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Is it time to put rest to rest?
Highlights
Studying brain function at rest – that is,
absent any experimenter-imposed task
– has grown immensely popular over
the last few decades and now
accounts for a large share of human
neuroimaging research.

While resting-state research gave us
new analysis methods and a broadened
perspective on brain functional architec-
ture, it suffers from fundamental limita-
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The so-called resting state, in which participants lie quietly with no particular inputs
or outputs, represented a paradigm shift from conventional task-based studies in
human neuroimaging. Our foray into rest was fruitful from both a scientific and
methodological perspective, but at this point, how much more can we learn from
rest on its own? While rest still dominates in many subfields, data from tasks have
empirically demonstrated benefits, as well as the potential to provide insights
about the mind in addition to the brain. I argue that we can accelerate progress in
human neuroscience by de-emphasizing rest in favor of more grounded experi-
ments, including promising integrated designs that respect the prominence of
self-generated activity while offering enhanced control and interpretability.
tions that place a ceiling on the insights
we can draw from it.

Data acquired during tasks have
empirical benefits, including en-
hanced interpretability and sensitivity
to brain–behavior relationships.

At this point, progress in human neuro-
science is most likely to come from
third-wave paradigms that reintroduce
task-like manipulations and/or pair imag-
ing data with additional measurements,
providing more anchor points for under-
standing the brain and mind.
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From task, to rest, to a third wave in human neuroimaging
The phenomenon of so-called resting-state activity in the human brain has revolutionized how we
acquire and analyze neuroimaging data and yielded breakthroughs in our understanding of brain
function. Since structured activity in the absence of any explicit task was first describedmore than
two decades ago, studying the brain at rest has elucidated principles of macroscale brain orga-
nization, shed light on the balance between spontaneous and evoked activity, and revealed the
extent to which behaviorally relevant patterns of brain function are trait- versus state-like,
among other discoveries. But at this point, how much more do we have to learn from rest alone?

Here, I argue that just as rest represented a paradigm shift from the first wave of traditional task-
based approaches, the time is now ripe for another shift– this time toward a third wave of para-
digms that marry the broadened perspective and methodological toolkit we gleaned from our
foray into rest with the enhanced control and interpretability afforded by tasks. First, I critically
re-examine common uses of rest and argue that moving toward task-based acquisitions (broadly
defined) will accelerate progress in areas that have been dominated by rest in recent years,
including characterizing brain functional organization and brain–behavior relationships. Next, I
elaborate on another point in favor of task data, namely that these data can speak to brain–
mind relationships in addition to, and in combination with, these two goals. Finally, I consider
the most promising modern task paradigms, including integrated designs that blend the best
of both the resting-state and task-based worlds.

Re-examining the supposed advantages of rest
After a somewhat slow start [1–3], resting-state (see Glossary) acquisitions, in which subjects lie
quietly with no externally imposed task or stimulation, have captured an impressive share of the
human neuroimaging market. An online search via dimensions.ai revealed that in 2008, the
term resting state appeared in roughly 4% of all scholarly sources containing the term fMRI in
the title or abstract (85/2132), while in 2020 this was up to 33% (1620/4962). Rest is convenient
to collect and easy to share, making it an attractive option, especially in the age of large-scale data
collection and discovery science. Compared to the highly constrained task paradigms that dom-
inated the first wave of neuroimaging, rest has many touted benefits. But do these hold up to
scrutiny?
Trends in Cognitive Sciences, December 2021, Vol. 25, No. 12 https://doi.org/10.1016/j.tics.2021.09.005 1021
© 2021 Elsevier Ltd. All rights reserved.

https://thefinnlab.github.io
https://twitter.com/esfinn
http://crossmark.crossref.org/dialog/?doi=10.1016/j.tics.2021.09.005&domain=pdf
https://doi.org/10.1016/j.tics.2021.09.005
CellPress logo


