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a b s t r a c t 

A major goal of human neuroscience is to relate differences in brain function to differences in behavior across people. Recent work has established that whole- 

brain functional connectivity patterns are relatively stable within individuals and unique across individuals, and that features of these patterns predict various 

traits. However, while functional connectivity is most often measured at rest, certain tasks may enhance individual signals and improve sensitivity to behavior 

differences. Here, we show that compared to the resting state, functional connectivity measured during naturalistic viewing —i.e., movie watching —yields more 

accurate predictions of trait-like phenotypes in the domains of both cognition and emotion. Traits could be predicted using less than three minutes of data from 

single video clips, and clips with highly social content gave the most accurate predictions. Results suggest that naturalistic stimuli amplify individual differences in 

behaviorally relevant brain networks. 

1

 

b  

p  

a  

2  

t  

c  

t  

p  

D  

 

a  

u  

(  

R  

t  

t  

s  

s  

o  

e  

c  

(  

i  

i  

g  

e  

t
 

h  

i  

e  

O  

s  

f  

(  

V  

s  

t  

e  

s  

2  

c  

i  

r  

s  

t  

t  

p
 

s  

l  

s  

m  

h

R

A

1

(

. Introduction 

Individual patterns of whole-brain functional connectivity are sta-
le and unique enough to serve as a “fingerprint ” that can identify
eople across time and brain states. Features of these patterns predict
 growing list of phenotypes, including fluid intelligence ( Finn et al.,
015 ), sustained attention ( Rosenberg et al., 2016 ), and personality
raits ( Hsu et al., 2018 ), among others. Characterizing these patterns
ould give insight into the systems-level structure of trait-like pheno-
ypes, and refining such predictive models may lead to biomarkers of
resent or future health status and other outcomes ( Gabrieli et al., 2015 ;
ubois and Adolphs, 2016 ; Finn and Constable, 2016 ; Woo et al., 2017 ).

Yet despite its trait-like aspects, functional connectivity also shows
 considerable state-like component such that task demands mod-
late connectivity patterns at both the group and individual level
 Waites et al., 2005 ; Finn et al., 2017 ; Gratton et al., 2018 ;
osenberg et al., 2020 ). These observations raise the question, what is

he best brain state for studying individual differences? Investigators of-
en default to rest as a supposedly neutral backdrop, and indeed, resting-
tate acquisitions have several advantages: they are easy to acquire and
tandardize across sites and populations, less vulnerable to performance
r motivation confounds, and relatively robust to practice or repetition
ffects. However, rest is also more susceptible to arousal confounds and
an reduce subject compliance, especially in hard-to-scan populations
 Vanderwal et al., 2015 ; Huijbers et al., 2017 ). Other candidate states
nclude tasks traditionally used in psychology, or naturalistic paradigms,
n which participants watch movies or listen to stories. The latter are
rowing in popularity as a window into brain activity under rich and
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ngaging conditions that are more ecologically valid than highly con-
rolled tasks ( Sonkusare et al., 2019 ). 

Early work using movies and other naturalistic stimuli focused on
ow they tend to synchronize brain responses across people, result-
ng in similar spatiotemporal activity patterns in individuals experi-
ncing the same stimulus ( Hasson et al., 2004 ; Nastase et al., 2019 ).
ne might therefore expect that these stimuli would quench between-

ubject variability, making them undesirable for studying individual dif-
erences. But in fact, observable individual differences in both activity
 Finn et al., 2020 ) and functional connectivity ( Geerligs et al., 2015 ;
anderwal et al., 2017 ; Wang et al., 2017 ) persist atop this shared re-
ponse. These findings extend the somewhat paradoxical observation
hat even among traditional paradigms (e.g., n-back, finger tapping,
motional faces), tasks that make subjects’ connectivity profiles more
imilar to one another also make them easier to identify ( Finn et al.,
017 ). One interpretation of these findings is that any task, but espe-
ially rich, engaging tasks, constrain the functional connectivity space
n a way that reduces overall between-subject variance but makes the
emaining variance more stable and trait-like. Empirically, the strikingly
imilar patterns of evoked activity during movie watching do not seem
o come at a cost to individual identifiability; rather, the most impor-
ant individual features are preserved or even enhanced during these
aradigms. 

Yet the ultimate goal of most individual differences research is not
imply to identify a given individual across repeat scans, but to re-
ate variability in brain functional organization to real-world (out-of-
canner) behavior. To this end, the more relevant question is whether
easuring connectivity during naturalistic paradigms improves sensitiv-

ty to behavioral differences. Previous work using connectivity during
8 March 2021 
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t  
raditional tasks to predict fluid intelligence showed that, while certain
asks enjoyed larger advantages than others, all tasks outperformed rest,
ven when the task state was seemingly unrelated to the construct to be
redicted (e.g., even functional connectivity during a finger-tapping task
ffers improved predictions of fluid intelligence) ( Greene et al., 2018 ).
xtrapolating from rest to traditional tasks to naturalistic paradigms,
ne might predict that naturalistic paradigms would also increase sensi-
ivity to behavior. However, to our knowledge, this has not been directly
ested. Furthermore, there has been relatively less work on how brain
tate affects connectivity-based predictions of traits outside the cogni-
ive domain —for example, emotion and affect. Naturalistic tasks also
aise the intriguing possibility of tailoring stimulus content to the con-
truct to be predicted —for example, using a stimulus that evokes feel-
ngs of suspense or unease to predict anxiety, or one that evokes feelings
f suspicion to predict paranoia ( Finn et al., 2018 ). 

Here, we test the hypothesis that data collected during movie watch-
ng improves functional connectivity-based behavior prediction com-
ared to data collected at rest. Using the Human Connectome Project
T dataset, we demonstrate that trait scores derived from both the cog-
ition and emotion domains are more accurately predicted from movie-
atching data, and that this advantage is unlikely to be driven by differ-

nces in low-level arousal or data quality between the two conditions.
e show that in some cases, both cognition and emotion scores can be

redicted from as little as two to three minutes of movie-watching data.
ollowing this, we explore which clip features are associated with pre-
iction accuracy, and find that clips high in social content, as well as
hose that evoke more variability in gaze position across subjects, tend
o yield better predictions. We discuss how these results add to our ba-
ic understanding of trait-state interactions in functional connectivity,
s well as their practical implications for large-scale efforts in brain-
ehavior predictive modeling. 

. Methods 

.1. Data 

.1.1. Subjects 

All data used here come from the Human Connectome Project (HCP)
T release. A total of 184 subjects were scanned at 7T; these were a sub-
et of the approximately 1200 subjects scanned at 3T. We limited our
nalysis to subjects who had complete data for all six functional runs of
nterest as well as complete data for the phenotypic variables of interest
described further below in the sections fMRI data and Behavioral data ,
espectively), yielding a set of n = 176. Notably, there were many sets of
wins (both mono- and dizygotic) and siblings in this dataset, such that
hese 176 subjects came from only 90 unique families. Relatedness was
aken into account during cross-validation using a leave-one-family-out
pproach, described further in the section on Connectome-based Predic-

ive Modeling. All subjects were generally healthy young adults between
2 and 36 years old (mean age = 29.4, standard deviation = 3.3). There
ere 106 females and 70 males. 

.1.2. fMRI data 

All fMRI data were acquired on a 7 Tesla Siemens Magnetom scanner
t the Center for Magnetic Resonance Research at the University of Min-
esota. There were four total scan sessions acquired over two or three
ays; we focus here on the first and last session (which we refer to as ses-
ion 1 and session 2), since these contained the movie-watching runs.
EST and MOVIE runs were collected using the same gradient-echo-
lanar imaging (EPI) sequence with the following parameters: repetition
ime (TR) = 1000 ms, echo time (TE) = 22.2 ms, flip angle = 45 deg,
eld of view (FOV) = 208 × 208 mm, matrix = 130 × 130, spatial res-
lution = 1.6 mm 

3 , number of slices = 85, multiband factor = 5, im-
ge acceleration factor (iPAT) = 2, partial Fourier sampling = 7/8, echo
pacing = 0.64 ms, bandwidth = 1924 Hz/Px. The direction of phase en-
2 
oding alternated between posterior-to-anterior (PA; REST1, MOVIE2,
OVIE3) and anterior-to-posterior (AP; REST4, MOVIE1, MOVIE4). 

During REST runs, subjects were instructed to keep their eyes open
nd maintain relaxed fixation on a projected bright crosshair on a dark
ackground. While four REST runs were collected, here we use only data
rom REST1 and REST4, as these were acquired in the same scan ses-
ions as MOVIE1/MOVIE2 and MOVIE3/MOVIE4, respectively. Within
 session, REST runs were always acquired first, followed by the movie
uns in a fixed order, such that session 1 consisted of REST1, MOVIE1,
nd MOVIE3, and session 2 consisted of REST4, MOVIE3, and MOVIE4.

During MOVIE runs, subjects passively viewed a series of video clips
ith audiovisual content. Each MOVIE run consisted of 4 or 5 clips,

eparated by 20 s of rest (indicated by the word “REST ” in white text
n a black background). Two of the runs, MOVIE1 and MOVIE3, con-
ained clips from independent films (both fiction and documentary)
ade freely available under Creative Commons license on Vimeo. The

ther two runs, MOVIE2 and MOVIE4, contained clips from Hollywood
lms. The last clip was always a montage of brief (1.5 s) videos that was

dentical across each of the four runs (to facilitate test-retest and/or val-
dation analyses). For brief descriptions of each clip, see Table 1 . Audio
as delivered via Sensimetric earbuds. 

Each REST run was 900 TRs, or 15:00 min, in length. MOVIE runs
–4 were 921, 918, 915, and 901 TRs, respectively. When calculating
unctional connectivity during MOVIE runs, to avoid large changes in
OLD signal at the onset of individual clips that could skew correlations
etween node timecourses, we excluded the first 10 TRs (10 s) of each
lip when calculating functional connectivity. On the other hand, to ac-
ount for hemodynamic delay, we included the 5 TRs (5 s) after video
ffset in the calculation. The remainder of the 20 s of rest in between
lips (i.e., 15 TRs) was discarded. This lead to effective durations of 775,
00, 769, and 783 for the MOVIE runs. If anything, the reduced duration
or movie runs compared to rest should disadvantage movies, working
gainst our hypothesis. 

Within MOVIE runs, individual clips varied in length from 1:03 to
:19 min: sec . Because having more data typically boosts accuracy in
oth individual identification and behavior prediction, when comparing
rediction performance across clips, we truncated data from each clip to
he length of one of the shortest clips, which was 143 TRs (2:23 min: sec ).
he very shortest clip was only 1:03 in duration, and the test-retest clips
t the end of each run were 1:23 (83 TRs) in duration. Because truncat-
ng all clips to 83 TRs would have severely limited the data available to
he model, we omitted these shortest clips from the comparisons. 

All analyses began with the FIX-denoised data in vol-
me space (e.g., rfMRI_REST1_7T_PA_hp2000_clean.nii.gz;

fMRI_MOVIE1_7T_AP_hp2000_clean.nii.gz ), which includes standard
reprocessing (motion correction, distortion correction, high-pass
ltering, and nonlinear alignment to MNI template space; Glasser et al.,
013 ) plus regression of 24 framewise motion estimates (six rigid-body
otion parameters and their derivatives and the squares of those) and

egression of confound timeseries identified via independent compo-
ents analysis ( Griffanti et al., 2014 ; Salimi-Khorshidi et al., 2014 ). In
ddition to this preprocessing, we calculated the average whole-brain
ignal at each TR using an HCP-provided per-subject, per-run mask
 brainmask_fs.1.60.nii.gz ) and regressed this from the FIX-denoised
mages, in light of prior work ( Li et al., 2019 ) and our own unpublished
bservations that global signal regression strengthens the association
etween functional connectivity and behavior. 

Behavioral data. HCP provides a large number of phenotypic mea-
ures from a variety of domains. We focused on traits in two domains:
) cognition, and 2) emotion/affect. To avoid incurring a multiple-
omparisons issue by training models for each individual measure, and
ecause many measures within a domain are correlated with one an-
ther, we first performed principal components analysis (PCA) to re-
uce the dimensionality of the data. Importantly, given that the sub-
ects scanned at 7T are a subset of those scanned at 3T, we learned
he principal components on the complement of the 7T subset —in other
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Table 1 

Description of individual video clips that comprised each of the four MOVIE runs . 

MOVIE1 and MOVIE3 contain clips from independent films freely available under a Creative Commons license; MOVIE2 and MOVIE4 contain clips from Hollywood 

films. ∗ indicates clip was not included in single-clip prediction analyses due to short length. 

Run Clip short name Full-length film name (year) Duration (TRs) Duration (min: sec ) Description 

MOVIE1 two men Two Men (2009) 245 04:05 A man sees another man run past him on a road in rural 

Australia and muses about his potential motives. Accented 

English dialog plus subtitles. 

MOVIE1 bridgeville Welcome to Bridgeville 

(2011) 

221 03:41 People describe why they love living in small-town America; a 

collection of scenes from community life. 

MOVIE1 pockets Pockets (2008) 188 03:08 Close-ups of people holding things they keep in their pockets 

and describing the items’ significance. 

MOVIE1 overcome ∗ Inside the Human Body 

(2011) 

63 01:03 Inspirational montage of people who have overcome physical 

disabilities. 

MOVIE1 testretest1 ∗ 23 Degrees South (2011); 

LXIV (2011) 

83 01:23 Concatenation of brief (1–3 s) clips depicting a variety of people, 

objects, and scenes. 

MOVIE2 inception Inception (2010) 228 03:48 Two characters explore a dream world and learn its surprising 

physical and emotional characteristics. 

MOVIE2 social net The Social Network (2010) 259 04:19 Mark Zuckerberg’s disciplinary hearing at Harvard and its 

aftermath (fictional portrayal). 

MOVIE2 ocean’s 11 Ocean’s Eleven (2001) 250 04:10 Danny Ocean and his accomplices meet to plot their Vegas casino 

heist. 

MOVIE2 testretest2 ∗ 83 01:23 (same as testretest1) 

MOVIE3 flower Off The Shelf (2008) 180 03:00 A flower escapes its pot and goes on a journey through the 

neighborhood. 

MOVIE3 hotel 1212 (year unavailable) 185 03:05 A man and woman have a metaphysical encounter in a hotel 

room. 

MOVIE3 garden Mrs. Meyer’s Clean Day 

(2013) 

203 03:23 Documentary about an urban vegetable garden serving 

community needs. 

MOVIE3 dreary Northwest Passage (year 

unavailable) 

143 02:23 Montage of dreary landscapes and abandoned structures set to 

eerie music. 

MOVIE3 testretest3 ∗ 83 01:23 (same as testretest1) 

MOVIE4 home alone Home Alone (1990) 234 03:54 Main character walks through the house, realizing he is on his 

own. 

MOVIE4 brockovich Erin Brockovich (2000) 231 03:51 Erin Brockovich meets with a plaintiff and then visits a legal 

office with her young children in tow. 

MOVIE4 star wars The Empire Strikes Back 

(1980) 

255 04:15 Scene from Rebel base on an icy planet; Leia and Han Solo argue. 

MOVIE4 testretest4 ∗ 83 01:23 (same as testretest1) 
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ords, the subjects scanned at 3T but not at 7T ( n = 1022) —and applied
his PC-based transformation to data from the 7T subjects to derive PC
cores for each 7T subject. Thus we were able to calculate these sum-
ary scores once at the start of our analysis pipeline without incurring

ircularity, or leakage of information from the test set into the training
et. (Otherwise, we would have had to reperform the PCA step at each
old of each cross-validation procedure, resulting in slightly different
ransformations each time.) 

