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Recent years have seen a surge of research on variability in functional brain connectivity within and between individuals, with encouraging progress toward 
understanding the consequences of this variability for cognition and behavior. At the same time, well-founded concerns over rigor and reproducibility in psychology 
and neuroscience have led many to question whether functional connectivity is sufficiently reliable, and call for methods to improve its reliability. The thesis of 
this opinion piece is that when studying variability in functional connectivity —both across individuals and within individuals over time —we should use behavior 
prediction as our benchmark rather than optimize reliability for its own sake. We discuss theoretical and empirical evidence to compel this perspective, both when 
the goal is to study stable, trait-level differences between people, as well as when the goal is to study state-related changes within individuals. We hope that this 
piece will be useful to the neuroimaging community as we continue efforts to characterize inter- and intra-subject variability in brain function and build predictive 
models with an eye toward eventual real-world applications. 
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1 Researchers may focus on optimization at one or more stages of a neuroimag- 
ing study, including data acquisition (e.g., field strengths, sequence parameters, 
scan conditions [rest, task, etc.]), individual-participant data analysis (e.g., pre- 
processing pipeline, single-subject modeling and/or dimensionality reduction 
steps), and analyses involving multiple participants (e.g., additional hierarchi- 
cal models involving group-level information, choice of classification/prediction 
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In recent years, we have learned that functional brain connectomes
re relatively stable within individuals, unique across individuals, and
redictive of phenotypes and behaviors such as age ( Dosenbach et al.,
010 ; Liem et al., 2017 ; Nielsen et al., 2019 ), cognitive abilities
 Cole et al., 2012 ; Finn et al., 2015 ; Rosenberg et al., 2016 ; Sripada et al.,
020 ; Yamashita et al., 2018 ), personality ( Adelstein et al., 2011 ;
ubois et al., 2018a ; Hsu et al., 2018 ; Nostro et al., 2018 ), and clini-
al symptoms ( Emerson et al., 2017 ; Fair et al., 2013 ; Lake et al., 2019 ;
litt et al., 2015 ; Wang et al., 2020 ). Based on this line of work, many
esearchers are optimistic that functional connectivity profiles, or “fin-
erprints ”, could eventually serve as biomarkers with real-world appli-
ations ( Castellanos et al., 2013 ; Finn & Constable, 2016 ; Gabrieli et al.,
015 ; Sui et al., 2020 ; Woo et al., 2017 ). On the other hand, the ongo-
ng replication crisis in psychology and neuroscience has led the field
o turn a critical lens on the reliability of the signals we measure with
unctional magnetic resonance imaging (fMRI). Concerns over rigor and
eproducibility of neuroimaging-derived measures have spurred efforts
o test for and report unreliability (i.e., uncover the extent of the “prob-
em ”), and develop acquisition and analysis pipelines to improve relia-
ility (i.e., solve the “problem ”). 

Minimizing measurement error is a laudable goal for virtually any
cientific endeavor. But has the field of human neuroimaging been too
uick to see imperfect reliability as problematic? When it comes to
rains, minds, and behavior, we cannot necessarily attribute variability
o simple measurement error. Put another way, optimizing for within-
ubject reliability, or fingerprinting, does not always mean optimizing
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or meaningful information. While the two may sometimes overlap, in-
reased reliability does not necessarily entail improved behavior predic-
ion, and vice versa. 

Ultimately, the utility of connectome fingerprints will not be for in-
ividual identification per se, but rather for understanding and predict-
ng behavior. Therefore, we argue that rather than optimizing for re-
iability in connectomes themselves (i.e., brain-to-brain) and assuming
hoping) that this will lead to improved sensitivity to behavioral mea-
ures, we should optimize for connectome-based prediction (i.e., brain-
o-behavior) from the start 1 . In what follows, we present theoretical
nd empirical evidence to support this perspective, both when the goal
s to predict relatively stable individual differences (part 1) as well as to
redict within-subject change (part 2). Rather than chasing reliability
or its own sake, benchmarking studies using behavior prediction (e.g.,
adi et al., 2019 ; Pervaiz et al., 2020 ; Taxali et al., 2021 ; Kashyap et al.,
019 ; Kong et al., 2021 ) will accelerate our understanding of not just
hat differs within and across individuals, but why —in other words,
o.edu (M.D. Rosenberg). 

lgorithms). Any of these steps could theoretically be optimized for either reli- 
bility or behavior prediction; we argue broadly for the latter. 
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2 In practice, in the published literature, behavior prediction effect sizes often 
appear to decrease with sample size when looking across datasets, but this is 
likely due in large part to a wider variance in effect sizes in small samples com- 
bined with publication bias ( Marek et al., 2020 ). Within datasets, provided data 
are harmonized and there are no systematic biases between the target of predic- 
hich features of the connectome remain consistent over time, reflect-
ng stable traits, and which features vary with changing states. 