Trends in Cognitive Sciences

Glossary
Default mode: collection of internally
driven mental states, commonly linked
to concepts such as self-referential
thinking, autobiographical memory,
daydreaming, mind-wandering, and
social cognition.
Default-mode network: functional
neuroanatomy associated with the
default mode, typically including
posterior cingulate cortex/precuneus,
medial prefrontal cortex, and lateral pari-
etal cortex. Also called default network.
Experience sampling: a technique
that presents forced-choice or open-
ended probes at various intervals that
ask subjects to report their ongoing
thoughts or experiences just prior to the
probe.
Functional connectivity: a family of
approaches for characterizing statistical
dependencies between activity time
courses from different spatial locations in
the brain. Rather than the magnitude of
activity in single regions (first order), in
functional connectivity, the measure of
interest is relationships between regions
(second order), which capture the
degree to which regions tend to fluctu-
ate together.
Intersubject correlation: an analysis
technique that leverages an identical
time-locked stimulus across subjects to
explore spatiotemporal signatures of
shared processing. Typically calculated
as the correlation between activity time
courses in single regions (e.g., region A’s
Rest data are not unique in how they can be analyzed
First, it is important to acknowledge that a major benefit of the resting-state second wave was
that it broke us out of the traditional analysis mode, which was dominated by task design and
the general linear model, and spurred us to develop more powerful ways to find structure in our
high-dimensional neuroimaging data. Many would agree that the most popular family of ap-
proaches, functional connectivity, has revolutionized how we think about the brain [4]. As it
turns out, evoked activity that is precisely locked to task timings is only the tip of the iceberg for
the signals we record (Figure 1). The explosion of methods for characterizing the remainder of
the variance has opened up new fields within neuroscience and yielded fundamental insights
into brain organization and the neural code.

But although it took the blank slate of rest to inspire these creative tools, rest is by no means the
only type of data on which we can use them. Most functional connectivity techniques can be just
as validly applied to data acquired during a task. In fact, task-based connectivity is in many cases
more meaningful and informative than resting-state connectivity (see the following sections for
specific examples, and Box 1 for considerations when using task data in functional connectivity
analyses). While rest is sometimes considered uniquely valuable for multimodal and cross-
species work, see Box 2 for a critical re-examination of this perspective.

Thus, a desire to use functional connectivity is no longer, and has never been, a good reason to
scan at rest. It is unfortunate that terms like 'resting-state networks' have become ingrained in our
vocabulary when we have known from the beginning that these networks are just as present and
identifiable during tasks, if not more so. Simply calling them 'functional networks' would be more
accurate and appropriate, and might help promote the collective acknowledgment that struc-
tured brain dynamics, and the tools used to characterize them, extend to almost any observable
brain state.

Does rest provide unique insights into functional organization?
One way that rest data are commonly used is to map the functional organization of the brain. Re-
gions with coherent signal fluctuations are grouped into networks whose topographical
Second wave: resting stateFirst wave: task paradigms Third wave: integrated designs
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Figure 1. From task, to rest, to a third wave in human neuroimaging. The first wave of functional neuroimaging
consisted largely of investigators (represented by the boat) using highly controlled task paradigms (represented by the
boxcar, denoting task on–task off periods) to attempt to isolate specific cognitive processes. While this approach could
generate and localize small ripples in brain activity, ultimately, it ignored a large fraction of variance that arose from task-
unrelated, seemingly spontaneous signals. In the second wave, investigators (represented by the submarine) dove
headlong into the depths to characterize the spatiotemporal structure of this resting-state activity. However, because we
had little to anchor our observations to, it was difficult to interpret these signals. The third wave calls for us to partially
resurface and regain some experimental control, while still respecting the importance of self-generated activity in dynamic
patterns of brain function.
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time series in subject 1 to region A’s time
series in subject 2), or the pattern of
activity across regions within each
timepoint (e.g., regions A–Z at time point
1 in subject 1, regions A–Z at time point
1 in subject 2). Related to intersubject
functional connectivity (e.g., region A’s
time series in subject 1 to region B’s time
series in subject 2).
Reactivation: re-expression of activity
patterns that occurred during encoding,
thought to support memory consolida-
tion. Can occur in hippocampus and/or
neocortex. Not necessarily sequential
(unlike replay).
Real-time neuroimaging: a brain–
computer interface that continuously
monitors a subject’s brain activity during
scanning, and uses features of this
activity for closed-loop paradigms such
as brain-state-triggered task events.
Replay: reoccurrence of a sequence
of neural activity that also occurred
during behavior, but on a faster
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Box 1. Functional connectivity on task-based data

Some have raised concerns that task-induced coactivations lead to spurious correlations in functional connectivity analy-
ses [115]. One proposed solution is to regress the task design (i.e., stimulus onsets) and calculate functional connectivity
on the residuals of this regression [116,117]. Depending on the task, this approach might be more or less feasible; for ex-
ample, it might be straightforward to model blocks in a finger-tapping task, but in a workingmemory task where the bulk of
the processing happens between external cues (and likely with dynamics that are not well modeled by a simple boxcar), it
is harder to see how one could plausibly remove all or even most task-related signal variance. Many tasks, even simple
ones, have anticipatory, attentional, and learning and/or adaptation effects that are not captured by a typical designmatrix,
even if the shape of the hemodynamic response is allowed to vary across brain regions, trials, and individuals
[115,118,119] (which is rarely done in practice). Despite all of this, empirically, it seems that using residualized versus
nonresidualized task connectivity often does not substantially alter the pattern of observed results [21,34,120]. If or how
task-evoked signals are handled should depend on the ultimate goal of the study, but should not be used as a reason
to avoid tasks in research using functional connectivity tools.

