
using ICA + FIX [23,24]. If we were to run ICA + FIX on the already ‘cleaned’ preprocessed DCAN
pipeline data, this would be a significant departure from the methods of Smith et al. We, therefore,
decided to use the DCAN’s BIDS-formatted input data and their abcd-hcp-pipeline (https://github.
com/DCAN-Labs/abcd-hcp-pipeline, v. 0.0.1) to do preprocessing in accordance with the HCP
recommended minimal processing (the first stages of the DCAN pipeline are a wrapper for the HCP
minimal pipeline, which was used in Smith et al.).

In our stage 1 pre-registered manuscript, we failed to specify which ICA-FIX classifier we would use
to classify and remove structured artefacts. Therefore we elected to run two versions of our pipeline: one
using an ICA-FIX classifier that we trained using ABCD data and another using the ICA-FIX classifier
distributed with the ICA-FIX software which was trained using HCP data. We present the results
from the ABCD-trained ICA-FIX pipeline in the main paper and the HCP-trained ICA-FIX pipeline in

http://doi.org/10.17605/OSF.IO/HMC35
http://doi.org/10.17605/OSF.IO/HMC35
https://github.com/DCAN-Labs/abcd-hcp-pipeline
https://github.com/DCAN-Labs/abcd-hcp-pipeline
https://github.com/DCAN-Labs/abcd-hcp-pipeline
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Figure 4. The SMs most strongly related to the CCA Mode 2 are organized by correlation value. SMs were thresholded at r = ± 0.2.
SM label font size corresponds to the amount of SM variance explained by the CCA mode (smallest font = 4%, largest font = 38%).
Blue font colour indicates that the SM was included in the CCA; grey indicates that the SM was not included.
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S2.3 of the electronic supplementary material. See S1.1 in the electronic supplementary material for
information regarding ICA-FIX classifier signal and noise component classification performance and
methods regarding training our own classifier.

Since we elected to not use the preprocessed, concatenated fMRI time series included in the DCAN
ABCD release, it was necessary to examine the quality of the four individual fMRI runs for each subject
before passing them to ICA-FIX. Here we noticed many runs had low numbers of time points (i.e. less
than the full acquisition protocol) and/or high mean framewise displacement (FD) values, which
could lead to spurious results. Thus, we applied the following revised data inclusion criteria. The
addition of the following inclusion criterion 1 is the only deviation in inclusion proctol. Inclusion
criteria 2 and 3 remained the same as the pre-registered protocol.
1. Subject must have at least two ‘good’ runs of resting-state data (see below).
2. Subject must have a total of at least 10 min (600 s, 750 time points) of post-censoring resting-state data

(see below for time point censoring criteria).
3. Subject must have at least one T1-weighted image that passes QC and protocol compliance metrics

provided by ABCD.
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Figure 5. The 30 connectome edges most strongly correlated with CCA Mode 2. Nodes are organized according to a hierarchical
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Using published studies that use the ABCD fMRI data as a guide [11,29,30], a resting-state run was
deemed ‘good’ if it met all of the following criteria:
1. Mean FD for the run is less than 0.3 mm.
2. The pre-censoring run length (i.e. length of the raw scan) is at least 50% of the expected length of 380

time points (i.e. it must be at least 190 time points, or approximately 150 s long).
Runs that passed the above criteria were then submitted to ICA-FIX to remove structured artefacts.
Censor files were then created using an FD threshold of 0.3 mm. To create the censor files, we used
head motion parameters generated during pre-processing to flag time points that exceeded an FD of
0.3 mm for removal. In addition, segments of the time series were also flagged for removal if fewer
than 5 consecutive time points had an FD displacement below the threshold. After ICA-FIX, runs
were censored (i.e. time points flagged for removal were removed from the time series) and
concatenated. Finally, we truncated the time series to 10 min for all subjects.

After the 10 038 subjects in Collection 3165 were filtered according to the new criteria and only those
with ‘good’ time points were retained, 5013 subjects remained as possible candidates for our analysis.
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This sample is smaller than the 7810 described in our pre-registered protocol because our new analysis
excluded individual runs that lacked sufficient time points or exceeded a mean FD of 0.3 mm.

The SM filtering protocol was unchanged. However, given the revised sample of 5013 subjects,
SM ‘resiliency_6b’ was removed for having too much missing data (i.e. failed to meet SM inclusion
criterion 1; see §2.3.2), leaving 73 final SMs. No subjects in the new 5013 subject sample were dropped
due to missing 50% or more SM data.