PCA was performed separately for the cognition and emotion do-
ains. Individual measures were normalized to have zero mean, unit

ariance in the training set, and this same normalization (using the mean
nd standard deviation from the training set) was applied to the target
et prior to PCA transformation. Variables entered into the cognition
CA included measures from the NIH Cognition Toolbox as well as ad-
itional measures from other instruments classified in “cognition ” by
he HCP. Variables entered into the emotion PCA were scales from the
IH Emotion Toolbox, a self-report battery assessing A full list of mea-

ures entered into each PCA is provided in Supplementary Tables 1 and
. 

Although the first principal component only explained 27% and 37%
f the variance in the data in the cognition and emotion domains, re-
pectively ( Fig. 1 a, b), many of the individual measures are still highly
orrelated. Training separate models for each individual measure in the
ognition ( n = 12) and emotion ( n = 17) domains would create a multi-
le comparisons issue. Therefore we view the prediction accuracies re-
orted here as a conservative estimate: it is possible that certain raw
easures could be predicted even more accurately than these latent

cores, but because we did not have specific hypotheses about which
easures are most important and/or biologically valid, we took the un-

iased approach of predicting a single latent score per domain. 
3 
.1.3. Eye-tracking data 

Eye tracking was acquired during both REST and MOVIE runs using
n EyeLink S1000 system (SR Research). We extracted eye-tracking data
rom two files: 1) the HCP-provided session summary for each subject
or each run (e.g., 100610_7T_MOV1_eyetrack_summary.csv ), which pro-
ides metadata and quality control measures, and 2) the raw EyeLink log
les (e.g., 100610_7T_MOV1_eyetrack.asc ), which provide horizontal po-
ition, vertical gaze position, pupil size measures for each timepoint, as
ell as tags corresponding to blink onset and offset. Of the 1,056 runs
f interest (176 subjects x 6 runs each), valid eye-tracking data were
vailable for 931 runs. While most of these ( n = 835) had a sampling
ate of 1000 Hz, a few ( n = 96) had a sampling rate of 500 Hz. All 931
essions were used for analyses of blinks, but analyses of inter-subject
orrelation in gaze position were limited to runs with sampling rate of
000 Hz. 

For analyses of blinks, while all available data points are shown in
he boxplots in Fig. 3 , due to the paired nature of the comparisons, the
nput to statistical tests was limited to subjects that had valid data for
oth runs in each pair of interest. Between-clip rest blocks were not
emoved from MOVIE runs in analyzing blinks. 

In calculating inter-subject correlations in gaze position for individ-
al video clips (analyses shown in Fig. 8 ), we discarded the first 5 s after
ideo onset, to avoid biases from large jumps in gaze position at the start
f a video. 

We checked for correlations between behavior scores and eye-
racking metrics. Cognition scores were not significantly correlated with
link rate or blink duration in any of the runs. Cognition scores were
odestly correlated with percent of TRs with valid eye-tracking data in

ession 2 runs, and with median blink duration in MOVIE1 and MOVIE4.
rucially, however, there were very few differences in the magnitude of
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Fig. 1. Deriving cognition and emotion scores. Principal components analysis (PCA) was performed on behavioral data from n = 1022 training subjects (those not 

scanned at 7T) using measures in the a) cognition and b) emotion domains, and then this learned transformation was applied to the target set of n = 176 subjects 

in the 7T dataset to derive a cognition and emotion score for these subjects. In the cognition domain, the first principal component explained 30% and 27% of 

the variance in the training and target sets, respectively, and in the emotion domain, the first principal component explained 42% and 37% of the variance in the 

training and target sets (red circles on scree plots). The heatmaps show the loadings of individual measures onto the first component in each domain. c) Cognition 

and emotion scores were not significantly correlated across subjects in the target set, indicating that these two constructs are separable. See Tables S1 and S2 for 

full variable names and measured constructs for the variables entered into each PCA. (For interpretation of the references to color in this figure legend, the reader 

is referred to the web version of this article.) 
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orrelations across runs; in other words, eye-tracking metrics were not
ignificantly more associated with behavior in movies versus rest, or vice
ersa. Emotion scores were not correlated with any of the eye-tracking
etrics in any of the runs. See Figs. S2 and S3 for full data. 

.2. Mitigating confounds 

Head motion produces well-known artifacts in functional connectiv-
ty. To determine if and how head motion might confound our analyses,
e assessed whether and to what extent 1) head motion differed across

uns, and 2) head motion was correlated with target behavior scores,
sing mean framewise displacement across TRs as our measure of head
otion ( Movement_RelativeRMS_mean.txt ). 

In session 1, MOVIE1 had higher motion than REST1 (paired t -test:
 175 = 5.3, p < 10 − 6 ; note that this is the opposite of what might be the
xpected direction), but there was no difference between REST1 and
OVIE2 (t 175 = 1.0, p = 0.32). In session 2, REST4 had higher motion

han both MOVIE3 (t 175 = 8.9, p < 10e − 15 ) and MOVIE4 (t 175 = 3.3,
 = 0.001) (Fig. S4a). 

Similar to previous reports in this ( Siegel et al., 2016 ) and other
atasets, head motion was negatively correlated with cognition score.
his was true in all six runs (see Fig. S4b for correlation coefficients and
-values). However, critically, the magnitude of this correlation did not
iffer across any pair of runs (all p > 0.11, Steiger’s Z test). This makes
t unlikely that differences in prediction accuracy across runs are in-
uenced by the relationship between head motion and cognition score.
4 
ead motion was not correlated with emotion score in any of the six
uns (all p > 0.16; Fig. S4c). 

Given reports that time of day can affect measurements of functional
onnectivity, we also assessed differences across runs in the time of
ay they were acquired. Acquisition time for session 1 followed a bi-
odal distribution, with some subjects scanned in mid- to late morning,

nd others scanned fairly late in the evening (centered roughly around
0:00, or 8:00pm). Session 2 followed a unimodal distribution centered
round noon, but still with considerable variability across subjects (Fig.
5a). To determine whether time-of-day effects might pose a confound
or our behavior prediction analyses, we correlated time of day with
ehavior score across subjects. For runs in session 1, time of day was
egatively correlated with cognition score, such that subjects who were
canned later in the day tended to have lower scores (Fig. S5b). These
orrelations were particularly surprising given that to the best of our
nowledge, behavioral data acquisition took place at Washington Uni-
ersity in St. Louis before participants were flown to Minneapolis for the
T portion of the study at University of Minnesota. Therefore the behav-
oral and fMRI data acquisitions were likely separated by a period of at
east days to weeks (if not longer), and it is hard to imagine an a priori

eason that subjects with higher cognitive ability would be scanned ear-
ier in the day, especially because they traveled to Minneapolis for the
xpress purpose of completing this study and thus presumably were not
onstrained by their typical schedules. However, cognition score was
ot correlated with time of day for runs in session 2, and emotion score
as not correlated with acquisition time for any of the six runs (Fig.
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5c). Furthermore, just as for head motion, the magnitude of the cor-
elation between time of day and cognition score did not differ across
ny pair of runs (all p > 0.08, Steiger’s Z test), making it unlikely that
ifferences in prediction accuracy are influenced by time of day. 

To mitigate the effect of these potential confounds, we residualized
he target variable (cognition or emotion score) with respect to these
wo variables (head motion and time of day) before training the model.
t each fold in the 10-fold cross-validation procedure, using subjects

rom the 9 training folds, we modeled the target variable ( y train ) as a
inear combination of the two confounding variables and took the resid-
al of this model e train ( y train - ŷ train ) as input to the feature selection
nd model building steps. This same linear model was applied to data
rom subjects in the test fold to obtain a “ground truth ” behavior score
 test ( y test - ŷ test ). To assess accuracy, model predictions were compared to
 test (rather than raw score y test ) as described further in the Connectome-
ased Predictive Modeling section below. 

.3. Functional connectivity 

For each subject and each run, we took the framewise average (at
ach TR) of the voxelwise signals in each of 268 nodes from the Shen
tlas ( Shen et al., 2013 ), a functional parcellation defined previously
n resting-state data from a separate group of healthy adults. This par-
ellation covers the whole brain, including cortex, subcortex, and cere-
ellum. We then correlated all possible pairs of node timecourses to
onstruct 268 × 268 symmetric connectivity matrices (one per subject
er run). Pearson correlation coefficients were transformed to z-scores
sing Fisher’s transformation. For purposes of model building, we ex-
racted and vectorized the upper triangle of these matrices (35,778 total
onnections, or edges) to use as input features. 

.4. Connectome-based predictive modeling 

.4.1. Overview 

Connectome-based predictive modeling (CPM) is a data-driven ap-
roach that uses whole-brain functional connectivity to predict behav-
or ( Finn et al., 2015 ; Shen et al., 2017 ). In brief, the steps involved in
PM are as follows: 

1 Given a full set of subjects, each with a connectivity matrix and be-
havioral score, divide the data into training and test sets (here, we
used 100 iterations of 10-fold cross-validation, where models were
trained on 9 folds and tested on the held-out 10th fold). 

2 In the training set, perform mass univariate correlation between the
strength of each edge (functional connectivity z score) and the target
behavior. 

3 Apply a feature selection threshold based on the magnitude and/or
p-value associated with the correlation coefficients calculated in (2).
This threshold is a hyperparameter that may be tuned if desired;
here, we chose |r| > 0.2 (corresponding to a two-tailed p-value of
approximately 0.01), since this provides good accuracy with rela-
tively sparse features. Previous work has shown that results are gen-
erally robust to choice of threshold ( Finn et al., 2015 ; Jangraw et al.,
2018 ). We also verified that for whole-run predictions of cognition
score, the pattern of results is similar at a feature selection threshold
of |r| > 0.1 (data not shown). 

4 Divide edges from (3) into two tails (positive and negative) based
on the sign of their correlation with behavior, then for each subject,
calculate the summed strength across all edges in a given tail (X pos 

and X neg ). 
5 Build a linear model relating the positive and negative network

strengths calculated in (4) to behavior score (y): 

y = 𝛽0 + 𝛽1 (X pos ) + 𝛽2 (X neg ) + 𝜀 

6 Calculate positive and negative network strength (X pos and X neg ) for
each subject in the test set by applying the masks defined in (3) to
5 
their functional connectivity data, and use these as input to the linear
model in (5) to generate predicted behavior scores. 

For further details and comparisons with other predictive modeling
pproaches, see Shen et al. (2017) . 

.4.2. Cross validation 

Cross-validation was performed as follows. For each iteration of
odel building, we first divided the full set of n = 176 subjects into
0 folds respecting family structure, such that sets of siblings were al-
ays together in either the train set or the test set (never split with one

ibling in the train set and another in the test set). We then trained a
PM using 9 of the 10 folds, and applied the resulting model to data

rom the held-out fold to generate predicted behavioral scores for all
ubjects in that fold (i.e., 17–18 at a time). Iterating through all 10 folds
ielded a vector of predicted behavioral scores for all 176 subjects in
he dataset. We then repeated this entire process 100 times, to assess
ensitivity of model accuracy to different fold splits. 

.4.3. Assessing model accuracy 

We assessed prediction accuracy by calculating the Spearman (rank)
oefficient between predicted (model generated) and observed (true)
cores across subjects. Note that for each model iteration, predicted and
bserved scores were only correlated once at the end, so the correlation
s based on the full n = 176 data points. Correlation is a relative mea-
ure of accuracy rather than an absolute one (e.g., mean squared error).
iven that the target variables were principal component scores that
ere themselves made up mostly of variables measured on an arbitrary

cale, we believe that relative performance —i.e., the model’s ability to
istinguish higher versus lower scoring subjects —is the most appropri-
te metric. Because successful relative or rank prediction across subjects
as our explicit goal, we used Spearman rather than Pearson correla-

ion. However, results should be interpreted in the context of this choice,
ecause models with good relative accuracy may still suffer from high
bsolute error. 

.4.4. Statistical testing 

To assess the statistical significance of prediction accuracies, we gen-
rated a null distribution of expected accuracies due to chance by shuf-
ing behavior scores with respect to connectivity matrices and reper-

orming the entire analysis pipeline. A total of 10,000 randomizations
ere performed for each input-output combo (e.g., REST1-cognition

core, MOVIE1-cognition score, inception-emotion score). We then cal-
ulated a non-parametric p-value for the observed model accuracy using
he following formula, 

 = 

𝑠𝑢𝑚 ( 𝑟 𝑛𝑢𝑙𝑙 > 𝑚𝑒𝑑𝑖𝑎𝑛 
(
𝑟 𝑜𝑏𝑠 

)
) + 1 

𝑛 𝑛𝑢𝑙𝑙 + 1 

here n null = 10,000 and median(r obs ) is the median accuracy of the
00 true models. 

.5. Anatomy of predictive networks 

Due to the nature of cross-validated model building, different sets of
dges may be selected at each fold of a single 10-fold cross-validation,
s well as across the 100 iterations of 10-fold cross-validation. In se-
ecting edges to visualize and interpret, for a given run, behavior score,
nd tail (positive and negative), we first averaged the number of times
n edge was selected within each 10-fold run (resulting in a number be-
ween 0 and 1 for each edge), and then averaged those fractions across
ll 100 train-test split iterations. We limited visualization to edges that
ppeared in at least 90 percent of all models, to ensure that we were
onsidering only edges that were most robustly associated with and pre-
ictive of behavior. 

We assessed significance of edge overlap across runs and videos using
he hypergeometric cumulative distribution function, which gives the
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robability of observing a given overlap in “hits ” between two binary
ectors based on the total number of “hits ” in each vector and the total
ossible hits. 

For visualization purposes, we summarized edges in two ways: 1)
ased on individual nodes, and 2) by pooling edges into larger anatomi-
al regions using a predefined assignment of nodes into lobes and other
acroscale territories. In both cases, node centroid markers were sized

y the total number of edges across both positive and negative networks
such that larger markers denote more connections overall; note that in-
ividual nodes may have connections in both networks), and colored by
he difference between totals in the positive and negative networks (such
hat red indicates more representation in the positive network, blue in
he negative network, and yellow in between). 

.6. Video clip feature extraction 

We extracted video clip features in two ways: 1) by us-
ng semantic-category labels made available by the HCP
 7T_movie_resources/WordNetFeatures.hdf5 ) that describe high-level
eatures of the movies based on the approach in ( Huth et al., 2012 ),
nd 2) by using the open-source package pliers ( McNamara et al., 2017 )
 https://github.com/tyarkoni/pliers ) to extract a number of additional
eatures for each of the movies, including the low-level properties
f brightness (luminance), vibrance, optical flow, and the mid-level
roperty of presence of faces onscreen. Labels from (1) are provided at
he same temporal resolution of the fMRI data (i.e., one set of labels
er TR); we averaged these across TRs to arrive at one set of labels
er video representing the average semantic content onscreen during
hat video. For labels in (2), we extracted features at the temporal
esolution of the videos themselves (i.e., one value per frame, where
he frame rate of the videos was 24 frames per second), then averaged
hese. In both cases, we restricted this averaging to the first 143 TRs of
he videos, to match the fMRI data that were used as input to CPM. 