This issue may be another point in favor of naturalistic paradigms (e.g., movie watching or story listening). Thanks to a
shared, time-locked stimulus across subjects, one can take the group-average time course as an index of task-evoked
activity. This, being a full data-driven, largely model-free approach, likely captures much more of the task-related variance
than any classic forward model (i.e., design matrix). Investigators concerned with removing as much of the task-evoked
signal as possible could regress this average time course from each voxel or spatial region and use the residuals for func-
tional connectivity analyses.
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timescale. Typically associated with
the hippocampus.
Resting state: a passive acquisition
state inwhich subjects lie still and are not
instructed to think of or do anything in
particular. Can be eyes closed or eyes
open (in the latter case, subjects are
often asked to maintain visual fixation on
a central crosshair while blinking
normally). Here, the term pure rest is
used to describe an acquisition
consisting purely of a neuroimaging
timeseries, with no additional measure-
ments of behavior, physiology, etc.
Task: any externally imposed paradigm
that manipulates inputs to and/or
outputs from subjects. Here, task gen-
erally refers to scan conditions in which
subjects’ cognition is directed (or at least
sampled) by the experimenter in some
way. However, task in the common
sense of duty can also describe pure
rest, in that lying still and allowing one’s
mind to wander requires a good deal of
compliance and tends to encourage
certain types of mental activities.
properties, internal (within-network) dynamics, and external (between-network) dynamics can be
further studied. Rest was critical to our initial discoveries of this macroscale network architecture,
and many researchers continue to believe that rest is the best state in which to characterize func-
tional organization. Is this true?

One assumption, which was especially common in earlier days of resting-state research but in
some subfields persists, explicitly or implicitly, is that rest is a neutral backdrop, offering a view
of brain functional organization that is unbiased by the influence of externally imposed tasks
(here I refer to bias at the relatively abstract level of cognitive state; see Box 1 for a discussion
Box 2. Advantages of task for multimodal and cross-species work

For multimodal or high-resolution acquisitions, tasks provide a ground truth that enables averaging across runs or ses-
sions, and helps parse signal into meaningful and nonmeaningful components. Whereas combining rest acquisitions is
nearly always limited to spatial summary statistics that collapse across time in some way (since time is not commensurate
across rest sessions), task paradigms allow for combining data across sessions while retaining information in the temporal
domain. Averaging can take place over individual trials in more traditional paradigms, or entire time courses in naturalistic
paradigms. In multimodal imaging [e.g., combinations of functional magnetic resonance imaging (fMRI), electroencepha-
lography, magnetoencephalography, intracranial recordings, etc.], this permits a pseudo-simultaneous acquisition when a
truly simultaneous acquisition is not possible. In high-resolution imaging, which often suffers from low signal-to-noise ratio,
task paradigms can boost precious signal and help tease out meaningful variability. For example, in layer-specific fMRI,
where baseline differences in signal quality, hemodynamic response function, and blood volume between cortical laminae
can muddy interpretations, seeing an effect of task manipulation on comparisons across layers – in other words, differ-
ences of differences – increases confidence that effects are neuronal and not artifactual in origin.