. Unique is not necessarily meaningful, and meaningful is not 

ecessarily unique 

Well-founded concerns over reproducibility have led to scrutiny of
tatistical practices and so-called “researcher degrees of freedom ” in
euroimaging studies. At the same time, the many branch points in the
ecision tree of neuroimaging data analyses give rise to a multiverse
f pipelines for any given dataset, which can yield somewhat different
esults ( Botvinik-Nezer et al., 2020 ). For many of these branch points,
here is either little theoretical basis to prefer one option over others,
r competing theoretical bases for different options. Lack of theory and
ompeting theories each carry their own challenges, leading some re-
earchers to argue that the optimal pipeline(s) should be determined
mpirically based on a chosen metric. One such metric is test-retest reli-
bility: we should prefer the pipeline that yields the most similar results
cross different measurements from the same unit of interest —in this
ase, individuals. 

On its face, this idea has intuitive appeal. Indeed, there is a sub-
tantial literature beginning more than two decades ago ( Casey et al.,
995 ; Ramsey et al., 1996 ; Rombouts et al., 1997 ) that uses mea-
ures such as the intra-class correlation coefficient (ICC) to evaluate
he stability of fMRI-based individual measures and argues, explic-
tly or implicitly, that maximizing similarity of measures taken from
he same person over time is the most desirable outcome (though see
oble et al. (2019) and Noble et al. (2021) for recent reviews of func-

ional connectivity reliability and the importance of considering va-
idity). Indeed, test-retest reliability is often used as a benchmark for
ew developments in acquisition and/or analysis ( Zuo et al., 2019 ): in-
reased reliability indicates an improved method, no questions asked.
ur “functional connectome fingerprinting ” paper ( Finn et al., 2015 ),

n which we demonstrated that individuals could be identified —i.e.,
iscriminated from one another —based on whole-brain functional con-
ectivity profiles acquired during different sessions and cognitive tasks,
nspired a new angle on this line of work. Many subsequent studies,
ncluding some of our own, have directed efforts at exploring the lim-
ts of fingerprinting ( Airan et al., 2016 ; Finn et al., 2017 ; Horien et al.,
018 ; Jalbrzikowski et al., 2020 ; Waller et al., 2017 ), characterizing the
ource of the most identifying information ( Byrge and Kennedy, 2019 ;
eña-Gómez et al., 2018 ), and/or improving fingerprinting accuracy
hrough improved pipelines ( Abbas et al., 2020 ; Amico & Goñi, 2018 ;
ari et al., 2019 ; Chen & Hu, 2018 ; Li and Atluri, 2018 ; Sarar et al.,
021 ; Shojaee et al., 2019 ; Wang et al., 2019 ). 

But why do we care about individual differences in neuroimaging
easures in the first place? Most researchers are probably not inter-

sted in brain-based fingerprinting for its own sake; after all, there are
etter ways to identify someone than going to the trouble to scan them
nd calculate a brain connectivity profile (e.g., DNA, actual fingerprints,
imply looking at or speaking to them). Rather, most of us are interested
n individual differences in brain function for their relationship to psy-
hological constructs and/or behavior. Investigators may be motivated
o characterize these relationships to answer basic scientific questions
e.g., testing parametric hypotheses about where and when certain cog-
itive processes are reflected in neural activity) and/or for practical pur-
oses (e.g., with an eye toward developing imaging-based biomarkers of
resent or future clinical outcomes). Most studies take as their premise,
gain either explicitly or implicitly, that increased reliability indicates
ncreased utility of personalized connectomes for some other purpose,
.e., behavior prediction or diagnostic status classification ( Finn and
onstable, 2016 ; Gratton et al., 2020 ; Parkes et al., 2020 ; Waller et al.,
017 ). 

But this does not necessarily follow, theoretically or empirically. If
onnectomes are akin to bar codes —random patterns that are one-of-a-
ind, but have no relationship to any feature of the individual they iden-
2 
ify —one could have high fingerprinting accuracy with low utility for
ehavior prediction. In other words, connectomes could be unique but
nrelated to anything interesting (high reliability, low validity). On the
ther hand, if connectomes do share variance with real-world variables,
f a matching algorithm consistently mistakes one subject for another
ubject with the same or similar behavior score, one could have low(er)
ngerprinting accuracy but high(er) utility for behavior prediction; in
ther words, connectomes could be not entirely unique, but the overlap
etween individuals could be a byproduct of the useful information they
ontain (low[er] reliability, high[er] validity). See Fig. 1 for a schematic
f these theoretical scenarios. 