. Results 

We used fMRI and behavioral data from 176 healthy subjects made
vailable as part of the Human Connectome Project 7T dataset ( Van Es-
en et al., 2013 ). Functional runs of interest included two resting-state
uns and four movie-watching runs, each approximately 15 min in dura-
ion. While data were acquired in four separate sessions, we focused on
he two sessions that contained movie-watching runs (first and fourth).
or each subject, REST1, MOVIE1 and MOVIE2 were acquired together
n that order in a single session (referred to here as “Session 1 ″ ), and
EST4, MOVIE3 and MOVIE4 were acquired in that order in a separate
ession ( “Session 2 ″ ) on the following day or two days later. During rest
uns, subjects were instructed to keep their eyes open and maintain fix-
tion on a central cross. During movie runs, subjects passively viewed
 series of four or five video clips, each 1–4 min long. Video clips came
rom both independent and Hollywood films, and varied in their low-
evel (i.e., audiovisual features) and high-level properties (i.e., semantic
ontent). For a brief description of each clip, see Table 1 . For further
etails on imaging data acquisition, see Methods. 

The HCP makes available extensive phenotyping data for each sub-
ect. We were interested in how well functional connectivity during
oth rest and movies could predict trait behaviors in two broad do-
ains: cognition and emotion. From the individual measures in each
omain —many of which are highly correlated with one another —we
erived a single score for each subject using the top component from a
rincipal components analysis (one per domain). To avoid dependence
etween the training and test sets, principal components were learned
sing an independent set of subjects ( n = 1022; those scanned only at
T) and this transformation was applied once to all 7T subjects. See
ig. 1 for loadings of individual measures onto these components, and
ables S1 and S2 for full names and constructs for each measure. Briefly,
igher scores on the first principal component in the cognitive domain
6 
henceforth referred to as “cognition score ”) were associated with better
erformance on tasks measuring reading ability, vocabulary, and fluid
ntelligence ( Fig. 1 a); higher scores on the first principal component
n the emotion domain ( “emotion score ”) were associated with higher
elf-reported life satisfaction, emotional support, and positive affect,
nd lower sadness and perceived stress ( Fig. 1 b). Cognition and emo-
ion scores were not strongly correlated across subjects (r 174 = 0.11,
 = 0.13; Fig. 1 c), suggesting that the two domains are largely inde-
endent. These two scores served as targets for connectivity-based pre-
iction in the analyses that follow. At each cross-validation fold, prior
o model training and testing, scores were residualized with respect to
otentially confounding variables (head motion and time of day; see
ethods and Supplemental Figs. 3 and 4). 

.1. Movie-watching outperforms rest for prediction of behavior traits 

Our main goal was to compare how well cognition and emotion
cores could be predicted based on functional brain connectivity during
est or movie watching. REST runs were 900 TRs, or 15:00, in duration,
hile MOVIE runs ranged from 769 to 800 TRs (12:49–13:20) following

emoval of rest periods between clips (see Methods). For each subject
or each run, we created a whole-brain functional connectivity matrix
y calculating the Pearson correlation of activity timecourses between
ach pair of nodes in a predefined 268-node atlas ( Shen et al., 2013 ).
e used connectome-based predictive modeling (CPM; Finn et al., 2015 ;

hen et al., 2017 ) to predict an individual’s behavior score from their
unctional connectivity matrix. Briefly, CPM is a fully cross-validated ap-
roach in which a linear model is built to relate connectivity strength in
elected features (i.e., connections, or “edges ”) to behavior score within
 training set, and then this model is applied to data from subjects in
 test set to generate a predicted behavior score. Here, we used 100
terations of 10-fold cross-validation. Model accuracy was assessed us-
ng Spearman (rank) correlation between predicted and observed scores
cross all subjects, resulting in one accuracy ( r s value) for each of the
00 iterations. 

Cognition scores could be predicted with significant accuracy from
ll four MOVIE runs ( Fig. 2 a): MOVIE1 (median r = 0.29, permutation-
ased p = 0.0009), MOVIE2 ( r = 0.41, p = 0.0001), MOVIE3 ( r = 0.23,
 = 0.011), and MOVIE4 ( r = 0.17, p = 0.048), as well as from REST1
median r = 0.26, p = 0.003), but not from REST4 ( r = 0.12, p = 0.13).
ithin the first session, prediction accuracy was higher for both MOVIE

uns than for the REST runs, and higher for MOVIE2 than MOVIE1 (per-
utation tests for difference in medians, all p < 10 − 5 ). Similarly, within

he second session, prediction accuracy was higher for both MOVIE runs
han for the REST run, and for MOVIE3 over MOVIE4 (all p < 10 − 5 ). 

Emotion scores, on the other hand, could only be predicted from
OVIE1 ( r = 0.18, p = 0.049; Fig. 2 b). Predictions from REST1 and
OVIE2 did not reach significance, and none of the runs in the second

ession gave significant predictions (all p > 0.1). Prediction accuracy
as higher for MOVIE1 than for REST1 (permutation test for difference

n medians, p < 10 − 5 ). However, certain individual clips in both MOVIE1
nd MOVIE2 gave significant predictions of emotion scores, as described
n the section Predictions based on individual clips below. 

.2. Advantage for movies is not due to low-level arousal 

Can the advantage for movies be explained by differences in arousal
etween the two states? In other words, are people simply more likely
o be drowsy or asleep during rest, leading to a drop in prediction ac-
uracy? To answer this question, we used eye-tracking data to compare
hree metrics of alertness across the runs of interest: percentage of TRs
ith valid eye-tracking data (as a proxy for eyes-open time), blink rate,
nd median blink duration. 

Within session 1, the percentage of TRs with valid-eye tracking data
as generally high (approximately 82 percent across all runs), and there
ere no significant differences between REST1 and MOVIE1 (paired

https://github.com/tyarkoni/pliers
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Fig. 2. Movie-watching outperforms resting state for functional connectivity-based prediction of behavior . Connectome-based predictive models were trained 

to predict a) cognition or b) emotion score from resting-state (dark gray) or movie-based (purple) functional connectivity. Accuracy was measured as the Spearman 

[rank] correlation between predicted and observed scores ( y axis). Dots show results from 100 iterations of 10-fold cross-validation (true models). Light gray boxen 

plots show null distribution from 10,000 permutations in which behavior scores and connectivity matrices were randomized across subjects. Black horizontal line 

denotes median accuracy for true models. Statistical significance for each run was calculated by comparing the median of the true models to the null distribution. 

Differences in median accuracy between runs were assessed using permutation tests ( n = 10,000). ns: p > 0.05; ∗ p < 0.05; ∗ ∗ p < 0.01; ∗ ∗ ∗ p < 0.001; ∗ ∗ ∗ ∗ p < 0.0001. 

(For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 
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 -test: t 139 = − 1.48, p = 0.14) or REST1 and MOVIE2 (t 138 = − 0.55,
 = 0.59; Fig. 3 a). Within session 2, percentages were also high (ap-
roximately 82–86 percent). The percentage of TRs with valid data
as slightly lower in REST4 than in MOVIE3 (t 143 = − 2.17, p = 0.03),
ut there was no significant difference between REST4 and MOVIE4
t 144 = − 1.16, p = 0.25; Fig. 3 a). 

We next examined data on blinks. Subjects tended to blink less
uring REST runs than during MOVIE runs in session 1 (REST1 ver-
us MOVIE1: t 133 = − 5.68, p < 0.0001; versus MOVIE2: t 132 = − 3.14,
 = 0.002; Fig. 3 b) and, to a lesser extent, session 2 (REST4 ver-
us MOVIE3: t 136 = − 1.95, p = 0.05; versus MOVIE4: t 136 = − 1.76,
 = 0.08; Fig. 3 b), and blinks were longer in duration during REST
uns (REST1 versus MOVIE1: t 133 = 4.0, p < 0.0001; versus MOVIE2:
 132 = 2.79, p = 0.006; REST4 versus MOVIE3: t 136 = 3.1, p = 0.003;
ersus MOVIE4, t 136 = 4.4, p < 0.0001; Fig. 3 c). Increased blinking dur-
ng movie-watching may be related to increased saccades, since blinks
ften accompany saccadic gaze shifts ( Evinger et al., 1991 ). (Partici-
ants were instructed to fixate on a central crosshair during rest, while
hey were free to move their gaze naturally during movie watching.)
owever, blinks during rest runs were not so long as to imply that sub-

ects were sleeping. “Microsleeps ” are typically defined as an eye clo-
ure lasting longer than 1000 ms (1 s). In general, microsleeps were
are —the median number across subjects ranged from 10 (REST4) to
1 (MOVIE1) —and there were no differences in number of microsleeps
etween conditions (all p > 0.23; Fig. 3 d). See Fig. S1 for correlations
etween blink-related measures, and Figs. S2 and S3 for correlations
etween eye-tracking metrics and behavior. 

Despite some differences between rest and movie-watching, blink
ate and duration were consistent with typical wakeful ranges during
oth states. Median blink rate across subjects ranged from 22.3 (REST1)
o 33.4 (MOVIE1) per minute, which falls within previously published
alues for spontaneous blink rates (e.g., Bentivoglio et al. (1997) , 6–40
er minute; Karson et al. (1983) : 23 ± 15 per minute). Median blink
uration ranged from 155.5 ms (MOVIE1) to 188.0 ms (REST1), again
alling within the typical reported range for the alert state, which is 100–
b

7 
00 ms. Thus, despite some differences in blink patterns, there was no
trong evidence that major differences in arousal across conditions are
esponsible for the observed differences in prediction accuracy. 

.3. Anatomy of predictive networks differs across states 

We next examined which functional connections were most impor-
ant to the predictive models, and whether these differed across states.
Because only MOVIE1 gave significant predictions of emotion score,
e restricted these analyses to cognition score to permit comparisons
cross runs.) Restricting our analysis to connections, or edges, that were
elected in at least 90 percent of model iterations, we found signif-
cant overlap between nearly all pairs of runs ( Fig. 4 a), but overlap
as higher for runs of the same state than across states (mean over-

ap within- and across-state, respectively: 36 and 14 edges, p value for
ifference = 0.008 according to a permutation test; visible as two dis-
inct clusters in Fig. 4 a). This suggests that while some edges are always
ssociated with behavior regardless of state, there is more consistency
n the edges associated with behavior within a given state, even across
uns and scan sessions. 

Next, we visualized the most consistently selected edges in two ways:
rst, by displaying individual nodes in brain space according to their
umbers of positive and negative edges ( Fig. 4 b), and second, by sum-
arizing positive and negative networks by macroscale brain region

i.e., lobe; Fig. 4 c). (Note that here, “positive ” and “negative ” refer to
he sign of an edge’s association with behavior, not to its raw corre-
ation strength.) As is typical of a data-driven approach, predictive net-
orks were widely distributed across the brain, with no single dominant
natomical pattern. However, some trends emerged. Stronger connectiv-
ty between prefrontal and occipital cortex predicted higher cognition
core in both rest runs, and to some extent in the session 2 movie runs
i.e., MOVIE3 and MOVIE4), but were less important in the session 1
ovie runs (i.e., MOVIE1 and MOVIE2). Temporal-occipital connectiv-

ty was strongly negatively associated with cognition score in MOVIE2,
ut played a much lesser role in predictive networks in the other runs. 
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Fig. 3. Differences in eye-tracking measures between rest and movie runs . Per-run distributions of four metrics are shown: a) percentage of TRs with valid 

eye-tracking data (a proxy for eyes-open time), b) blink rate, c) blink duration, and d) number of microsleeps (defined as blinks > 1 s in duration). In the box 

plots, the center line represents the median, while the box extent represents the interquartile range (IQR; 25th – 75th percentile). The whiskers extend to 1.5 ∗ IQR. 

Individual-subject data are overlaid as semi-transparent dots. Note that data are inherently paired (with subject as the repeated measure), but are not displayed as 

such for reasons of visual clarity. However, all between-run comparisons were conducted using paired t-tests on subjects with data available for both scans in a given 

pair. n.s., not significant ( p > 0.05); ∗ p < 0.05; ∗ ∗ p < 0.01; ∗ ∗ ∗ p < 0.001; ∗ ∗ ∗ ∗ p < 0.0001. (For interpretation of the references to color in this figure legend, the reader 

is referred to the web version of this article.) 
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The individual nodes with the most connections in predictive net-
orks also differed across states and sessions. At rest, a node in left vi-

ual association cortex (Brodmann’s area 19) had the highest total edges,
ost of them involving prefrontal cortex and positively associated with

ognition score. In the session 1 movie runs, nodes in left parietal cortex
BA 7) and left visual association cortex (BA 18) had the highest total
dges, most of them negatively related to cognition score. In the session
 movie runs, two nearly homologous nodes in left and right visual as-
ociation cortex had the highest total edges, many of them negatively
elated to cognition score. Overall, nodes in visual association regions
eemed to play an outsize role in predictive networks, though their con-
ection partners and the sign of their association with behavior changed
epending on brain state and session. Of note, for the movie runs, it is
ifficult to disentangle cross-session variability (noise) from effects of
8 
timulus content on selected edges, since each run contained a differ-
nt set of clips. In the following section, we perform prediction based
n single video clips to explore how stimulus content affects prediction
ccuracy and anatomy of predictive networks. 

.4. Predictions based on individual clips 

To explore if and how prediction accuracy varies across movie stim-
li, we tested how well behavior scores could be predicted from func-
ional connectivity during single video clips. Clips varied in duration
rom 1:03 to 4:19 min: sec , and previous work has shown that longer
cquisitions improve estimation of individual signal ( Laumann et al.,
015 ; Noble et al., 2017 ). For an unbiased comparison across clips, we
runcated all clip timecourses to match the duration of one of the short-
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Fig. 4. Anatomy of predictive networks across states . a) Overlap between the most consistent edges (i.e., those selected in at least 90% of all model iterations) 

across runs. Significance of overlap was assessed with the hypergeometric cumulative distribution function. n.s., not significant ( p > 0.05); ∗ p < 0.05; ∗ ∗ p < 0.01; 
∗ ∗ ∗ p < 0.001; ∗ ∗ ∗ ∗ p < 0.0001 (Bonferroni corrected). Overlap was higher within states than across states (permutation test, n = 10,000 permutations, p = 0.008). b) 

Nodewise visualization of the most consistently selected edges across pairs of runs of the same state (REST or MOVIE). Nodes are sized according to the sum of edges 

in the positive and negative networks (such that larger nodes had more edges overall), and colored according to the difference between edges in the positive and 

negative networks (such that red nodes had mostly positive edges and blue nodes had mostly negative edges). “Positive ” refers to edges positively correlated with 

behavior, while “negative ” refers to edges inversely correlated with behavior. c) Lobewise visualization of most consistently selected edges across pairs of runs. Size 

and color scheme are similar to (b). Diagonal depicts within-lobe connections. PFC, prefrontal cortex; Mt, motor strip; Ins, insula; Par, parietal; Tp, temporal; Oc, 

occipital; Lb, limbic; SC, subcortical; BS, brainstem. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of 

this article.) 
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st clips (143 TRs, or 2:23) and constructed clip-specific functional con-
ectivity matrices for all subjects. We then performed CPM using data
rom each clip individually to predict cognition or emotion score. 