Should rest continue to play a role in cross-species comparisons? If resting-state activity is substantially influenced by on-
going cognition, and the mental contents of rest for humans and nonhumans are different, scanning at rest could obscure
rather than reveal links across species. If resting-state activity is not strongly influenced by ongoing cognition, and instead
mostly reflects basic physiology, then the choice of paradigm should not matter much (and would be more reason to take
advantage of the increased quality of task data in humans). Despite the challenges of awake imaging in nonhuman pri-
mates, these animals can successfully perform many tasks inside and outside the scanner, including movie watching
[121,122]. Just as in humans, functional organization in nonhuman primates is broadly similar between rest and naturalistic
viewing [123], but the latter affords the opportunity to link observed activity patterns to a ground-truth stimulus, and opens
the door to interspecies correlation [124]. There is even some evidence that similar to humans, movie-watching reduces
head motion relative to awake rest in nonhuman primates [125], so investigators might choose these paradigms for purely
practical reasons. Phenomena like replay that have been detected across species are good candidates for study at rest,
but only in conjunction with task data to characterize sequence-related activity in the first place [88]. Thus, overall, task
data offer several advantages over rest for cross-species work.
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of bias from task-evoked activity at the level of themeasured signal). However, the idea that rest is
a passive state has long been problematic [5–7]. In fact, rest is its own task that varies in unob-
served and uncontrolled ways across sessions, individuals, and populations. Again, this is by
no means a new argument [8,9]. Nevertheless, it bears repeating, especially with the rise of
large-scale imaging efforts. From a theoretical perspective, then, rest is just as biased as any
other task state, and it is biased in ways that may be less easily measured or mitigated.

Empirically, does rest outperform other acquisition states for characterizing functional organiza-
tion? On the one hand, functional organization shows a degree of stability such that major net-
works can be mapped in both groups and individuals across many distinct acquisition states
[10–14]. On the other hand, network topography reconfigures to a substantial extent as subjects
engage in various activities [12,15], including considerable individual-task interactions [10,16,17].
Thus, no single acquisition state can give us a full picture of brain functional organization. In the-
ory, then, rest is no better or worse than any other task. Yet in practice, it is often easy to treat rest
as though it reflects the true underlying functional topography (compare how often the word in-
trinsic appears alongside descriptions of rest-derived activity patterns, whereas one rarely sees
this term in conjunction with task-derived results). This assumption canmuddy our interpretations
and suggest a degree of stability and generalizability that is not there. A growing body of work
finds that minute for minute, estimates of functional connectivity derived from one or a combina-
tion of task states are often more stable, generalizable, heritable, and meaningful (in the sense of
relationships with behavior) than estimates derived from rest alone [18–21]. In one recent study,
rest was a particularly poor proxy for latent (i.e., model-based average) functional organization
compared with other tasks [19]. Thus, rest may in fact yield the more biased picture.

Perhaps we should flip the typical perspective – that is, that rest gives intrinsic information, while
tasks give state-level information – on its head: rest may be best for studying states rather than
traits, while combining data across task paradigms may bring us closest to identifying a general-
ized functional architecture. However, using rest acquisitions as a window into states is likely to
be most useful if we combine rest acquisitions with other explanatory variables that we can mea-
sure or, ideally, manipulate. I discuss this further in the final section.

Is rest the best state to reveal brain–behavior relationships?
A second way that rest data are often used is to relate patterns of functional brain organization to
phenotypic measures acquired outside the scanner (e.g., age [22,23], cognitive ability [11], per-
sonality [24,25], and symptom scores [26]), and to build models that predict these measures
from functional connectivity in new subjects. Most studies to date have focused on trait-like
between-subject differences, though the approach can also be applied to within-subject changes
[27]. While several papers that initially popularized this approach used rest data [11,22], recent
work is converging on the fact that task data is, in many cases, muchmore sensitive and powerful
for this purpose.

In one-to-one comparisons, tasks typically yield better predictions of behavior than does rest
[20,28–30]. The difference is striking: for predicting the same target behaviors in the same partic-
ipants, using certain tasks can increase explained variance more than threefold [28,29]. Tasks in-
crease sensitivity to meaningful between-subject variability not only in healthy young adults, but
also in developmental [28,31], aging [32], and clinical populations [33–35]. While tailoring the
task to the target behavior, akin to a stress test, may afford some of the best accuracy [31,36],
even in-scanner tasks that are seemingly unrelated to the target behavior yield better predictions
than does rest (e.g., predicting fluid intelligence using data from a finger-tapping task). Tasks also
enable evoked activity-based, rather than connectivity-based, predictions, whichmay be not only
1024 Trends in Cognitive Sciences, December 2021, Vol. 25, No. 12
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more accurate in some cases [37], but also more interpretable. Analogous to how functional or-
ganization is better estimated from several task states than from rest alone, behavior prediction
models trained on data from a combination of tasks (sometimes including rest) consistently out-
perform models trained on a matched amount of rest data alone [19,20].