From a theoretical stance, then, optimizing fingerprinting accuracy
oes not necessarily entail optimizing utility for behavior prediction.
hat about empirically? Increased fingerprinting could still be a use-

ul proxy for improved behavior prediction, even if the two outcomes
re conceptually distinct. After all, it would be surprising if one could
chieve good prediction accuracy without some minimum level of reli-
bility. However, the literature on this is mixed. While some studies re-
ort that improving fingerprinting entails a corresponding improvement
n behavior prediction ( Amico and Goñi, 2018 ; Elliott et al., 2019 ), or
hat the same networks that are most distinguishing of individuals also
end to be the most related to behavior ( Finn et al., 2015 ), other studies
nd little to no relationship between the reliability of connections and
heir utility for behavior prediction ( Byrge and Kennedy, 2020 ; Liu et al.,
018 ; Mantwill et al., 2021 ; Noble et al., 2017 ). Noble et al. (2017) re-
ort only a very weak correlation (r = 0.05) between an edge’s test-
etest reliability and its relevance for behavior (fluid intelligence in this
ase, which is relatively stable within and across individuals). Related
ork has shown that the brain states in which people are more identi-
able are not necessarily the best brain states for predicting behavior
cf. Finn et al., 2017 ; Greene et al., 2018 ). A recent paper proposing
 new statistic for quantifying relative similarity within versus across
ndividuals, discriminability, found that discriminability was a useful
roxy for effects of sex and age ( Bridgeford et al., 2020 ), though effect
izes were modest compared to studies that demonstrated direct pre-
iction/classification of age and sex without optimizing for test-retest
eliability first ( Nielsen et al., 2019 ; Weis et al., 2020 ; Zhang et al.,
018 ). In parallel to this mixed literature, there is an emerging consen-
us that information that identifies individuals and information that pre-
icts behavior are both highly distributed throughout the connectome
 Byrge and Kennedy, 2019 ; Dubois et al., 2018b ; Pannunzi et al., 2017 ).
t could be the case that some minimum level of distributed reliabil-
ty is necessary for accurate behavior prediction, at least for trait-level
henotypes. But the weaker-than-expected relationship between relia-
ility and behavior prediction —both in specific edges (univariate) and
he overall connectome (multivariate) —does suggest that by optimizing
or fingerprinting first, we risk becoming stuck in local maxima for be-
avior prediction, when in fact we would be better served by optimizing
or behavior prediction from the start. 

Optimizing for fingerprinting accuracy without regard to behavioral
elevance also creates at least two perverse incentives that can bias even
ell-intentioned studies. First, if connectome fingerprints are not per-

ect —which they’re not —we should expect fingerprinting accuracy to
ecrease in larger sample sizes, due to the higher chance of including
imilar pairs of subjects ( Waller et al., 2017 ). Methods for boosting fin-
erprinting will thus have an easier time proving their significance in
maller datasets, but may not generalize to a wider population. On the
ther hand, a valid behavior prediction model should only get more ac-
urate when trained on a larger sample. 2 Second, any factor that affects
MRI data, is unique to individuals, and is stable across time —whether
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Fig. 1. Uniqueness does not imply meaningfulness, 
and vice versa. Schematic depicting why uniqueness 
and meaningfulness are orthogonal features. The up- 
per left panel (not unique or meaningful) depicts a the- 
oretical scenario in which two individuals have highly 
similar connectomes, but no shared behavior explains 
this overlap. The upper right panel depicts a scenario 
in which connectomes are unique but not meaning- 
ful, akin to bar codes, where the pattern of connec- 
tions is one-of-a-kind but arbitrary (i.e., unrelated to 
any features of the individual it represents). The lower 
left panel depicts a scenario in which connectomes are 
not unique but are meaningful: two individuals have 
very similar connectomes such that they might be mis- 
taken for one another in identification experiments, 
but these individuals are also similar in one or more 
behavioral domains (in this case, positive mood), such 
that this particular pattern of connections might index 
mood. In this scenario, connectomes carry relevant in- 
formation that could be used to predict behavior. Fi- 
nally, the lower right panel depicts a scenario in which 
connectomes are both unique and meaningful: two in- 
dividuals have distinct connectomes and distinct emo- 
tional states. 
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eaningful or not —will boost fingerprinting accuracy. This includes dif-
erences in anatomy, functional anatomy 3 , magnetic field distortions
ue to head shape, etc. In other words, it is possible to get good fin-
erprinting for the “wrong ” reasons. With behavior prediction, these
actors could only boost accuracy if they systematically covary with the
ehavior of interest. Of course, there are many examples of such covari-
tion: head motion is probably the most notorious ( Siegel et al., 2017 ),
ut anatomy and functional anatomy also covary with many variables
f interest (e.g., age, diagnostic status). The difference is that in fin-
erprinting, it is almost a given that these things will help, whereas in
ehavior prediction, they may variably help or hurt, or not have any
ffect. (While not necessarily endorsed by these authors, the utilitarian
iew that prediction is a black box and we should value accurate pre-
iction regardless of what drives it is also more defensible in the case
f behavior prediction, since it has real-world utility; fingerprinting is
educed to an uninteresting tautology from this perspective.) 