Despite the limited amount of data, several clips yielded significant
redictions of behavior ( Fig. 5 ). Cognition scores could be predicted us-
ng data from 9 out of 13 clips ( “two men ”: median r = 0.18, [ p = 0.047];
pockets ”: 0.22 [0.017]; “inception ”: 0.22 [0.02]; “social net ”: 0.38
0.0001]; “ocean’s 11 ″ : 0.34 [0.0003]; “garden ”: 0.18 [0.04]; “home
lone ”: 0.20 [0.03]; “brockovich ”: 0.19 [0.04]; “star wars ”: 0.21 [0.02];
ig. 5 a). Emotion scores could be predicted using data from 3 out of 13
lips ( “pockets ”: median r = 0.22, p = 0.013; “social net ”: 0.24 [0.01],
nd “oceans ”: 0.22 [0.01]; Fig. 5 b). Similar to the full runs, prediction
as overall better for cognition scores than emotion scores; as expected
iven the whole-run results, no individual clips in MOVIE3 or MOVIE4
ielded significant predictions of emotion score. 

We also assessed prediction accuracy for individual clips by compar-
ng accuracies from each clip to a matched block of resting-state data
rom the REST run in the same session. (For example, the clip “pock-
ts ” began at 8:46 into the MOVIE1 run, so its corresponding matched
est block was taken from data beginning at 8:46 into the REST1 run.
s above, data was matched for duration at 2:23 min: sec , or 143 TRs.)
verall, 10 and 9 clips (out of 13) outperformed their matched rest block

or prediction of cognition and emotion score, respectively (Fig. S6). 
9 
We next asked whether high-performing clips were consistent across
omains. In other words, if a clip performs well for predicting cognition,
oes it also perform well for predicting emotion ? We correlated median
rediction accuracy for cognition and emotion scores across clips, re-
tricting our analysis to clips in the first session (MOVIE1 and MOVIE2,
ince no clips in the second session yielded accurate predictions of emo-
ion score). Prediction accuracies were correlated at r s = 0.83 ( p = 0.04),
ndicating that the same clips were most successful for both the cogni-
ive and emotion domains ( Fig. 6 a). 

For the most successful clips, are the same edges selected for both the
ognition and emotion predictive models, or do the informative edges
iffer by domain? To answer this, we assessed the overlap between the
onsistently selected edges in the cognition and emotion models in the
wo clips that performed best for both domains, Ocean’s 11 and Social
etwork. Models trained to predict the same behavior from different
lips had more overlapping edges than models trained on the same clip
o predict different behaviors ( Fig. 6 b). In other words, similar networks
ere selected to predict cognition score from both Ocean’s 11 and Social
etwork (overlap depicted in Fig. 6 c, left panel), but different networks
ere selected to predict emotion score (overlap depicted in Fig. 6 c, right
anel). Therefore, the same clip may perform well across domains, but
ifferent edges may be important to the model in each particular do-
ain. 
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Fig. 5. Predictions based on individual video clips . Connectome-based predictive models were trained to predict a) cognition or b) emotion score from individual 

video clips ( x axis) in each of the four movie runs. Accuracy was measured as the Spearman [rank] correlation between predicted and observed scores ( y axis). 

Dots show results from 100 iterations of 10-fold cross-validation (true models). Light gray boxen plots show null distribution from 10,000 permutations in which 

behavior scores and connectivity matrices were randomized across subjects. Black horizontal line denotes median accuracy for true models. Statistical significance 

was calculated by comparing the median of the true models to the null distribution. ns: p > 0.05; ∗ p < 0.05; ∗ ∗ p < 0.01; ∗ ∗ ∗ p < 0.001; ∗ ∗ ∗ ∗ p < 0.0001. (For interpretation 

of the references to color in this figure legend, the reader is referred to the web version of this article.) 

3

 

s  

o  

g  

r  

c  

 

t  

(  

a  

g  

n  

p  

t  

c  

“  

(  

t  

(  

T  
.5. Stimulus features related to prediction accuracy 

What features are associated with more accurate predictions? Under-
tanding how clip content relates to prediction accuracy can shed light
n why certain clips are more successful than others, which may help
uide stimulus selection for future studies. (For these analyses, we again
estricted our analyses to predictions of cognition score because too few
lips gave significant predictions of emotion score to draw conclusions.)

We first used semantic category labels available for each clip
hat were created by hand using the WordNet semantic taxonomy
 Huth et al., 2012 ) and made available as part of the HCP dataset. These
10 
nnotations contains 859 distinct object (noun) and action (verb) cate-
ories. Using partial least-squares regression, we identified one compo-
ent of these labels that explained 96 percent of the variance in median
rediction accuracy across clips ( Fig. 7 a). Categories with strong posi-
ive loadings on this component (associated with better prediction ac-
uracy) included verbs such as “act ” and “talk ”, as well as nouns such as
person ” and “causal agent ”. Categories with strong negative loadings
associated with worse prediction accuracy) were largely nouns rather
han verbs, and included objects associated with scenes or landscapes
e.g., “mammal ”, “telephone pole ”, “building material ”, “vegetation ”).
his suggests that clips with more humans, verbal interaction, and so-
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Fig. 6. Stimulus- and domain-specificity of predictions . a) Correlation between a clip’s median prediction accuracy for cognitive score ( x axis) and emotion 

score ( y axis), limited to clips acquired in session 1 (since no clips in session 2 gave significant predictions of emotion score). Spearman r = 0.83 ( p = 0.04). b) 

Overlap between consistently selected edges across the two most successful clips (inner label) and domains (outer label). SN, social net; Oc, ocean’s 11. c) Nodewise 

visualization of consistently selected edges across same two clips in each domain (cognition and emotion). Nodes are sized and colored as in Fig. 4 . ns: p > 0.05; ∗ p 

< 0.05; ∗ ∗ p < 0.01; ∗ ∗ ∗ p < 0.001; ∗ ∗ ∗ ∗ p < 0.0001. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this 

article.) 

Fig. 7. Movie features related to prediction accuracy . a) First component from a partial least squares regression relating semantic content to prediction accuracy 

for cognition score across video clips. Positive weights (red) are associated with better accuracy, while lower weights (blue) are associated with worse accuracy. b) 

Correlations between prediction accuracy for cognition score ( y axis) and low-level audiovisual features ( x axis; from top to bottom row: brightness [luminance], 

optical flow [between-frame motion], and audio RMS [volume]). Left column is mean across video frames, right column is standard deviation across video frames. 

Following correction, the only significant relationship was with brightness standard deviation, such that less variance in brightness across a clip was associated with 

better prediction accuracy ( r = − 0.87, corrected p = 0.0008). c) Correlation between number of TRs containing at least one face onscreen (a proxy for social content) 

and prediction accuracy for cognition score (y axis): ( r = 0.76, p = 0.003). (For interpretation of the references to color in this figure legend, the reader is referred 

to the web version of this article.) 
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Fig. 8. Cross-subject variance in gaze position is associated with better prediction . Relationships across clips between prediction accuracy for cognition score 

( y axis) and measures of inter-subject correlation (ISC) in horizontal gaze position across subject pairs ( x axis). While there was no significant relationship between 

median gaze position ISC and accuracy (a), higher accuracy was associated with higher standard deviation of gaze position ISC (b), suggesting that the most successful 

clips are those that evoke the most variability in gaze trajectories across subjects. 
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ial information yield better behavior prediction than clips containing
ostly nature scenes and less social content. 

In another analysis, we used automated feature extraction
 McNamara et al., 2017 ) to create additional annotations of both low-
nd mid-level features for each clip. Low-level features included bright-
ess (luminance), optical flow (amount of frame-to-frame visual mo-
ion), and audio power (root-mean square of sound signal amplitude).
o test the hypothesis arising from the previous analysis that social con-
ent is associated with better prediction, we also labeled clips for the
resence of human faces. We then summarized these properties for each
lip using both mean and standard deviation across TRs (for low-level
eatures) and number of TRs containing at least one face (for the mid-
evel face feature) and correlated these with median prediction accuracy
 Fig. 7 b, 7 c). Of the low-level features, only brightness standard devi-
tion was significantly correlated with prediction accuracy, such that
ore variance in brightness level across clip frames was associated with

ower prediction accuracy ( r = − 0.87, Bonferroni corrected p = 0.0008).
s predicted, number of TRs containing at least one face was positively
orrelated with median prediction accuracy ( r = 0.76, p = 0.003). How-
ver, note that some of these features were also correlated with one
nother (Fig. S7); number of faces was strongly negatively related to
rightness standard deviation ( r = − 0.77), making it difficult to attribute
nique variance in prediction accuracy to either feature. 

.6. Cross-subject variance in gaze location is associated with better 

rediction 

One possibility is that engagement mediates the relationships be-
ween stimulus features and prediction success. In other words, if clips
ith more social content are simply more engaging, these clips may
ield more accurate predictions because they evoke richer cognitive
tates and/or standardize arousal levels across subjects. In the absence of
xplicit ratings of engagement or behavioral proxies (e.g., debrief ques-
ionnaires or comprehension questions), how might we measure engage-
ent? We reasoned that one index of engagement might be synchrony of

aze location, such that more engaging clips would evoke more similar
atterns of eye movements across subjects. To test this hypothesis, for
ach individual clip, we used eye-tracking data to create gaze-position
nter-subject correlation (ISC) matrices by correlating horizontal gaze
ocation across time between each pair of subjects. We then correlated
12 
he median gaze-ISC value with cognition prediction accuracy across
lips. 

Contrary to our hypothesis, median gaze ISC was not correlated with
rediction accuracy (r 11 = 0.06, p = 0.85; Fig. 8 a). However, stan-
ard deviation of gaze ISC was correlated with prediction accuracy
r 11 = 0.61, p = 0.03; Fig. 8 b), meaning that clips that evoked more
ariable patterns of eye movements across participants were better pre-
ictors. Standard deviation of gaze ISC was not strongly correlated with
umber of TRs with faces onscreen (r 11 = 0.32, p = 0.28), suggesting
hat these two factors related to prediction accuracy are at least par-
ially dissociable. 

Cross-subject variance in gaze trajectory may lead to higher predic-
ion accuracy if there is a relationship between gaze trajectory, func-
ional connectivity, and trait scores. In other words, subjects who are
ore similar in their eye movements may also be more similar in their

unctional connectivity, and if these pairs of subjects are also more sim-
lar in their trait scores, this might explain why clips that evoke higher
aze variance are better predictors: they emphasize similarities between
pecific pairs of subjects, rather than indiscriminately boosting similar-
ty across all pairs. The relationships among gaze trajectory, functional
onnectivity, and trait-like phenotypes —and whether certain types of
ontent elicit more variance in gaze trajectory across subjects —should
e investigated in future work. 

. Discussion 

Here, we demonstrated that functional connectivity during movie
atching outperforms rest for predicting trait-like behavior in both the

ognition and emotion domains. There was no evidence that this effect
as driven by differences in overall alertness across states, suggesting

hat the advantage for movies may stem from a shift in ongoing men-
al processes rather than low-level arousal changes. Within movie runs,
everal individual video clips gave successful predictions of trait scores
ased on only ~2.5 min of data. The best-performing clips were those
ith strong social content (i.e., humans, faces, dialog), and also tended

o evoke more variability in gaze trajectory across subjects. These results
ave implications for our basic understanding of trait-state interactions
n relationships between functional connectivity and behavior, and for
ractical considerations related to future data collection efforts aimed
t predictive modeling of behavior. We discuss these in turn below. 
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In general, prediction was more successful for the cognition do-
ain than the emotion domain. This result is perhaps not surprising

n the context of prior work, as many studies have demonstrated suc-
essful prediction of cognitive ability —most typically, fluid intelligence
nd/or working memory —from functional connectivity using the HCP
ataset ( Smith et al., 2013 ; Finn et al., 2015 ; Hearne et al., 2016 ;
erguson et al., 2017 ; Greene et al., 2018 ; Li et al., 2019 ) and other
atasets ( Hampson et al., 2006 ; van den Heuvel et al., 2009 ; Cole et al.,
012 ; Greene et al., 2018 ; Li et al., 2019 ), but there are comparatively
ewer reports of functional connectivity predicting emotional or affec-
ive traits out-of-sample, and accuracies tend to be lower for these traits
 Kong et al., 2019 ). One major difference is that the measures compris-
ng the cognition score were performance-based, while those comprising
he emotion score were self-reported. Self-report measures can suffer
rom bias, and may be less biologically valid than task performance.
ngoing efforts to develop behavior-based computational phenotypes

or emotional and affective traits ( Montague et al., 2012 ; Patzelt et al.,
018 ) may lead to measures that are more biologically valid and there-
ore more readily predicted from functional connectivity data. Another
ossibility that does not appeal to construct validity is that these mea-
ures simply do not have robust correlates in static functional brain con-
ectivity, but rather in other properties of brain structure or function.
till, we observed significant predictions of emotion score using data
rom one movie run (MOVIE1) and three individual clips (interestingly,
wo of which were from a different run, MOVIE2) but not from any rest-
ng run. This underscores the heightened sensitivity of movie-watching
onnectivity to even hard-to-predict measures, and suggests that stim-
lus content may be particularly important for successful emotion pre-
iction. 

Why does functional connectivity during movies yield better predic-
ions of trait behaviors than functional connectivity during rest, and why
ight certain movies —i.e., those with strong social content —perform

etter than others? Differences in model accuracy using different states
i.e., rest versus movie-watching) and stimuli (i.e., different clips) to
redict the same target behaviors suggests that there are trait-state in-
eractions at play, such that movies, and certain movies in particular, en-
ance individual differences in behaviorally relevant connections. Pre-
ious work has investigated how movie-watching and other natural-
stic paradigms affect functional connectivity, with reports that rela-
ive to rest, movie-watching alters how activity propagates across cor-
ical pathways ( Gilson et al., 2018 ), especially within and between re-
ions related to audiovisual processing and attention ( Betti et al., 2013 ;
emirta ş et al., 2019 ), and pushes the network community structure

nto an overall less modular and more integrated state ( Betzel et al.,
020 ). However, it is not clear whether and how these modulations are
elated to behavioral variability across subjects. In other words, is this
eorganization more pronounced in individuals at one end of the phe-
otypic spectrum, hence the increased sensitivity to trait-level differ-
nces for movies? Future work should relate movie-induced changes in
ndividual edge strengths (using, for example, the approach taken by
reene et al. (2020) ) and/or network-level properties to behavior, to
etter understand why and how movie watching boosts sensitivity to
henotypic differences. 

How might we interpret the success of social videos in particular?
he relationship between a video’s social content (proxied by number
f faces onscreen) and its success in predicting cognition score is in-
riguing, given that this score is comprised of tests of fluid intelligence,
orking memory, and other constructs that are not explicitly social in
ature. Broadly speaking, this fits with the social brain hypothesis that
he human brain and its many cognitive advances chiefly evolved to
andle increasingly complex social structures ( Dunbar, 1998 ). One pos-
ibility is that social videos are simply more engaging, and therefore
ore effective at corralling subjects into a similar brain state, reducing
oise and enhancing behaviorally relevant signal among any remain-
ng differences. However, if this were the case, we might expect gaze
rajectories to also be more similar across subjects in the most success-
13 
ul videos (reflecting shared attention and processing), and this was not
hat we found. Instead, more successful videos tended to have more
ariability in gaze trajectories, such that some pairs of subjects were
ighly synchronized while others were dissimilar. Perhaps the most suc-
essful videos are those that engage people in different ways, and social
ontent is the most likely to evoke differing reactions and interpreta-
ions across subjects ( Finn et al., 2018 ; Chen et al., 2019 ; Gruskin et al.,
019 ; Nguyen et al., 2019 ). Future work using online or post-hoc mea-
ures of stimulus engagement and interpretation could further explore
his possibility. 