Our final sample (N = 5013) had the following demographic breakdown: 47.9% male, 52.1% female;
age in years (mean, standard deviation, range): 9.99, 0.625, 9.0–10.21; race: 59.6% White, 10.4% Black,
17.5% Hispanic, 1.9% Asian, 10.5% Other; sibships: 360 MZ, 514 DZ, 810 non-twin siblings (687
siblings + 111 twins missing zygosity + 12 triplets), 3329 single.
rnal/rsos
R.Soc.Open

Sci.9:201090
4. Discussion
In this study we have shown that a single axis of co-variation spanning ‘positive’ and ‘negative’ attributes
links diverse participant characteristics with specific patterns of brain connectivity in 9- and 10-year-old
children. We set out to replicate the landmark paper from Smith et al., which used the HCP dataset to
examine the multidimensional relationship between functional brain network organization at rest and
a variety of SMs, including metrics of cognitive function and lifestyle. Using CCA, the authors found
a primary mode of correlation that explained a statistically significant amount of variance in both the
functional connectomes and SMs. Further, when correlating the primary mode with specific SMs, the
authors found that these correlations were organized along a positive–negative axis, such that
positively valenced SMs (e.g. fluid intelligence) exhibited a positive correlation with the primary CCA
mode, and the negatively valenced SMs (e.g. anger) exhibited a negative correlation. The authors also
found that connectivity within the DMN was positively correlated with the primary CCA mode.

Our analysis met 2 of the 3 strict numerical replication criteria described in our pre-registration (see
§1.3.1). For our first criterion, we found that Mode 2 of our CCA explained a significant amount of
variance in both the connectome and SM matrices, according to a permutation test. For our third
criterion, the connectome and SM CCA weights for Mode 2 exhibited a statistically significant positive
correlation. Only our second criterion was unsuccessful. We expected that the primary CCA mode
would explain a majority of the variance relative to the other modes, as indicated by z-scores of a
factor of 2 for the connectome matrix and a factor of 3 for the SM matrix greater than the next largest
z-score. In hindsight, we would judge the specific numeric magnitude factor criteria as overly
conservative and not necessarily a critical finding of the original study. Further, one noteworthy
difference between our findings and Smith et al. is that the primary mode in the original paper was
Mode 1, whereas we observed Mode 2 as primary. CCA modes are ordered according to the
magnitude of correlations between the corresponding linear low-rank projections of the left and right
input matrices—that is, mode order relies on the strength of the relationship between the canonical
variates [8]. While our criterion 3 for a successful replication dealt with the statistical significance of
the correlation between these canonical variates, our criteria 1 and 2 focused on the variance that the
CCA modes explained in the original SM and connectome matrices separately. Thus, while our
observed Mode 1, by definition, explained the most variance in the relationship between SM and
connectome matrices, Mode 2 was more successful at explaining the variance in each matrix separately.
As a result, Mode 2 met our criteria for the primary mode. Further, while Smith et al. found a single
statistically significant mode, we found four, though only one met our criteria as primary. Subsequent
work examining the multidimensional relationship between brain imaging and SMs suggests that
multiple interpretable modes may exist and account for a variety of brain-behaviour dimensions
[31,32]. Despite the difference in which mode was primary, in our view our analysis shows that 9- to
10-year-old children exhibit the same basic phenomenon that was reported by Smith et al. in young
adults: a surprising amount of variation in brain connectivity can be explained by a single axis of
‘positive’ and ‘negative’ attributes.

Further, our analysis has shown that this brain-behaviour relationship is robust to significant
heterogeneity in acquisition and analyses. First, the HCP dataset used in the original study was
collected at a single site on a single scanner [7], whereas the ABCD dataset was collected across
21 sites throughout the USA and multiple scanner manufacturers and models [15]. Second, we have
shown that our findings remain consistent through two preprocessing pipelines: one which removed
structured artefacts using an ICA-FIX classifier trained on ABCD data and another which leveraged
the ICA-FIX classifier trained on the HCP dataset, which was used in the original study. With such
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heterogeneity in the ABCD dataset relative to the HCP dataset, it is surprising that the results from Smith
et al. replicate so well, since previous work has shown poor reliability when combining data from
multiple sites using methods such as intraclass correlation coefficient [33]. While we did observe a
lower correlation between SM and connectome weights compared to Smith et al. (original study: r =
0.87; current study: r = 0.44, for the primary mode), it is possible that the current analysis is not as
susceptible to heterogeneity compared to other methods [33] since the data undergo both
deconfounding and dimensionality reduction prior to the CCA (which is itself another form of
dimensionality reduction between two sets of data [8]). The conceptual replication of a finding that
originated using a relatively homogeneous dataset such as HCP within the more heterogeneous
ABCD dataset offers hope in the face of the so-called replication crisis in psychological science more
broadly [34].