Why the advantage for task data? Better data quality may be a factor: people generally move less
[38] and have an easier time staying awake during certain tasks; this effect may be evenmore pro-
nounced for hard-to-scan populations (e.g., children [39,40], or patients with psychiatric illness
[38]). On a cognitive level, tasks also perturb ongoing neural activity in differential ways across in-
dividuals [41]. One interpretation is that tasks act as a sort of lens through which we can project
subjects to constrain overall variability (i.e., reduce noise) while preserving meaningful differences.
We do not yet fully understand how and why tasks enhance behaviorally relevant variability. But
given the evidence to date, the practical view should favor task over rest for brain-behavior pre-
dictive modeling.

Can rest further our understanding of brain–mind relationships?
What has rest taught us about the mind? In contrast to the goals discussed previously, many re-
searchers may not consider understanding the mind a major aim of resting-state work. However,
whether or not this goal is explicitly stated, rest data are often interpreted in light of assumedmen-
tal processes (though see [42] for a counter-perspective). This is at best an inefficient and at worst
a misleading way to understand how the brain gives rise to the mind.

Although they have separate origins, resting-state research and the concepts of the default
mode and default-mode network are now tightly intertwined [43]. Though it took some time
for rest to be widely accepted as a highly active state in its own right rather than a passive baseline
[2,5–7], most researchers now recognize that resting-state signals reflect a mix of intrinsic
functional organization and the mentation people do when left to their own devices, namely
self-referential thinking: reflecting on the past, planning for the future, and ruminating on social re-
lationships. However, these activities are not inherently at odds with experimenter-imposed par-
adigms. In other words, default-mode regions are only less active during a task if you are not
using the right task [6]. Furthermore, is it meaningful to treat this collection of activities as a mono-
lith? If we replace rest with intrinsic activity [44] (or self-referential processes, mind wandering,
daydreaming, etc.), are we content to map that term onto a summary of resting activity patterns
and leave it at that? Probably not; we would presumably like to draw more specific links between
brain and mind. But this requires a more fine-grained window into what the contents of the mind
are at any given moment, which in turn requires some kind of experimental control, whether pre
hoc (via experimental instructions, as in tasks), in the moment (via experience sampling), or
post hoc (via retrospection).

If the primary goal of a given study is to map functional brain topography without directly linking
features of that topography to ongoing cognition, rest yields maps that are to some degree stable
and sensitive to out-of-scanner behavior (though perhaps less so than maps derived from more
controlled task states, as discussed in the previous two sections). However, there are two poten-
tial issues with using rest in this way. First, like any other acquisition state, rest can easily invite re-
verse inference: reasoning backward from a map of brain regions to infer the involvement of
specific mental processes commonly ascribed to those regions, without directly manipulating
those processes [45]. For example, aberrant resting-state connectivity in psychiatric patients in
the default-mode network is often interpreted as mechanistically linked to hyper- or hypoactive
self-referential processes, such as rumination or social cognition [46–48]; resting connectivity dif-
ferences in the frontoparietal network are sometimes interpreted as mechanistically linked to
Trends in Cognitive Sciences, December 2021, Vol. 25, No. 12 1025
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executive function [49,50]; and reduced connectivity between visual and prefrontal regions in
dyslexia has been interpreted as mechanistically linked to failures of attention to visual stimuli
[51]. However, without directly manipulating or measuring these processes during the experiment
itself, such interpretations are not necessarily warranted. Just because an individual or group
shows, for example, less coherent activity in a network at rest, does not mean they cannot coher-
ently activate that network when cognition requires it. Furthermore, how do we know if differ-
ences at rest reflect intrinsic endophenotypes, or if certain people simply tend to engage in
different mental activities while in the scanner? Either is interesting, but pure rest affords us no
way to tease apart these possibilities.

Second, even resisting the temptation of reverse inference, as a field, what can we learn from to-
pographic maps derived solely from rest data? What does it mean that certain networks occupy
more, or different, real estate in some individuals than others? What are the consequences of
these differences for the mind and its functions? Encouragingly, recent work has shown, for ex-
ample, that resting-state spatial topography of cortical networks predicts individual cognitive and
affective phenotypes [52], and that total cortical representation of the executive function network
at rest is associated with both age and executive performance [53]. But while these studies rein-
force the value of topographical approaches, they do not necessarily reinforce the value of rest
per se: it is possible – perhaps even likely given the evidence outlined in the previous section –