The most successful clips were from Inception, The Social Network,
nd Ocean’s 11, which are all relatively recent and well-known Holly-
ood films. This could have conferred additional advantages for at least

wo reasons (not necessarily mutually exclusive with those presented
bove). First, many participants might have seen these films in their en-
irety prior to the scan session, meaning they would have been able to
lace the short clip into a larger context that may have evoked richer
ental representations during viewing compared to an unfamiliar film.

Participants were not asked whether they had seen any of the films pre-
iously, but future studies should include this information in debriefing
o that these effects can be studied and/or controlled for.) Second, the
lm industry, and Hollywood-style films in particular, generally gets
etter over time at using cinematographic techniques to capture au-
ience’s attentions and emotions, boosting engagement ( Cutting et al.,
011 ). Both of these are important factors to consider in designing fu-
ure studies. 

.1. Limitations 

Our study has several limitations worth noting. First, we used a sin-
le group parcellation to define nodes. If individual subjects’ functional
natomies are misaligned to this parcellation, it could bias measure-
ents of functional connectivity ( Bijsterbosch et al., 2018 ). Individual-

nd/or state-specific parcellations ( Salehi et al., 2020 ) could capture
dditional variance in trait scores ( Kong et al., 2019 ) and/or improve
ccuracy of CPM-based predictions. (However, we note that this par-
ellation was defined on resting-state data, which if anything should
ias results in favor of rest over movie-watching, and thus work against
ur hypothesis.) Second, we investigated only one prediction algorithm,
onnectome-based predictive modeling ( Shen et al., 2017 ). While we
hose CPM because it provides a good balance of accuracy, computa-
ional tractability, and interpretability, and to be consistent with prior
ork from our group and others, future work should investigate if other
lgorithms improve prediction accuracies overall and/or for one condi-
ion over another. Alternative outcome measures, such as mean absolute
rror, or the coefficient of determination, should also be investigated. A
hird limitation concerns preprocessing choices and potential confound-
ng effects. While we chose to work with the HCP-provided FIX-denoised
ata with the addition of global signal regression (since this step boosts
ssociations between connectivity and behavior ( Li et al., 2019 )), it is
ossible that other preprocessing choices might influence overall ac-
uracy and/or the pattern of results. Similarly, while we attempted to
ontrol for collinearity between target behaviors and known confounds
head motion, time of day), it is always possible that insidious effects
ersist and bias predictions ( Siegel et al., 2016 ). 

Finally, perhaps the biggest limitations stem from experimental de-
ign and data collection for this study, which was not necessarily de-
igned to test these hypotheses. The order of video clips within runs as
ell as the order of runs themselves were not counterbalanced, raising

he possibility that runs and/or clips in session 2 (which was actually
he fourth session in the overall protocol) performed worse for predic-
ion simply due to fatigue effects and not differences in clip content.

ithin a session, the rest run was always collected before movie runs
though we note again that if anything this is likely to work against
ur hypothesis, as fatigue generally increases and compliance decreases
ver the course of an imaging session). Video clips were not explicitly
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elected to cover a broad space of low-level and high-level features, and
s such, there is less range in clip content than might be desired. (For
xample, most clips come from Hollywood or documentary-style films
nd contain predominantly social content; most of the clips that buck
his trend —i.e., those with predominantly nature scenes and/or little or
o dialog —were confined to a single run, MOVIE3.) Future work should
e deliberate in selecting stimuli that vary along certain dimensions of
nterest and counterbalancing the order of these stimuli to provide a
learer picture of how stimulus content affects prediction accuracy. 

.2. Implications for future work 

In spite of these limitations and outstanding questions, we believe
hat the results presented here should encourage more widespread adop-
ion of naturalistic paradigms for studies of brain-behavior relationships.
arge-scale data collection efforts might consider including a movie-
atching condition in addition to, or perhaps even instead of, rest-

ng state. Beyond improving subject compliance, naturalistic paradigms
eem to enhance meaningful individual variability in functional connec-
ivity, akin to a “stress test ” for the brain ( Dubois and Adolphs, 2016 ;
inn et al., 2017 ). This may hasten development of biomarkers with
eal-world applications ( Eickhoff et al., 2020 ). 

Of the myriad potential ways to analyze data from naturalistic
aradigms, we restricted our approach here to functional connectiv-
ty because it can be applied equally to both resting-state and movie-
atching data, providing a straightforward way to test for differences
etween conditions. However, analyses that exploit the presence of a
ime-locked “ground truth ” in naturalistic paradigms, such as inter-
ubject representational similarity analysis ( Finn et al., 2020 ), an exten-
ion of the inter-subject correlation family of approaches ( Hasson et al.,
004 ; Nastase et al., 2019 ), might prove even more sensitive to trait-
evel variability in both normative ( van Baar et al., 2019 ) and clini-
al populations ( Hasson et al., 2009 ; Salmi et al., 2013 ; Byrge et al.,
015 ; Bolton et al., 2018 ; Salmi et al., 2020 ). Because these and other
ctivation-based approaches (e.g., Venkatesh et al., 2020 ) allow us to
nterpret spatiotemporal activity patterns in the context of stimulus fea-
ures, they open the door to models that are not only predictive ( what are
he relationships between brain function and behavior), but also deepen
ur understanding of how and why individuals show distinct brain re-
ponses to the same information, and how this relates to trait-level phe-
otypes. 

uthors statement 

Emily S. Finn: Conceptualization, Methodology, Software, Valida-
ion, Formal analysis, Resources, Data Curation, Writing – Original
raft, Visualization, Funding acquisition. 

Peter A. Bandettini: Conceptualization, Resources, Writing – Re-
iew & Editing, Supervision, Funding acquisition. 

ata and code availability 

Original MRI and behavioral data are publicly available via the Hu-
an Connectome Project. Data derivatives (e.g., nodewise timeseries)

nd code used to conduct the analyses and generate the figures in this
anuscript are publicly available in the following repository: https:

/github.com/esfinn/movie _ cpm 

cknowledgments 

Data were provided by the Human Connectome Project, WU-Minn
onsortium (Principal Investigators: David Van Essen and Kamil Ugur-
il; 1U54MH091657 ) funded by the 16 NIH Institutes and Centers that
upport the NIH Blueprint for Neuroscience Research; and by the Mc-
onnell Center for Systems Neuroscience at Washington University.
his work utilized the computational resources of the NIH HPC Biowulf
14 
luster ( http://hpc.nih.gov ), and was supported by the National Insti-
utes of Health (grants K99MH120257 and R00MH120257 to E.S.F.
nd ZIAMH002783 to P.A.B.). We thank Dustin Moraczweski and Adam
homas for their help with obtaining and organizing data, and Javier
onzalez-Castillo, Daniel Handwerker, Peter Molfese, Francisco Pereira,
nd Monica Rosenberg for helpful comments and discussion. 

upplementary materials 

Supplementary material associated with this article can be found, in
he online version, at doi:10.1016/j.neuroimage.2021.117963 . 

eferences 

entivoglio, A.R. , Bressman, S.B. , Cassetta, E. , Carretta, D. , Tonali, P. , Albanese, A , 1997.
Analysis of blink rate patterns in normal subjects. Mov. Disord. 12, 1028–1034 . 

etti, V. , Della Penna, S. , de Pasquale, F. , Mantini, D. , Marzetti, L. , Romani, Gian L. , Cor-
betta, M. , 2013. Natural scenes viewing alters the dynamics of functional connectivity
in the human brain. Neuron 79, 782–797 . 

etzel, R.F. , Byrge, L. , Esfahlani, F.Z. , Kennedy, D.P. , 2020. Temporal fluctuations in the
brain’s modular architecture during movie-watching. Neuroimage 213, 116687 . 

ijsterbosch, J.D. , Woolrich, M.W. , Glasser, M.F. , Robinson, E.C. , Beckmann, C.F. , Van
Essen, D.C. , Harrison, S.J. , Smith, S.M. , 2018. The relationship between spatial con-
figuration and functional connectivity of brain regions. eLife 7, e32992 . 

olton, T.A.W. , Jochaut, D. , Giraud, A.L. , Ville, D.V.D , 2018. Brain dynamics in ASD dur-
ing movie-watching show idiosyncratic functional integration and segregation. Hum.
Brain Mapp. 39, 2391–2404 . 

yrge, L. , Dubois, J. , Tyszka, J.M. , Adolphs, R. , Kennedy, D.P. , 2015. Idiosyncratic brain
activation patterns are associated with poor social comprehension in autism. J. Neu-
rosci. 35, 5837–5850 . 

hen, P.-H.A. , Jolly, E. , Cheong, J.H. , Chang, L.J. , 2019. Inter-subject representational
similarity analysis reveals individual variations in affective experience when watching
erotic movies. bioRxiv, 726570 . 

ole, M.W. , Yarkoni, T. , Repov š , G. , Anticevic, A. , Braver, T.S. , 2012. Global connectiv-
ity of prefrontal cortex predicts cognitive control and intelligence. J. Neurosci. 32,
8988–8999 . 

utting, J.E. , Brunick, K.L. , DeLong, J.E. , Iricinschi, C. , Candan, A. , 2011. Quicker, faster,
darker: changes in Hollywood film over 75 years. Iperception 2, 569–576 . 

emirta ş , M. , Ponce-Alvarez, A. , Gilson, M. , Hagmann, P. , Mantini, D. , Betti, V. , Ro-
mani, G.L. , Friston, K. , Corbetta, M. , Deco, G. , 2019. Distinct modes of functional
connectivity induced by movie-watching. Neuroimage 184, 335–348 . 

ubois, J. , Adolphs, R , 2016. Building a science of individual differences from fMRI.
Trends Cogn. Sci. (Regul. Ed.) 20, 425–443 . 

unbar, R.I. , 1998. The social brain hypothesis. Evol. Anthropol.: Issues, News, Rev.: Is-
sues, News, Rev. 6, 178–190 . 

ickhoff, S.B. , Milham, M. , Vanderwal, T. , 2020. Towards clinical applications of movie
fMRI. Neuroimage, 116860 . 

vinger, C. , Manning, K.A. , Sibony, P.A. , 1991. Eyelid movements. Mechanisms and nor-
mal data. Invest. Ophthalmol. Vis. Sci. 32, 387–400 . 

erguson, M.A. , Anderson, J.S. , Spreng, R.N. , 2017. Fluid and flexible minds: intelligence
reflects synchrony in the brain’s intrinsic network architecture. Netw. Neurosci. . 

inn, E.S. , Constable, R.T. , 2016. Individual variation in functional brain connectivity:
implications for personalized approaches to psychiatric disease. Dialogues Clin. Neu-
rosci. 18, 277–287 . 

inn, E.S. , Corlett, P.R. , Chen, G. , Bandettini, P.A. , Constable, R.T. , 2018. Trait paranoia
shapes inter-subject synchrony in brain activity during an ambiguous social narrative.
Nat. Commun. 9, 2043 . 

inn, E.S. , Glerean, E. , Khojandi, A.Y. , Nielson, D. , Molfese, P.J. , Handwerker, D.A. , Ban-
dettini, P.A. , 2020. Idiosynchrony: from shared responses to individual differences
during naturalistic neuroimaging. Neuroimage 215, 116828 . 

inn, E.S. , Scheinost, D. , Finn, D.M. , Shen, X. , Papademetris, X. , Constable, R.T. , 2017.
Can brain state be manipulated to emphasize individual differences in functional con-
nectivity? Neuroimage 160, 140–151 . 

inn, E.S. , Shen, X. , Scheinost, D. , Rosenberg, M.D. , Huang, J. , Chun, M.M. , Pa-
pademetris, X. , Constable, R.T. , 2015. Functional connectome fingerprinting: identi-
fying individuals using patterns of brain connectivity. Nat. Neurosci. 18, 1664–1671 .

abrieli, John D.E. , Ghosh, Satrajit S. , Whitfield-Gabrieli, S , 2015. Prediction as a human-
itarian and pragmatic contribution from human cognitive neuroscience. Neuron 85,
11–26 . 

eerligs, L. , Rubinov, M. , Cam-CAN , Henson, R.N , 2015. State and trait components of
functional connectivity: individual differences vary with mental state. J. Neurosci.
35, 13949–13961 . 

ilson, M. , Deco, G. , Friston, K.J. , Hagmann, P. , Mantini, D. , Betti, V. , Romani, G.L. , Cor-
betta, M. , 2018. Effective connectivity inferred from fMRI transition dynamics during
movie viewing points to a balanced reconfiguration of cortical interactions. Neuroim-
age 180, 534–546 . 

lasser, M.F. , Sotiropoulos, S.N. , Wilson, J.A. , Coalson, T.S. , Fischl, B. , Andersson, J.L. ,
Xu, J. , Jbabdi, S. , Webster, M. , Polimeni, J.R. , et al. , 2013. The minimal preprocessing
pipelines for the human connectome project. Neuroimage 80, 105–124 . 

ratton, C. , Laumann, T.O. , Nielsen, A.N. , Greene, D.J. , Gordon, E.M. , Gilmore, A.W. ,
Nelson, S.M. , Coalson, R.S. , Snyder, A.Z. , Schlaggar, B.L. , et al. , 2018. Functional
brain networks are dominated by stable group and individual factors, not cognitive
or daily variation. Neuron 98, 439–452 e435 . 