The findings from Smith et al. are also robust to the many differences in demographics between the
subjects of HCP versus those of ABCD. The ABCD dataset attempts to reflect the race and ethnicity
breakdown of the United States in general [35], whereas the HCP dataset is comparatively more
homogeneous [7]. Moreover, the current study extends the results from the young adults (ages 22 to
35 years) of HCP into the 9- and 10-year-old baseline sample of ABCD. Thus, we find that a primary
mode of correlation between functional connectomes and SMs generalizes across multiple sources of
variability in data acquisition and subject demographics, suggesting that this high-dimensional
relationship may in fact be characteristic of general human cognition.

As in the original study, we also found evidence for a positive–negative axis linking specific SMs
to the primary CCA mode. Here SMs typically regarded as positive qualities (e.g. working memory,
executive function, parental income) were positively correlated with the primary mode, whereas
SMs typically regarded as negative qualities (e.g. conduct disorder, ADHD symptoms, rule-
breaking behaviour) were negatively correlated with the primary mode. Smith et al. noted that
the primary mode could be evidence for a neural correlate of the general intelligence g factor
[36]. Interestingly, SMs on the positive end of the axis included both measures of neurocognition
as well as two parental measures (highest level of education and income) that have been
identified by the World Health Organization as key factors in the Social Determinants of Health
[37]. They also serve as proxy measures of socioeconomic status (SES) which has been previously
shown to have a strong relationship with brain function [38,39]. SES is a multidimensional
construct [39] and many of the relationships between SES and brain function are nonlinear and/
or moderated by other factors [40,41], which warrants some caution in the interpretation of
the current study. However, the fact that these measures were among the strongest correlations
with the dominant mode demonstrates a need for expanding variables related to the social
determinants of health in future studies to complement and contextualize standard
neurocognitive and clinical measures.

On the negative-correlation side of the positive–negative axis, the appearance of clinical measures
such as subscales of the Child Behaviour Checklist [42] for ADHD, conduct disorder, rule-breaking
behaviors and externalizing symptoms are of particular interest since many symptoms of behaviour
disorders emerge during adolescence [43]. Future work should determine the predictive accuracy of
this axis. For example, the ability to predict behaviour disorder symptoms from functional
connectivity (and vice versa) could be of great utility to clinicians. In addition, future work should
extend this analysis into younger children to examine a possible dynamic emergence and clinically
predictive accuracy of the positive–negative axis.

Finally, we also found a specific pattern of functional connectivity edges that was related to the
primary CCA mode. The nodes whose edges were most strongly correlated with the CCA included
nodes topologically similar to sensory areas and the DMN. As in Smith et al., we found that
connectivity within the DMN was positively correlated with the primary CCA mode. The DMN
is a network of distributed brain regions implicated in introspective and abstract thought, social
cognition and autobiographical memory [44]. However, while Smith et al. found nodes
representing a broad swath of the DMN within the edges most strongly related to the CCA
mode, we only found that edges between nodes within the posterior midline and temporo-
parietal areas were most strongly related to the CCA mode. Further, while the default mode
nodes in Smith et al. all clustered together, we observed that these nodes were represented in
multiple clusters.

This is consistent with the findings on the development of the DMN and higher-order association
cortices in general, such that these regions undergo a protracted development into early adulthood
[45]. That is, with age the DMN shifts from a weakly connected set of nodes to a cohesive network,
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which could relate to the development of increasingly complex and abstract cognitive abilities [46]. We
speculate that the aforementioned SES measures are relevant to the instantiation and subsequent
development of the brain’s DMN and that the positive–negative axis strengthens throughout
development, which could serve as a biomarker for at-risk children and adolescents. However, since
we only observe that nodes within a subset of the DMN are most strongly related to the primary
mode and that the baseline ABCD sample is a relatively narrow age range (i.e. 9- to 10-year-olds), it is
possible that we are only tapping into one slice of a dynamic developmental process. Future work
should leverage the upcoming longitudinal releases within ABCD to examine the relationship between
functional connectivity edges and a primary CCA mode across adolescence, as well as the relationship
between SMs and the development of the DMN.