that applying the same tools to data acquired during task would have yielded just as robust, if
not more robust, relationships with behavior. Furthermore, by relating brain measures derived
from an unconstrained cognitive state (i.e., rest) to cognitive measures acquired outside the scan-
ner, these studies can establish only very indirect associations between topography and cognitive
phenotypes. They cannot, for example, inform theories of cognition by characterizing interactions
between the spatial extent of a region or network and its functional properties during cognition
itself (e.g., the strength of activations or multivariate representations in that region), or suggest
any compensatory mechanisms or alternative strategies that may be at play within or across in-
dividuals. To this end, other recent work has used dense sampling approaches that combine
rest with hypothesis-driven task paradigms to probe the function of specific territories in individual
subjects [14,54], finding evidence for individually distinct, topographically interdigitated networks
that subserve dissociable cognitive functions (i.e., language [14], episodic projection, and theory
of mind [54]). These exciting studies are beginning to bridge brain and mind in individuals, al-
though again, the specific value of rest for this work is unclear because these networks seem
to be just as easily delineated during task [14]. In short, while these are promising avenues of in-
quiry, the same conclusions might have been reached (perhaps even more efficiently, or with
stronger possible interpretations) by foregoing rest and using one or a combination of tasks in-
stead. The trade-off between acquisition types will be increasingly consequential as we scale
these paradigms to larger data collection efforts, balancing the need for more subjects with the
need for adequate data per subject. These efforts will be necessary to understand the conse-
quences of topographical differences for behavior within and across individuals.

The third wave: integrated designs
The irony of calling for a pendulum swing back to task-based paradigms, the bread-and-butter of
human functional neuroimaging since the early 1990s, is not lost onme. (The phrase ‘take to task’
comes tomind.) However, we do not return to the same taskswith the same analysis approaches
geared toward isolating single functions and single regions; rather, we move forward into a third
wave armed with a new suite of tools and a broader perspective on brain functional organization
(Figure 1). Third-wave designs can involve using rest-inspired analyses on data from traditional
tasks to gain fresh insights into the systems-level architecture supporting those tasks, as de-
scribed at the end of the preceding section. There also exist several promising avenues that
1026 Trends in Cognitive Sciences, December 2021, Vol. 25, No. 12
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blend the best of both the resting-state and task-based worlds into integrated experimental de-
signs (Figure 2). I outline some of these in the following sections.

Introspection and annotated rest
One way to understand what people are doing during rest is simply to ask them [55–57]. Having
participants provide first-person reports of their mental experiences, either retrospectively or in
real-time, gives us anchor points for resting-state activity which can increase the interpretability
of within-subject dynamics and/or between-subject differences [58].

How frequently these reports should be made, and what format they should take, are open ques-
tions and depend on specific research goals [55]. While retrospective reports are less disruptive in
the moment, they do not allow for mapping between instantaneous thoughts and instantaneous
brain activity patterns; however, they may still be useful for capturing broad differences
(e.g., across development, in certain patient populations). In-the-moment thought probes,
which sample experiences at regular, random, or adaptive intervals, allow for a more granular
mapping between thoughts and brain activity [59]. In both cases, reports are surface level in
Third wave: integrated designs
Task-signature echoes:

State-informed approaches: e.g., state-triggered paradigmsNaturalistic tasks:

Annotated rest:
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Figure 2. Third-wave integrated designs that blend task- and rest-inspired approaches. In the third wave, we
have an opportunity to draw from the best of both worlds during acquisition and analysis. Four families of integrated
designs are depicted. Annotated rest refers to acquiring introspection data – that is, first-person reports of ongoing menta
experiences during or after the scan – that can be linked to spatiotemporal features of brain activity. Naturalistic tasks
(e.g., movie watching and story listening) are richer, more dynamic, and in some ways more ecologically valid than traditiona
tasks. These paradigms thus create stronger yet more organic ripples, bringing surface-level and deeper phenomena close
together. In task–signature echoes, activity patterns are characterized using data with a known task manipulation, and then
rest data are mined to see if echoes of these signatures can be detected at rest, suggesting a kind of replay, reinstatement, o
engagement in similar mental activities. Finally, in state-informed approaches, experimenters monitor brain state (either pos
hoc, or online using real-time neuroimaging), and deliver tasks at certain intervals to causally test the role of ongoing activity in
shaping perception and behavior toward an external stimulus.
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the sense that subjects can only report experiences they are conscious of, and they depend on
subjects’ capacity for accurate introspection, which may vary across individuals and populations
(but can also be trained to some degree). We also risk altering the system by measuring the sys-
tem. Yet even if the ultimate goal is to understand how trains of thought arise organically, injecting
some declarative measures is likely the best way forward.