https://github.com/esfinn/movie_cpm
http://dx.doi.org/10.13039/100000002
http://hpc.nih.gov
http://dx.doi.org/10.13039/100000002
https://doi.org/10.1016/j.neuroimage.2021.117963
http://refhub.elsevier.com/S1053-8119(21)00240-8/sbref0001
http://refhub.elsevier.com/S1053-8119(21)00240-8/sbref0001
http://refhub.elsevier.com/S1053-8119(21)00240-8/sbref0001
http://refhub.elsevier.com/S1053-8119(21)00240-8/sbref0001
http://refhub.elsevier.com/S1053-8119(21)00240-8/sbref0001
http://refhub.elsevier.com/S1053-8119(21)00240-8/sbref0001
http://refhub.elsevier.com/S1053-8119(21)00240-8/sbref0001
http://refhub.elsevier.com/S1053-8119(21)00240-8/sbref0002
http://refhub.elsevier.com/S1053-8119(21)00240-8/sbref0002
http://refhub.elsevier.com/S1053-8119(21)00240-8/sbref0002
http://refhub.elsevier.com/S1053-8119(21)00240-8/sbref0002
http://refhub.elsevier.com/S1053-8119(21)00240-8/sbref0002
http://refhub.elsevier.com/S1053-8119(21)00240-8/sbref0002
http://refhub.elsevier.com/S1053-8119(21)00240-8/sbref0002
http://refhub.elsevier.com/S1053-8119(21)00240-8/sbref0002
http://refhub.elsevier.com/S1053-8119(21)00240-8/sbref0003
http://refhub.elsevier.com/S1053-8119(21)00240-8/sbref0003
http://refhub.elsevier.com/S1053-8119(21)00240-8/sbref0003
http://refhub.elsevier.com/S1053-8119(21)00240-8/sbref0003
http://refhub.elsevier.com/S1053-8119(21)00240-8/sbref0003
http://refhub.elsevier.com/S1053-8119(21)00240-8/sbref0004
http://refhub.elsevier.com/S1053-8119(21)00240-8/sbref0004
http://refhub.elsevier.com/S1053-8119(21)00240-8/sbref0004
http://refhub.elsevier.com/S1053-8119(21)00240-8/sbref0004
http://refhub.elsevier.com/S1053-8119(21)00240-8/sbref0004
http://refhub.elsevier.com/S1053-8119(21)00240-8/sbref0004
http://refhub.elsevier.com/S1053-8119(21)00240-8/sbref0004
http://refhub.elsevier.com/S1053-8119(21)00240-8/sbref0004
http://refhub.elsevier.com/S1053-8119(21)00240-8/sbref0004
http://refhub.elsevier.com/S1053-8119(21)00240-8/sbref0005
http://refhub.elsevier.com/S1053-8119(21)00240-8/sbref0005
http://refhub.elsevier.com/S1053-8119(21)00240-8/sbref0005
http://refhub.elsevier.com/S1053-8119(21)00240-8/sbref0005
http://refhub.elsevier.com/S1053-8119(21)00240-8/sbref0005
http://refhub.elsevier.com/S1053-8119(21)00240-8/sbref0006
http://refhub.elsevier.com/S1053-8119(21)00240-8/sbref0006
http://refhub.elsevier.com/S1053-8119(21)00240-8/sbref0006
http://refhub.elsevier.com/S1053-8119(21)00240-8/sbref0006
http://refhub.elsevier.com/S1053-8119(21)00240-8/sbref0006
http://refhub.elsevier.com/S1053-8119(21)00240-8/sbref0006
http://refhub.elsevier.com/S1053-8119(21)00240-8/sbref0007
http://refhub.elsevier.com/S1053-8119(21)00240-8/sbref0007
http://refhub.elsevier.com/S1053-8119(21)00240-8/sbref0007
http://refhub.elsevier.com/S1053-8119(21)00240-8/sbref0007
http://refhub.elsevier.com/S1053-8119(21)00240-8/sbref0007
http://refhub.elsevier.com/S1053-8119(21)00240-8/sbref0008
http://refhub.elsevier.com/S1053-8119(21)00240-8/sbref0008
http://refhub.elsevier.com/S1053-8119(21)00240-8/sbref0008
http://refhub.elsevier.com/S1053-8119(21)00240-8/sbref0008
http://refhub.elsevier.com/S1053-8119(21)00240-8/sbref0008
http://refhub.elsevier.com/S1053-8119(21)00240-8/sbref0008
http://refhub.elsevier.com/S1053-8119(21)00240-8/sbref0009
http://refhub.elsevier.com/S1053-8119(21)00240-8/sbref0009
http://refhub.elsevier.com/S1053-8119(21)00240-8/sbref0009
http://refhub.elsevier.com/S1053-8119(21)00240-8/sbref0009
http://refhub.elsevier.com/S1053-8119(21)00240-8/sbref0009
http://refhub.elsevier.com/S1053-8119(21)00240-8/sbref0009
http://refhub.elsevier.com/S1053-8119(21)00240-8/sbref0010
http://refhub.elsevier.com/S1053-8119(21)00240-8/sbref0010
http://refhub.elsevier.com/S1053-8119(21)00240-8/sbref0010
http://refhub.elsevier.com/S1053-8119(21)00240-8/sbref0010
http://refhub.elsevier.com/S1053-8119(21)00240-8/sbref0010
http://refhub.elsevier.com/S1053-8119(21)00240-8/sbref0010
http://refhub.elsevier.com/S1053-8119(21)00240-8/sbref0010
http://refhub.elsevier.com/S1053-8119(21)00240-8/sbref0010
http://refhub.elsevier.com/S1053-8119(21)00240-8/sbref0010
http://refhub.elsevier.com/S1053-8119(21)00240-8/sbref0010
http://refhub.elsevier.com/S1053-8119(21)00240-8/sbref0010
http://refhub.elsevier.com/S1053-8119(21)00240-8/sbref0011
http://refhub.elsevier.com/S1053-8119(21)00240-8/sbref0011
http://refhub.elsevier.com/S1053-8119(21)00240-8/sbref0011
http://refhub.elsevier.com/S1053-8119(21)00240-8/sbref0012
http://refhub.elsevier.com/S1053-8119(21)00240-8/sbref0012
http://refhub.elsevier.com/S1053-8119(21)00240-8/sbref0013
http://refhub.elsevier.com/S1053-8119(21)00240-8/sbref0013
http://refhub.elsevier.com/S1053-8119(21)00240-8/sbref0013
http://refhub.elsevier.com/S1053-8119(21)00240-8/sbref0013
http://refhub.elsevier.com/S1053-8119(21)00240-8/sbref0014
http://refhub.elsevier.com/S1053-8119(21)00240-8/sbref0014
http://refhub.elsevier.com/S1053-8119(21)00240-8/sbref0014
http://refhub.elsevier.com/S1053-8119(21)00240-8/sbref0014
http://refhub.elsevier.com/S1053-8119(21)00240-8/sbref0015
http://refhub.elsevier.com/S1053-8119(21)00240-8/sbref0015
http://refhub.elsevier.com/S1053-8119(21)00240-8/sbref0015
http://refhub.elsevier.com/S1053-8119(21)00240-8/sbref0015
http://refhub.elsevier.com/S1053-8119(21)00240-8/sbref0016
http://refhub.elsevier.com/S1053-8119(21)00240-8/sbref0016
http://refhub.elsevier.com/S1053-8119(21)00240-8/sbref0016
http://refhub.elsevier.com/S1053-8119(21)00240-8/sbref0017
http://refhub.elsevier.com/S1053-8119(21)00240-8/sbref0017
http://refhub.elsevier.com/S1053-8119(21)00240-8/sbref0017
http://refhub.elsevier.com/S1053-8119(21)00240-8/sbref0017
http://refhub.elsevier.com/S1053-8119(21)00240-8/sbref0017
http://refhub.elsevier.com/S1053-8119(21)00240-8/sbref0017
http://refhub.elsevier.com/S1053-8119(21)00240-8/sbref0018
http://refhub.elsevier.com/S1053-8119(21)00240-8/sbref0018
http://refhub.elsevier.com/S1053-8119(21)00240-8/sbref0018
http://refhub.elsevier.com/S1053-8119(21)00240-8/sbref0018
http://refhub.elsevier.com/S1053-8119(21)00240-8/sbref0018
http://refhub.elsevier.com/S1053-8119(21)00240-8/sbref0018
http://refhub.elsevier.com/S1053-8119(21)00240-8/sbref0018
http://refhub.elsevier.com/S1053-8119(21)00240-8/sbref0018
http://refhub.elsevier.com/S1053-8119(21)00240-8/sbref0019
http://refhub.elsevier.com/S1053-8119(21)00240-8/sbref0019
http://refhub.elsevier.com/S1053-8119(21)00240-8/sbref0019
http://refhub.elsevier.com/S1053-8119(21)00240-8/sbref0019
http://refhub.elsevier.com/S1053-8119(21)00240-8/sbref0019
http://refhub.elsevier.com/S1053-8119(21)00240-8/sbref0019
http://refhub.elsevier.com/S1053-8119(21)00240-8/sbref0019
http://refhub.elsevier.com/S1053-8119(21)00240-8/sbref0020
http://refhub.elsevier.com/S1053-8119(21)00240-8/sbref0020
http://refhub.elsevier.com/S1053-8119(21)00240-8/sbref0020
http://refhub.elsevier.com/S1053-8119(21)00240-8/sbref0020
http://refhub.elsevier.com/S1053-8119(21)00240-8/sbref0020
http://refhub.elsevier.com/S1053-8119(21)00240-8/sbref0020
http://refhub.elsevier.com/S1053-8119(21)00240-8/sbref0020
http://refhub.elsevier.com/S1053-8119(21)00240-8/sbref0020
http://refhub.elsevier.com/S1053-8119(21)00240-8/sbref0020
http://refhub.elsevier.com/S1053-8119(21)00240-8/sbref0021
http://refhub.elsevier.com/S1053-8119(21)00240-8/sbref0021
http://refhub.elsevier.com/S1053-8119(21)00240-8/sbref0021
http://refhub.elsevier.com/S1053-8119(21)00240-8/sbref0021
http://refhub.elsevier.com/S1053-8119(21)00240-8/sbref0022
http://refhub.elsevier.com/S1053-8119(21)00240-8/sbref0022
http://refhub.elsevier.com/S1053-8119(21)00240-8/sbref0022
http://refhub.elsevier.com/S1053-8119(21)00240-8/sbref0022
http://refhub.elsevier.com/S1053-8119(21)00240-8/sbref0022
http://refhub.elsevier.com/S1053-8119(21)00240-8/sbref0023
http://refhub.elsevier.com/S1053-8119(21)00240-8/sbref0023
http://refhub.elsevier.com/S1053-8119(21)00240-8/sbref0023
http://refhub.elsevier.com/S1053-8119(21)00240-8/sbref0023
http://refhub.elsevier.com/S1053-8119(21)00240-8/sbref0023
http://refhub.elsevier.com/S1053-8119(21)00240-8/sbref0023
http://refhub.elsevier.com/S1053-8119(21)00240-8/sbref0023
http://refhub.elsevier.com/S1053-8119(21)00240-8/sbref0023
http://refhub.elsevier.com/S1053-8119(21)00240-8/sbref0023
http://refhub.elsevier.com/S1053-8119(21)00240-8/sbref0024
http://refhub.elsevier.com/S1053-8119(21)00240-8/sbref0024
http://refhub.elsevier.com/S1053-8119(21)00240-8/sbref0024
http://refhub.elsevier.com/S1053-8119(21)00240-8/sbref0024
http://refhub.elsevier.com/S1053-8119(21)00240-8/sbref0024
http://refhub.elsevier.com/S1053-8119(21)00240-8/sbref0024
http://refhub.elsevier.com/S1053-8119(21)00240-8/sbref0024
http://refhub.elsevier.com/S1053-8119(21)00240-8/sbref0024
http://refhub.elsevier.com/S1053-8119(21)00240-8/sbref0024
http://refhub.elsevier.com/S1053-8119(21)00240-8/sbref0024
http://refhub.elsevier.com/S1053-8119(21)00240-8/sbref0024
http://refhub.elsevier.com/S1053-8119(21)00240-8/sbref0024
http://refhub.elsevier.com/S1053-8119(21)00240-8/sbref0025
http://refhub.elsevier.com/S1053-8119(21)00240-8/sbref0025
http://refhub.elsevier.com/S1053-8119(21)00240-8/sbref0025
http://refhub.elsevier.com/S1053-8119(21)00240-8/sbref0025
http://refhub.elsevier.com/S1053-8119(21)00240-8/sbref0025
http://refhub.elsevier.com/S1053-8119(21)00240-8/sbref0025
http://refhub.elsevier.com/S1053-8119(21)00240-8/sbref0025
http://refhub.elsevier.com/S1053-8119(21)00240-8/sbref0025
http://refhub.elsevier.com/S1053-8119(21)00240-8/sbref0025
http://refhub.elsevier.com/S1053-8119(21)00240-8/sbref0025
http://refhub.elsevier.com/S1053-8119(21)00240-8/sbref0025
http://refhub.elsevier.com/S1053-8119(21)00240-8/sbref0025


E.S. Finn and P.A. Bandettini NeuroImage 235 (2021) 117963 

G  

 

G  

G  

 

 

G  

 

H  

H  

 

H  

H  

H  

 

H  

 

H  

 

J  

 

 

K  

K  

 

 

L  

 

L  

 

M  

 

M  

N  

 

N  

N  

 

P  

 

R  

 

R  

 

 

S  

 

S  

 

S  

 

S  

 

 

S  

 

S  

 

S  

 

S  

 

S  

v  

v  

V  

V  

 

V  

 

V  

W  

 

W  

 

W  
reene, A.S. , Gao, S. , Noble, S. , Scheinost, D. , Constable, R.T. , 2020. How tasks change
whole-brain functional organization to reveal brain-phenotype relationships. bioRxiv,
870287 . 

reene, A.S. , Gao, S. , Scheinost, D. , Constable, R.T. , 2018. Task-induced brain state ma-
nipulation improves prediction of individual traits. Nat. Commun. 9, 2807 . 

riffanti, L. , Salimi-Khorshidi, G. , Beckmann, C.F. , Auerbach, E.J. , Douaud, G. , Sex-
ton, C.E. , Zsoldos, E. , Ebmeier, K.P. , Filippini, N. , Mackay, C.E. , 2014. ICA-based
artefact removal and accelerated fMRI acquisition for improved resting state network
imaging. Neuroimage 95, 232–247 . 

ruskin, D.C. , Rosenberg, M.D. , Holmes, A.J. , 2019. Relationships between depressive
symptoms and brain responses during emotional movie viewing emerge in adoles-
cence. bioRxiv, 542720 . 

ampson, M. , Driesen, N.R. , Skudlarski, P. , Gore, J.C. , Constable, R.T. , 2006. Brain con-
nectivity related to working memory performance. J. Neurosci. 26, 13338–13343 . 

asson, U. , Avidan, G. , Gelbard, H. , Vallines, I. , Harel, M. , Minshew, N. , Behrmann, M. ,
2009. Shared and idiosyncratic cortical activation patterns in autism revealed under
continuous real-life viewing conditions. Autism Res. 2, 220–231 . 

asson, U. , Nir, Y. , Levy, I. , Fuhrmann, G. , Malach, R. , 2004. Intersubject synchronization
of cortical activity during natural vision. Science 303, 1634–1640 . 

earne, L.J. , Mattingley, J.B. , Cocchi, L. , 2016. Functional brain networks related to in-
dividual differences in human intelligence at rest. Sci. Rep. 6 . 

su, W.-.T. , Rosenberg, M.D. , Scheinost, D. , Constable, R.T. , Chun, M.M. , 2018. Resting-s-
tate functional connectivity predicts neuroticism and extraversion in novel individu-
als. Soc. Cogn. Affect. Neurosci. 13, 224–232 . 

uijbers, W. , Van Dijk, K.R.A. , Boenniger, M.M. , Stirnberg, R. , Breteler, M.M.B , 2017. Less
head motion during MRI under task than resting-state conditions. Neuroimage 147,
111–120 . 

uth, Alexander G. , Nishimoto, S. , Vu, An T. , Gallant, Jack L. , 2012. A continuous seman-
tic space describes the representation of thousands of object and action categories
across the human brain. Neuron 76, 1210–1224 . 

angraw, D.C. , Gonzalez-Castillo, J. , Handwerker, D.A. , Ghane, M. , Rosenberg, M.D. , Pan-
war, P. , Bandettini, P.A. , 2018. A functional connectivity-based neuromarker of sus-
tained attention generalizes to predict recall in a reading task. Neuroimage 166,
99–109 . 