In conclusion, the current study sought to replicate Smith et al. and extends their findings into the
more heterogeneous ABCD dataset. We found a primary mode of correlation between brain functional
connectivity and SMs meeting two of three pre-registered numerical criteria. We also found evidence
of the positive–negative axis first reported by Smith et al. where positive SMs were positively
correlated with the primary mode and negative measures were negatively correlated. Finally, like
Smith et al., we also found that connectivity within regions of the DMN were positively correlated
with the primary mode, although this pattern of results in the ABCD dataset was not as dominated
by default mode, and connections involving several other brain regions emerged as significantly
linked to the primary mode; this may reflect developmental differences. The current study is situated
within more recent efforts to examine the multidimensional relationship between multiple imaging
derived phenotypes, physiological measures, genomics and behaviour showing interpretable modes
related to phenotypes such as fluid intelligence, handedness and cardiovascular disease [29,30]. The
ABCD dataset contains a similar diverse array of measures spanning these different modalities. Here
we have demonstrated the feasibility of these ICA-based methods with this unique developmental
dataset. Given the robustness of the current replication, we expect future studies (using more
modalities and more recent approaches to data fusion) will show both replication of previous results
(e.g. handedness) and discover new, interpretable modes of variation in brain structure and function
related to child and adolescent development.
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Appendix A. Subject Measures
The final 74 subject measures used as input to the CCA were:

nihtbx_picture_uncorrected, nihtbx_picture_agecorrected, nihtbx_cardsort_uncorrected, nihtbx_cardsort_
agecorrected, nihtbx_flanker_uncorrected, nihtbx_flanker_agecorrected, nihtbx_reading_uncorrected,
nihtbx_reading_agecorrected, nihtbx_picvocab_uncorrected, nihtbx_picvocab_agecorrected, nihtbx_
pattern_uncorrected, nihtbx_pattern_agecorrected, nihtbx_list_uncorrected, nihtbx_list_agecorrected,
fhx_ss_momdad_depression.bl, fhx_ss_parent_depression.bl, fhx_ss_momdad_drugs.bl, fhx_ss_parent_drugs.bl,
fhx_ss_momdad_alc.bl, fhx_ss_parent_alc.bl, nihtbx_fluidcomp_fc, pea_wiscv_trs, pea_wiscv_tss,
lmt_scr_num_correct, lmt_scr_rt_correct, lmt_scr_num_wrong, pea_ravlt_sd_listb_tc, resiliency_6a,
resiliency_6b, fhx_ss_momdad_trouble.bl, fhx_ss_parent_trouble.bl, fhx_ss_momdad_nerves.bl, fhx_ss_
parent_nerves.bl, fhx_ss_momdad_suicide.bl, fhx_ss_parent_suicide.bl, cbcl_scr_syn_anxdep_r, cbcl_scr_
syn_anxdep_t, cbcl_scr_syn_withdep_r, cbcl_scr_syn_withdep_t, cbcl_scr_syn_somatic_r, cbcl_scr_syn_
somatic_t, cbcl_scr_syn_thought_r, cbcl_scr_syn_thought_t, cbcl_scr_syn_attention_r, cbcl_scr_syn_
attention_t, cbcl_scr_syn_aggressive_r, cbcl_scr_syn_aggressive_t, cbcl_scr_syn_rulebreak_r, cbcl_scr_
syn_rulebreak_t, cbcl_scr_syn_internal_r, cbcl_scr_syn_internal_t, cbcl_scr_syn_external_r, cbcl_scr_syn_
external_t, cbcl_scr_syn_totprob_r, cbcl_scr_syn_totprob_t, cbcl_scr_dsm5_depress_r, cbcl_scr_dsm5_
depress_t, cbcl_scr_dsm5_anxdisord_r, cbcl_scr_dsm5_anxdisord_t, cbcl_scr_dsm5_somaticpr_r,
cbcl_scr_dsm5_somaticpr_t, cbcl_scr_dsm5_adhd_r, cbcl_scr_dsm5_adhd_t, cbcl_scr_dsm5_conduct_t,
snellen_va, snellen_aid, asr_scr_anxdisord_r, fhx_ss_momdad_hospitalized.bl, fhx_ss_parent_hospitalized.bl,
fhx_ss_momdad_professional.bl, fhx_ss_parent_professional.bl, neurocog_pc1.bl, neurocog_pc2.bl, neurocog_
pc3.bl.
Descriptions of these 74 SMs are available in the ‘Final 74 SMs’ sheet of electronic supplementary

material, file 2.
The 7 confound SMs which were regressed out were:
Scanner site (abcd_site), MRI scanner manufacturer (mri_info_manufacturer), mean frame displacement

(remaining_frame_mean_FD), BMI (anthro_bmi_calc), Weight (antho_weight_calc), cube-root of total brain
volume (smri_vol_subcort.aseg_wholebrain), cube-root of total intracranial volume (smri_vol_subcort.
aseg_intracranialcolume).

The following 4 SMs were used in the positive–negative axis (in addition to the 74 SMs fed into the
CCA); the SM variable name is given in parentheses:

BMI (anthro_bmi_calc), age (age), household income level (household.income.bl), parent education level
(high.educ).
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