Movies and stories as drivers of cognition
So-called naturalistic paradigms, such as watching movies or listening to stories, are often much
more engaging than traditional tasks, thereby driving brain activity in a way that is at once stronger
and potentially closer to freeform cognition [60]. These stimuli possess features at every rung of
the perceptual hierarchy, from low-level audiovisual (light and/or sound), to mid-level categories
(faces, scenes), to high-level (language, affect), yielding multiplexed neural responses that are
rich in both shared [61] and idiosyncratic [62,63] components.

Naturalistic paradigms may be a good replacement for rest when study goals are open ended.
Logistically, these paradigms are relatively easy to acquire: in their minimal form they require
only basic presentation equipment and a way to synchronize onset time with the scanner; no
complex task timing, logging, participant training, or behavior recording is needed. Thus, the bar-
rier to entry is low for researchers and clinicians accustomed to acquiring rest and for scan cen-
ters participating in large-scale data collection efforts. Of course, these paradigms require
researchers to choose a specific stimulus or set of stimuli; this choice should be informed by
the research questions, planned analyses, and populations under study (see [61,64,65] for theo-
retical and practical guidance on stimulus selection). Data acquired during these paradigms are
flexibly analyzed using tools developed for traditional task data (e.g., model-based regression)
as well as those developed for rest (e.g., functional connectivity). As with traditional tasks,
major functional networks and reliable brain states [66,67] are readily identified during naturalistic
stimulation, if the goal is to interrogate systems-level organization. Individual differences in func-
tional connectivity are often more stable during movie watching than during rest [68,69], and bet-
ter predict behavior [30].

At the same time, the presence of a time-locked stimulus shared across participants opens the
door to a unique set of tools, namely intersubject correlation and related approaches
[70,71]. These analyses are especially powerful because they require few assumptions about
the structure of either the stimulus (i.e., which features are important) or the neural response
(i.e., the hemodynamic response function), and thus can recover maximal stimulus-driven signal.
Intersubject correlation is a natural denoiser in that nearly all noise arises from artifacts within
brains, so by looking across brains – that is, using one brain as the model for another – the
observed signal variance is almost guaranteed to be neuronal in origin [71–73]. Note that these
approaches are not necessarily limited to capturing activity that is shared across all subjects;
they can also capture activity patterns that are more stereotyped in certain subjects than others
[63,74], which can, in turn, be related to state- or trait-related behaviors, including clinical pheno-
types [75–81].

Echoes of task signatures at rest
Another type of integrated design involves using task paradigms to learn signatures of brain ac-
tivity that correspond to particular mental states or activities, then searching for echoes of these
same signatures in unstructured rest. As proof-of-concept with robustly observable phenomena,
two recent studies learned signatures of body movements and arousal level, respectively, from
task or multimodal imaging data, and found that recapitulations of these signatures could classify
similar events or fluctuations during rest [82–84]. First characterizing, and then detecting echoes
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Outstanding questions
How much does scan condition
(i.e., task) matter for drawing out
within- or between-subject variability?
Can we, and should we, tailor stimulus
content to a trait or state of interest?
How specific is the task–behavior pre-
dictive relationship; in other words,
does the best prediction performance
for certain behaviors come from only
a narrow range of tasks, and/or are
there some tasks that are good global
predictors of behavior within or across
domains?

Why do tasks enhance brain–behavior
relationships? How much of the im-
provement is due to basic data quality
(e.g., increased arousal) versus more
specific shifts in neural activity, con-
nectivity, or both?

Can we design bespoke narrative stimuli
that feel naturalistic to subjects, but have
certain manipulations ‘baked in’ that
allow us to tap into and/or dissociate
particular cognitive operations, moods,
or other processes?

How can we balance the need to
innovate on paradigms with the need
for statistical rigor, which often requires
larger sample sizes? The next wave of
progress is most likely to come from
novel paradigms that go beyond either
rest or conventional tasks. The
ongoing replication crisis in psychology
and neuroscience has highlighted
concerns over reproducibility and
generalizability in small sample sizes.
Yet investigators and funders planning
large-scale data collection efforts are
often reluctant to include new and un-
tested paradigms, and tend to default
to rest and a handful of well-
characterized traditional tasks (which,
while robust at the group level, are
often less sensitive to meaningful
within- and across-subject differences).
How can we, individually and/or collec-
tively, develop and convincingly validate
new paradigms to include in more am-
bitious data-collection efforts?