ARSON, C.N. , 1983. Spontaneous eye-blink rates and dopaminergic systems. Brain 106,
643–653 . 

ong, R. , Li, J. , Orban, C. , Sabuncu, M.R. , Liu, H. , Schaefer, A. , Sun, N. , Zuo, X.-.N. ,
Holmes, A.J. , Eickhoff, S.B. , 2019. Spatial topography of individual-specific corti-
cal networks predicts human cognition, personality, and emotion. Cereb. Cortex 29,
2533–2551 . 

aumann, T.O. , Gordon, E.M. , Adeyemo, B. , Snyder, A.Z. , Joo, S.J. , Chen, M.-.Y. ,
Gilmore, A.W. , McDermott, K.B. , Nelson, S.M. , Dosenbach, N.U. , 2015. Functional
system and areal organization of a highly sampled individual human brain. Neuron . 

i, J. , Kong, R. , Liégeois, R. , Orban, C. , Tan, Y. , Sun, N. , Holmes, A.J. , Sabuncu, M.R. ,
Ge, T. , Yeo, B.T.T , 2019. Global signal regression strengthens association between
resting-state functional connectivity and behavior. Neuroimage 196, 126–141 . 

cNamara, Q. , De La Vega, A. , Yarkoni, T , 2017. Developing a comprehensive framework
for multimodal feature extraction. In: Paper presented at: Proceedings of the 23rd
ACM SIGKDD International Conference on Knowledge Discovery and Data Mining . 

ontague, P.R. , Dolan, R.J. , Friston, K.J. , Dayan, P. , 2012. Computational psychiatry.
Trends Cogn. Sci. (Regul. Ed.) 16, 72–80 . 

astase, S.A. , Gazzola, V. , Hasson, U. , Keysers, C. , 2019. Measuring shared responses
across subjects using intersubject correlation. Soc. Cogn. Affect. Neurosci 14,
667–685 . 

guyen, M. , Vanderwal, T. , Hasson, U. , 2019. Shared understanding of narratives is cor-
related with shared neural responses. Neuroimage 184, 161–170 . 

oble, S. , Spann, M.N. , Tokoglu, F. , Shen, X. , Constable, R.T. , Scheinost, D , 2017. Influ-
ences on the test–retest reliability of functional connectivity MRI and its relationship
with behavioral utility. Cereb. Cortex 27, 5415–5429 . 
15 
atzelt, E.H. , Hartley, C.A. , Gershman, S.J. , 2018. Computational phenotyping: using mod-
els to understand individual differences in personality, development, and mental ill-
ness. Personal. Neurosci. 1 . 

osenberg, M.D. , Finn, E.S. , Scheinost, D. , Papademetris, X. , Shen, X. , Constable, R.T. ,
Chun, M.M. , 2016. A neuromarker of sustained attention from whole-brain functional
connectivity. Nat. Neurosci. 19, 165–171 . 

osenberg, M.D. , Scheinost, D. , Greene, A.S. , Avery, E.W. , Kwon, Y.H. , Finn, E.S. , Ra-
mani, R. , Qiu, M. , Constable, R.T. , Chun, M.M. , 2020. Functional connectivity predicts
changes in attention observed across minutes, days, and months. Proc. Natl Acad. Sci.
USA 117, 3797–3807 . 

alehi, M. , Greene, A.S. , Karbasi, A. , Shen, X. , Scheinost, D. , Constable, R.T. , 2020. There
is no single functional atlas even for a single individual: functional parcel definitions
change with task. Neuroimage 208, 116366 . 

alimi-Khorshidi, G. , Douaud, G. , Beckmann, C.F. , Glasser, M.F. , Griffanti, L. , Smith, S.M. ,
2014. Automatic denoising of functional MRI data: combining independent compo-
nent analysis and hierarchical fusion of classifiers. Neuroimage 90, 449–468 . 

almi, J. , Metwaly, M. , Tohka, J. , Alho, K. , Leppämäki, S. , Tani, P. , Koski, A. , Vander-
wal, T. , Laine, M , 2020. ADHD desynchronizes brain activity during watching a dis-
tracted multi-talker conversation. Neuroimage 216, 116352 . 

almi, J. , Roine, U. , Glerean, E. , Lahnakoski, J. , Nieminen-von Wendt, T. , Tani, P. , Lep-
pämäki, S. , Nummenmaa, L. , Jääskeläinen, I.P. , Carlson, S. , et al. , 2013. The brains
of high functioning autistic individuals do not synchronize with those of others. Neu-
roImage: Clin. 3, 489–497 . 

hen, X. , Finn, E.S. , Scheinost, D. , Rosenberg, M.D. , Chun, M.M. , Papademetris, X. , Con-
stable, R.T. , 2017. Using connectome-based predictive modeling to predict individual
behavior from brain connectivity. Nat. Protoc. 12, 506–518 . 

hen, X. , Tokoglu, F. , Papademetris, X. , Constable, R. , 2013. Groupwise whole-brain par-
cellation from resting-state fMRI data for network node identification. Neuroimage
82, 403–415 . 

iegel, J.S. , Mitra, A. , Laumann, T.O. , Seitzman, B.A. , Raichle, M. , Corbetta, M. , Sny-
der, A.Z. , 2016. Data quality influences observed links between functional connectiv-
ity and behavior. Cereb. Cortex 27, 4492–4502 . 

mith, S.M. , Vidaurre, D. , Beckmann, C.F. , Glasser, M.F. , Jenkinson, M. , Miller, K.L. ,
Nichols, T.E. , Robinson, E.C. , Salimi-Khorshidi, G. , Woolrich, M.W. , 2013. Functional
connectomics from resting-state fMRI. Trends Cogn. Sci. (Regul. Ed.) 17, 666–682 . 

onkusare, S. , Breakspear, M. , Guo, C. , 2019. Naturalistic stimuli in neuroscience: criti-
cally acclaimed. Trends Cogn. Sci. (Regul. Ed.) 23, 699–714 . 

an Baar, J.M. , Chang, L.J. , Sanfey, A.G. , 2019. The computational and neural substrates
of moral strategies in social decision-making. Nat. Commun. 10, 1483 . 

an den Heuvel, M.P. , Stam, C.J. , Kahn, R.S. , Pol, H.E.H , 2009. Efficiency of functional
brain networks and intellectual performance. J. Neurosci. 29, 7619–7624 . 

an Essen, D.C. , Smith, S.M. , Barch, D.M. , Behrens, T.E. , Yacoub, E. , Ugurbil, K. , 2013.
The WU-Minn human connectome project: an overview. Neuroimage 80, 62–79 . 

anderwal, T. , Eilbott, J. , Finn, E.S. , Craddock, R.C. , Turnbull, A. , Castellanos, F.X. , 2017.
Individual differences in functional connectivity during naturalistic viewing condi-
tions. Neuroimage 157, 521–530 . 

anderwal, T. , Kelly, C. , Eilbott, J. , Mayes, L.C. , Castellanos, F.X. , 2015. Inscapes: a movie
paradigm to improve compliance in functional magnetic resonance imaging. Neuroim-
age 122, 222–232 . 

enkatesh, M. , JaJa, J. , Pessoa, L. , 2020. Capturing brain dynamics: latent spatiotemporal
patterns predict stimuli and individual differences. bioRxiv 2006.2011.146969 . 

aites, A.B. , Stanislavsky, A. , Abbott, D.F. , Jackson, G.D , 2005. Effect of prior cognitive
state on resting state networks measured with functional connectivity. Hum. Brain
Mapp. 24, 59–68 . 

ang, J. , Ren, Y. , Hu, X. , Nguyen, V.T. , Guo, L. , Han, J. , Guo, C.C. , 2017. Test–retest
reliability of functional connectivity networks during naturalistic fMRI paradigms.
Hum. Brain Mapp. 38, 2226–2241 . 

oo, C.-.W. , Chang, L.J. , Lindquist, M.A. , Wager, T.D. , 2017. Building better biomarkers:
brain models in translational neuroimaging. Nat. Neurosci. 20, 365 . 

http://refhub.elsevier.com/S1053-8119(21)00240-8/sbref0026
http://refhub.elsevier.com/S1053-8119(21)00240-8/sbref0026
http://refhub.elsevier.com/S1053-8119(21)00240-8/sbref0026
http://refhub.elsevier.com/S1053-8119(21)00240-8/sbref0026
http://refhub.elsevier.com/S1053-8119(21)00240-8/sbref0026
http://refhub.elsevier.com/S1053-8119(21)00240-8/sbref0026
http://refhub.elsevier.com/S1053-8119(21)00240-8/sbref0027
http://refhub.elsevier.com/S1053-8119(21)00240-8/sbref0027
http://refhub.elsevier.com/S1053-8119(21)00240-8/sbref0027
http://refhub.elsevier.com/S1053-8119(21)00240-8/sbref0027
http://refhub.elsevier.com/S1053-8119(21)00240-8/sbref0027
http://refhub.elsevier.com/S1053-8119(21)00240-8/sbref0028
http://refhub.elsevier.com/S1053-8119(21)00240-8/sbref0028
http://refhub.elsevier.com/S1053-8119(21)00240-8/sbref0028
http://refhub.elsevier.com/S1053-8119(21)00240-8/sbref0028
http://refhub.elsevier.com/S1053-8119(21)00240-8/sbref0028
http://refhub.elsevier.com/S1053-8119(21)00240-8/sbref0028
http://refhub.elsevier.com/S1053-8119(21)00240-8/sbref0028
http://refhub.elsevier.com/S1053-8119(21)00240-8/sbref0028
http://refhub.elsevier.com/S1053-8119(21)00240-8/sbref0028
http://refhub.elsevier.com/S1053-8119(21)00240-8/sbref0028
http://refhub.elsevier.com/S1053-8119(21)00240-8/sbref0028
http://refhub.elsevier.com/S1053-8119(21)00240-8/sbref0029
http://refhub.elsevier.com/S1053-8119(21)00240-8/sbref0029
http://refhub.elsevier.com/S1053-8119(21)00240-8/sbref0029
http://refhub.elsevier.com/S1053-8119(21)00240-8/sbref0029
http://refhub.elsevier.com/S1053-8119(21)00240-8/sbref0030
http://refhub.elsevier.com/S1053-8119(21)00240-8/sbref0030
http://refhub.elsevier.com/S1053-8119(21)00240-8/sbref0030
http://refhub.elsevier.com/S1053-8119(21)00240-8/sbref0030
http://refhub.elsevier.com/S1053-8119(21)00240-8/sbref0030
http://refhub.elsevier.com/S1053-8119(21)00240-8/sbref0030
http://refhub.elsevier.com/S1053-8119(21)00240-8/sbref0031
http://refhub.elsevier.com/S1053-8119(21)00240-8/sbref0031
http://refhub.elsevier.com/S1053-8119(21)00240-8/sbref0031
http://refhub.elsevier.com/S1053-8119(21)00240-8/sbref0031
http://refhub.elsevier.com/S1053-8119(21)00240-8/sbref0031
http://refhub.elsevier.com/S1053-8119(21)00240-8/sbref0031
http://refhub.elsevier.com/S1053-8119(21)00240-8/sbref0031
http://refhub.elsevier.com/S1053-8119(21)00240-8/sbref0031
http://refhub.elsevier.com/S1053-8119(21)00240-8/sbref0032
http://refhub.elsevier.com/S1053-8119(21)00240-8/sbref0032
http://refhub.elsevier.com/S1053-8119(21)00240-8/sbref0032
http://refhub.elsevier.com/S1053-8119(21)00240-8/sbref0032
http://refhub.elsevier.com/S1053-8119(21)00240-8/sbref0032
http://refhub.elsevier.com/S1053-8119(21)00240-8/sbref0032
http://refhub.elsevier.com/S1053-8119(21)00240-8/sbref0033
http://refhub.elsevier.com/S1053-8119(21)00240-8/sbref0033
http://refhub.elsevier.com/S1053-8119(21)00240-8/sbref0033
http://refhub.elsevier.com/S1053-8119(21)00240-8/sbref0033
http://refhub.elsevier.com/S1053-8119(21)00240-8/sbref0034
http://refhub.elsevier.com/S1053-8119(21)00240-8/sbref0034
http://refhub.elsevier.com/S1053-8119(21)00240-8/sbref0034
http://refhub.elsevier.com/S1053-8119(21)00240-8/sbref0034
http://refhub.elsevier.com/S1053-8119(21)00240-8/sbref0034
http://refhub.elsevier.com/S1053-8119(21)00240-8/sbref0034
http://refhub.elsevier.com/S1053-8119(21)00240-8/sbref0035
http://refhub.elsevier.com/S1053-8119(21)00240-8/sbref0035
http://refhub.elsevier.com/S1053-8119(21)00240-8/sbref0035
http://refhub.elsevier.com/S1053-8119(21)00240-8/sbref0035
http://refhub.elsevier.com/S1053-8119(21)00240-8/sbref0035
http://refhub.elsevier.com/S1053-8119(21)00240-8/sbref0035
http://refhub.elsevier.com/S1053-8119(21)00240-8/sbref0036
http://refhub.elsevier.com/S1053-8119(21)00240-8/sbref0036
http://refhub.elsevier.com/S1053-8119(21)00240-8/sbref0036
http://refhub.elsevier.com/S1053-8119(21)00240-8/sbref0036
http://refhub.elsevier.com/S1053-8119(21)00240-8/sbref0036
http://refhub.elsevier.com/S1053-8119(21)00240-8/sbref0037
http://refhub.elsevier.com/S1053-8119(21)00240-8/sbref0037
http://refhub.elsevier.com/S1053-8119(21)00240-8/sbref0037
http://refhub.elsevier.com/S1053-8119(21)00240-8/sbref0037
http://refhub.elsevier.com/S1053-8119(21)00240-8/sbref0037
http://refhub.elsevier.com/S1053-8119(21)00240-8/sbref0037
http://refhub.elsevier.com/S1053-8119(21)00240-8/sbref0037
http://refhub.elsevier.com/S1053-8119(21)00240-8/sbref0037
http://refhub.elsevier.com/S1053-8119(21)00240-8/sbref0038
http://refhub.elsevier.com/S1053-8119(21)00240-8/sbref0038
http://refhub.elsevier.com/S1053-8119(21)00240-8/sbref0039
http://refhub.elsevier.com/S1053-8119(21)00240-8/sbref0039
http://refhub.elsevier.com/S1053-8119(21)00240-8/sbref0039
http://refhub.elsevier.com/S1053-8119(21)00240-8/sbref0039
http://refhub.elsevier.com/S1053-8119(21)00240-8/sbref0039
http://refhub.elsevier.com/S1053-8119(21)00240-8/sbref0039
http://refhub.elsevier.com/S1053-8119(21)00240-8/sbref0039
http://refhub.elsevier.com/S1053-8119(21)00240-8/sbref0039
http://refhub.elsevier.com/S1053-8119(21)00240-8/sbref0039
http://refhub.elsevier.com/S1053-8119(21)00240-8/sbref0039
http://refhub.elsevier.com/S1053-8119(21)00240-8/sbref0039
http://refhub.elsevier.com/S1053-8119(21)00240-8/sbref0040
http://refhub.elsevier.com/S1053-8119(21)00240-8/sbref0040
http://refhub.elsevier.com/S1053-8119(21)00240-8/sbref0040
http://refhub.elsevier.com/S1053-8119(21)00240-8/sbref0040
http://refhub.elsevier.com/S1053-8119(21)00240-8/sbref0040
http://refhub.elsevier.com/S1053-8119(21)00240-8/sbref0040
http://refhub.elsevier.com/S1053-8119(21)00240-8/sbref0040
http://refhub.elsevier.com/S1053-8119(21)00240-8/sbref0040
http://refhub.elsevier.com/S1053-8119(21)00240-8/sbref0040
http://refhub.elsevier.com/S1053-8119(21)00240-8/sbref0040
http://refhub.elsevier.com/S1053-8119(21)00240-8/sbref0040
http://refhub.elsevier.com/S1053-8119(21)00240-8/sbref0041
http://refhub.elsevier.com/S1053-8119(21)00240-8/sbref0041
http://refhub.elsevier.com/S1053-8119(21)00240-8/sbref0041
http://refhub.elsevier.com/S1053-8119(21)00240-8/sbref0041
http://refhub.elsevier.com/S1053-8119(21)00240-8/sbref0041
http://refhub.elsevier.com/S1053-8119(21)00240-8/sbref0041
http://refhub.elsevier.com/S1053-8119(21)00240-8/sbref0041
http://refhub.elsevier.com/S1053-8119(21)00240-8/sbref0041
http://refhub.elsevier.com/S1053-8119(21)00240-8/sbref0041
http://refhub.elsevier.com/S1053-8119(21)00240-8/sbref0041
http://refhub.elsevier.com/S1053-8119(21)00240-8/sbref0041
http://refhub.elsevier.com/S1053-8119(21)00240-8/sbref0042
http://refhub.elsevier.com/S1053-8119(21)00240-8/sbref0042
http://refhub.elsevier.com/S1053-8119(21)00240-8/sbref0042
http://refhub.elsevier.com/S1053-8119(21)00240-8/sbref0042
http://refhub.elsevier.com/S1053-8119(21)00240-8/sbref0043
http://refhub.elsevier.com/S1053-8119(21)00240-8/sbref0043
http://refhub.elsevier.com/S1053-8119(21)00240-8/sbref0043
http://refhub.elsevier.com/S1053-8119(21)00240-8/sbref0043
http://refhub.elsevier.com/S1053-8119(21)00240-8/sbref0043
http://refhub.elsevier.com/S1053-8119(21)00240-8/sbref0044
http://refhub.elsevier.com/S1053-8119(21)00240-8/sbref0044
http://refhub.elsevier.com/S1053-8119(21)00240-8/sbref0044
http://refhub.elsevier.com/S1053-8119(21)00240-8/sbref0044
http://refhub.elsevier.com/S1053-8119(21)00240-8/sbref0044
http://refhub.elsevier.com/S1053-8119(21)00240-8/sbref0045
http://refhub.elsevier.com/S1053-8119(21)00240-8/sbref0045
http://refhub.elsevier.com/S1053-8119(21)00240-8/sbref0045
http://refhub.elsevier.com/S1053-8119(21)00240-8/sbref0045
http://refhub.elsevier.com/S1053-8119(21)00240-8/sbref0046
http://refhub.elsevier.com/S1053-8119(21)00240-8/sbref0046
http://refhub.elsevier.com/S1053-8119(21)00240-8/sbref0046
http://refhub.elsevier.com/S1053-8119(21)00240-8/sbref0046
http://refhub.elsevier.com/S1053-8119(21)00240-8/sbref0046
http://refhub.elsevier.com/S1053-8119(21)00240-8/sbref0046
http://refhub.elsevier.com/S1053-8119(21)00240-8/sbref0046
http://refhub.elsevier.com/S1053-8119(21)00240-8/sbref0047
http://refhub.elsevier.com/S1053-8119(21)00240-8/sbref0047
http://refhub.elsevier.com/S1053-8119(21)00240-8/sbref0047
http://refhub.elsevier.com/S1053-8119(21)00240-8/sbref0047
http://refhub.elsevier.com/S1053-8119(21)00240-8/sbref0048
http://refhub.elsevier.com/S1053-8119(21)00240-8/sbref0048
http://refhub.elsevier.com/S1053-8119(21)00240-8/sbref0048
http://refhub.elsevier.com/S1053-8119(21)00240-8/sbref0048
http://refhub.elsevier.com/S1053-8119(21)00240-8/sbref0048
http://refhub.elsevier.com/S1053-8119(21)00240-8/sbref0048
http://refhub.elsevier.com/S1053-8119(21)00240-8/sbref0048
http://refhub.elsevier.com/S1053-8119(21)00240-8/sbref0048
http://refhub.elsevier.com/S1053-8119(21)00240-8/sbref0049
http://refhub.elsevier.com/S1053-8119(21)00240-8/sbref0049
http://refhub.elsevier.com/S1053-8119(21)00240-8/sbref0049
http://refhub.elsevier.com/S1053-8119(21)00240-8/sbref0049
http://refhub.elsevier.com/S1053-8119(21)00240-8/sbref0049
http://refhub.elsevier.com/S1053-8119(21)00240-8/sbref0049
http://refhub.elsevier.com/S1053-8119(21)00240-8/sbref0049
http://refhub.elsevier.com/S1053-8119(21)00240-8/sbref0049
http://refhub.elsevier.com/S1053-8119(21)00240-8/sbref0049
http://refhub.elsevier.com/S1053-8119(21)00240-8/sbref0049
http://refhub.elsevier.com/S1053-8119(21)00240-8/sbref0049
http://refhub.elsevier.com/S1053-8119(21)00240-8/sbref0050
http://refhub.elsevier.com/S1053-8119(21)00240-8/sbref0050
http://refhub.elsevier.com/S1053-8119(21)00240-8/sbref0050
http://refhub.elsevier.com/S1053-8119(21)00240-8/sbref0050
http://refhub.elsevier.com/S1053-8119(21)00240-8/sbref0050
http://refhub.elsevier.com/S1053-8119(21)00240-8/sbref0050
http://refhub.elsevier.com/S1053-8119(21)00240-8/sbref0050
http://refhub.elsevier.com/S1053-8119(21)00240-8/sbref0051
http://refhub.elsevier.com/S1053-8119(21)00240-8/sbref0051
http://refhub.elsevier.com/S1053-8119(21)00240-8/sbref0051
http://refhub.elsevier.com/S1053-8119(21)00240-8/sbref0051
http://refhub.elsevier.com/S1053-8119(21)00240-8/sbref0051
http://refhub.elsevier.com/S1053-8119(21)00240-8/sbref0051
http://refhub.elsevier.com/S1053-8119(21)00240-8/sbref0051
http://refhub.elsevier.com/S1053-8119(21)00240-8/sbref0052
http://refhub.elsevier.com/S1053-8119(21)00240-8/sbref0052
http://refhub.elsevier.com/S1053-8119(21)00240-8/sbref0052
http://refhub.elsevier.com/S1053-8119(21)00240-8/sbref0052
http://refhub.elsevier.com/S1053-8119(21)00240-8/sbref0052
http://refhub.elsevier.com/S1053-8119(21)00240-8/sbref0052
http://refhub.elsevier.com/S1053-8119(21)00240-8/sbref0052
http://refhub.elsevier.com/S1053-8119(21)00240-8/sbref0052
http://refhub.elsevier.com/S1053-8119(21)00240-8/sbref0052
http://refhub.elsevier.com/S1053-8119(21)00240-8/sbref0052
http://refhub.elsevier.com/S1053-8119(21)00240-8/sbref0053
http://refhub.elsevier.com/S1053-8119(21)00240-8/sbref0053
http://refhub.elsevier.com/S1053-8119(21)00240-8/sbref0053
http://refhub.elsevier.com/S1053-8119(21)00240-8/sbref0053
http://refhub.elsevier.com/S1053-8119(21)00240-8/sbref0053
http://refhub.elsevier.com/S1053-8119(21)00240-8/sbref0053
http://refhub.elsevier.com/S1053-8119(21)00240-8/sbref0053
http://refhub.elsevier.com/S1053-8119(21)00240-8/sbref0053
http://refhub.elsevier.com/S1053-8119(21)00240-8/sbref0053
http://refhub.elsevier.com/S1053-8119(21)00240-8/sbref0053
http://refhub.elsevier.com/S1053-8119(21)00240-8/sbref0053
http://refhub.elsevier.com/S1053-8119(21)00240-8/sbref0053
http://refhub.elsevier.com/S1053-8119(21)00240-8/sbref0054
http://refhub.elsevier.com/S1053-8119(21)00240-8/sbref0054
http://refhub.elsevier.com/S1053-8119(21)00240-8/sbref0054
http://refhub.elsevier.com/S1053-8119(21)00240-8/sbref0054
http://refhub.elsevier.com/S1053-8119(21)00240-8/sbref0054
http://refhub.elsevier.com/S1053-8119(21)00240-8/sbref0054
http://refhub.elsevier.com/S1053-8119(21)00240-8/sbref0054
http://refhub.elsevier.com/S1053-8119(21)00240-8/sbref0054
http://refhub.elsevier.com/S1053-8119(21)00240-8/sbref0055
http://refhub.elsevier.com/S1053-8119(21)00240-8/sbref0055
http://refhub.elsevier.com/S1053-8119(21)00240-8/sbref0055
http://refhub.elsevier.com/S1053-8119(21)00240-8/sbref0055
http://refhub.elsevier.com/S1053-8119(21)00240-8/sbref0055
http://refhub.elsevier.com/S1053-8119(21)00240-8/sbref0056
http://refhub.elsevier.com/S1053-8119(21)00240-8/sbref0056
http://refhub.elsevier.com/S1053-8119(21)00240-8/sbref0056
http://refhub.elsevier.com/S1053-8119(21)00240-8/sbref0056
http://refhub.elsevier.com/S1053-8119(21)00240-8/sbref0056
http://refhub.elsevier.com/S1053-8119(21)00240-8/sbref0056
http://refhub.elsevier.com/S1053-8119(21)00240-8/sbref0056
http://refhub.elsevier.com/S1053-8119(21)00240-8/sbref0056
http://refhub.elsevier.com/S1053-8119(21)00240-8/sbref0057
http://refhub.elsevier.com/S1053-8119(21)00240-8/sbref0057
http://refhub.elsevier.com/S1053-8119(21)00240-8/sbref0057
http://refhub.elsevier.com/S1053-8119(21)00240-8/sbref0057
http://refhub.elsevier.com/S1053-8119(21)00240-8/sbref0057
http://refhub.elsevier.com/S1053-8119(21)00240-8/sbref0057
http://refhub.elsevier.com/S1053-8119(21)00240-8/sbref0057
http://refhub.elsevier.com/S1053-8119(21)00240-8/sbref0057
http://refhub.elsevier.com/S1053-8119(21)00240-8/sbref0057
http://refhub.elsevier.com/S1053-8119(21)00240-8/sbref0057
http://refhub.elsevier.com/S1053-8119(21)00240-8/sbref0057
http://refhub.elsevier.com/S1053-8119(21)00240-8/sbref0058
http://refhub.elsevier.com/S1053-8119(21)00240-8/sbref0058
http://refhub.elsevier.com/S1053-8119(21)00240-8/sbref0058
http://refhub.elsevier.com/S1053-8119(21)00240-8/sbref0058
http://refhub.elsevier.com/S1053-8119(21)00240-8/sbref0059
http://refhub.elsevier.com/S1053-8119(21)00240-8/sbref0059
http://refhub.elsevier.com/S1053-8119(21)00240-8/sbref0059
http://refhub.elsevier.com/S1053-8119(21)00240-8/sbref0059
http://refhub.elsevier.com/S1053-8119(21)00240-8/sbref0060
http://refhub.elsevier.com/S1053-8119(21)00240-8/sbref0060
http://refhub.elsevier.com/S1053-8119(21)00240-8/sbref0060
http://refhub.elsevier.com/S1053-8119(21)00240-8/sbref0060
http://refhub.elsevier.com/S1053-8119(21)00240-8/sbref0060
http://refhub.elsevier.com/S1053-8119(21)00240-8/sbref0061
http://refhub.elsevier.com/S1053-8119(21)00240-8/sbref0061
http://refhub.elsevier.com/S1053-8119(21)00240-8/sbref0061
http://refhub.elsevier.com/S1053-8119(21)00240-8/sbref0061
http://refhub.elsevier.com/S1053-8119(21)00240-8/sbref0061
http://refhub.elsevier.com/S1053-8119(21)00240-8/sbref0061
http://refhub.elsevier.com/S1053-8119(21)00240-8/sbref0061
http://refhub.elsevier.com/S1053-8119(21)00240-8/sbref0062
http://refhub.elsevier.com/S1053-8119(21)00240-8/sbref0062
http://refhub.elsevier.com/S1053-8119(21)00240-8/sbref0062
http://refhub.elsevier.com/S1053-8119(21)00240-8/sbref0062
http://refhub.elsevier.com/S1053-8119(21)00240-8/sbref0062
http://refhub.elsevier.com/S1053-8119(21)00240-8/sbref0062
http://refhub.elsevier.com/S1053-8119(21)00240-8/sbref0062
http://refhub.elsevier.com/S1053-8119(21)00240-8/sbref0063
http://refhub.elsevier.com/S1053-8119(21)00240-8/sbref0063
http://refhub.elsevier.com/S1053-8119(21)00240-8/sbref0063
http://refhub.elsevier.com/S1053-8119(21)00240-8/sbref0063
http://refhub.elsevier.com/S1053-8119(21)00240-8/sbref0063
http://refhub.elsevier.com/S1053-8119(21)00240-8/sbref0063
http://refhub.elsevier.com/S1053-8119(21)00240-8/sbref0064
http://refhub.elsevier.com/S1053-8119(21)00240-8/sbref0064
http://refhub.elsevier.com/S1053-8119(21)00240-8/sbref0064
http://refhub.elsevier.com/S1053-8119(21)00240-8/sbref0064
http://refhub.elsevier.com/S1053-8119(21)00240-8/sbref0065
http://refhub.elsevier.com/S1053-8119(21)00240-8/sbref0065
http://refhub.elsevier.com/S1053-8119(21)00240-8/sbref0065
http://refhub.elsevier.com/S1053-8119(21)00240-8/sbref0065
http://refhub.elsevier.com/S1053-8119(21)00240-8/sbref0065
http://refhub.elsevier.com/S1053-8119(21)00240-8/sbref0066
http://refhub.elsevier.com/S1053-8119(21)00240-8/sbref0066
http://refhub.elsevier.com/S1053-8119(21)00240-8/sbref0066
http://refhub.elsevier.com/S1053-8119(21)00240-8/sbref0066
http://refhub.elsevier.com/S1053-8119(21)00240-8/sbref0066
http://refhub.elsevier.com/S1053-8119(21)00240-8/sbref0066
http://refhub.elsevier.com/S1053-8119(21)00240-8/sbref0066
http://refhub.elsevier.com/S1053-8119(21)00240-8/sbref0066
http://refhub.elsevier.com/S1053-8119(21)00240-8/sbref0067
http://refhub.elsevier.com/S1053-8119(21)00240-8/sbref0067
http://refhub.elsevier.com/S1053-8119(21)00240-8/sbref0067
http://refhub.elsevier.com/S1053-8119(21)00240-8/sbref0067
http://refhub.elsevier.com/S1053-8119(21)00240-8/sbref0067

	Movie-watching outperforms rest for functional connectivity-based prediction of behavior
	1 Introduction
	2 Methods
	2.1 Data
	2.1.1 Subjects
	2.1.2 fMRI data
	2.1.3 Eye-tracking data

	2.2 Mitigating confounds
	2.3 Functional connectivity
	2.4 Connectome-based predictive modeling
	2.4.1 Overview
	2.4.2 Cross validation
	2.4.3 Assessing model accuracy
	2.4.4 Statistical testing

	2.5 Anatomy of predictive networks
	2.6 Video clip feature extraction

	3 Results
	3.1 Movie-watching outperforms rest for prediction of behavior traits
	3.2 Advantage for movies is not due to low-level arousal
	3.3 Anatomy of predictive networks differs across states
	3.4 Predictions based on individual clips
	3.5 Stimulus features related to prediction accuracy
	3.6 Cross-subject variance in gaze location is associated with better prediction

	4 Discussion
	4.1 Limitations
	4.2 Implications for future work

	Authors statement
	Data and code availability
	Acknowledgments
	Supplementary materials
	References