How can we standardize and streamline
integrated designs (e.g., naturalistic
paradigms, annotated rest) to lower the
barrier to entry for data collection, espe-
cially for large-scale consortium efforts?
of, more nuanced cognitive states – for example, what a participant is thinking about – is more
challenging, but there has been some progress here too [85,86]. For example, in another recent
study [87], researchers developed an unsupervised method to map dynamic functional connec-
tivity onto distinct cognitive states, validated this method using task data with known state tran-
sitions, then applied this same method (but not necessarily the same states) to rest. The
phenomena of replay and reactivation have been studied using this approach as well, with re-
ports that fast, stereotyped patterns of neural activity in response to sequences are also detected
at rest [88–91], where they support planning [92] and predict memory performance [93].

A directed thought may diverge in some ways from the same self-generated thought – in other
words, being instructed to think of a positive memory may not be exactly the same, either phe-
nomenologically or neurally, as having one come tomind spontaneously. Still, leveraging task par-
adigmswith known ground truths to create a dictionary of states that can then serve as templates
for rest may shed some initial light on the brain–mind relationship during unconstrained cognition.
With this approach, we can draw on tools for large-scale meta-analysis [94,95] as well as reuse
existing data from both task-based and rest designs, making it an efficient way to accelerate dis-
covery and develop hypotheses for new experiments.

State-informed paradigms
The echo-detection approaches outlined previously go from task to rest. We can also flip the di-
rection and go from rest to task, to ask how ongoing activity affects perception and behavior for
an extrinsic stimulus.

There is a rich literature on how prestimulus brain activity predicts trial-wise accuracy and reaction
time on sensory tasks [96–101]. More recent work has begun to use predefined signatures of
arousal [82] in a prospective design to directly test their relevance for behavior and has reported
slower reaction times and more frequent misses when stimuli are presented during a low arousal
state [102]. Some studies have gone beyond unidimensional performance measures to explore
not just how attentive someone is at a given moment, but what they are likely to be most attentive
to, finding category-specific signatures that bias detection of, for example, faces versus objects
[103,104], or prime subsequent self-referential [105] or social [106] processing. A compelling
next step is to search for ever more nuanced signatures of how upcoming stimuli will be per-
ceived, even within categories. For example, can prestimulus brain activity predict whether an
ambiguous social stimulus will be perceived as positive, neutral, or negative?

A powerful extension to this framework is to close the loop by using real-time neuroimaging for
state-triggered paradigms [107,108]. In these adaptive experiments, participants’ brain activity is
monitored for when they enter a specific state, which then triggers a task event for which pro-
cessing should be facilitated or inhibited (or otherwise affected) by that state. This approach relies
on similar technology as neurofeedback, but does not necessarily involve neurofeedback that the
participant is consciously aware of. States could be predefined (i.e., supervised), learned bottom-
up through initially random trial-and-error (i.e., unsupervised), or some combination, and they
might be defined with respect to univariate activity, multivariate activity [109], and/or functional
connectivity [110–112]. Along with brain stimulation techniques, these designs can get us closer
to learning causal relationships between moment-to-moment resting brain activity and behavior.

Concluding remarks
In certain circumstances, rest may still be an appropriate, or perhaps the only, choice. For exam-
ple, in very young infants, comatose patients, or subjects in altered states of consciousness,
resting-state acquisitions may be the most flexible and feasible. Still, experimenters should
Trends in Cognitive Sciences, December 2021, Vol. 25, No. 12 1029

CellPress logo


Trends in Cognitive Sciences
carefully examine their assumptions in choosing acquisition states, even for these special cases.
For example, movies or spoken language can reveal time-locked brain activity in otherwise unre-
sponsive individuals [113,114], potentially providing deeper clues into residual cognition than rest
alone.

While rest likely still has a place, the choice to collect resting-state data should be deliberate in the
same way that the choice of any other task is deliberate – driven by where it can add true value,
and not just be an easy default (see Outstanding questions). Big-data consortia should consider
reducing the amount of rest they acquire in favor of task paradigms that are more sensitive to be-
havior; naturalistic paradigms may be particularly good candidates. Investigators designing
smaller-scale experiments should question if and why rest suits their research goals, and if they
do move forward with rest, collect additional data whenever possible (e.g., introspection) to
boost explanatory power. If human neuroimaging is to continue to advance either basic science
or translational tools, the next wave of progress will most likely come from a pivot toward more
precise and interpretable designs.
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