On a deeper level, functional connectomics, while a powerful way
o characterize the brain, suffers from an absence of ground truth. What
oes the biological functional connectome look like? Are connections
inary (present or not), or are they weighted? If weighted, how do
e define weights? This means even when we do achieve similar re-

ults across multiple measurements, we cannot necessarily infer that the
ion and other confounding variables, prediction accuracy should increase with 
raining set size (up to some noise ceiling; Cui & Gong, 2018 ). 

3 Functional anatomy refers to the location of specific functional specializa- 
ion profiles along an anatomical substrate. For example, even if two subjects 
ave identical cortical folding patterns in a given brain region (same anatomy), 
here could be differences in how functions map on to this anatomy —in other 
ords, which specific patches along that cortical surface are most responsive to 
iven inputs and/or outputs (functional anatomy). 
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3 
econstructed network more closely reflects the “true ” underlying net-
ork. This lack of a known target, combined with the noise inherent to

MRI and functional connectivity in particular, make it unrealistic to ex-
ect that we will ever achieve perfect reliability and validity. Of course,
o the extent that it is possible to identify pure noise in our data, we
holeheartedly support efforts to characterize and remove it. But when

t comes to the brain, what appears to be noise can often become mean-
ngful signal when combined with the right additional measurements
 Uddin, 2020 ); this is the focus of the next section. 

. We’re not perfectly stable, so why should our functional 

onnectomes be? 

Recent work reported an individual-identification algorithm so accu-
ate that, based on patterns of salient “keypoints ” in T1-weighted brain
cans, it identified previously unknown instances of mislabeled partici-
ants in large, open-access MRI datasets ( Chauvin et al., 2020 ). Impres-
ively, by identifying keypoint signatures robust to scan-to-scan varia-
ion, the algorithm matched MR images from an individual collected as
any as 11 years apart. 

What makes the keypoint signature patterns so well suited for iden-
ifying individuals, however, likely makes them ill suited for identify-
ng states. Because measures that are maximally stable across repeated
bservations are, by definition, minimally sensitive to intra-individual
hange, a model based on keypoint signatures may be able to identify
 person but fail to, for example, predict cognitive changes with aging.
The same logic would follow if the keypoint signature pattern were
ased on functional rather than structural brain measures.) 

Of course, not all variance in functional connectivity reflects be-
aviorally meaningful change. The keypoint signature example, how-
ver, highlights the costs of prioritizing measurement reliability —that
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s, optimizing fingerprinting —at the expense of other considerations:
ur brains are always changing (as they must, given our ever-changing
ehavior; Waschke et al., 2021 ), and discarding measures that are sen-
itive to this change will frustrate our ability to predict meaningful vari-
tion in cognition over time. 

Changing cognitive states have so far not been the focus of func-
ional connectivity-based prediction. Since emerging a decade ago, the
pproach has largely been applied to capture differences between indi-
iduals as described in part 1. Although individual differences research
as an influential history in psychology and offers insights into mental
rocesses and the brain systems that underlie them, its predominance in
ognitive network neuroscience is likely as much due to the availability
f datasets with many participants (rather than many hours of scan time
er participant) 4 as it is for its theoretical and practical utility. 

Despite the emphasis on individual differences in functional con-
ectivity research, as psychologists and neuroscientists, we are almost
lways interested in mental processes that vary within individuals. It
s just as useful and interesting to predict when attention fluctuates,
emory fails, and emotion regulation flounders as it is to predict a per-

on’s overall attention, memory, and emotional regulation abilities. In
act, it is arguably more useful to predict state-like aspects of behav-
or: Cognitive processes including attention ( Fortenbaugh et al., 2015 ;
obertson et al., 1997 ) and working memory ( deBettencourt et al.,
019 ) can fluctuate dramatically 5 with serious consequences for ongo-
ng behavior, and clinical symptomatology is rarely consistent across the
ifespan. Within-subject prediction is gaining traction with the growing
nthusiasm for and availability of datasets with high-frequency or longi-
udinal sampling of brain function and behavior —so much so that “deep
maging ” for personalized neuroscience is the focus of a recent special
ssue of Current Opinion in Behavioral Sciences . 

Imagine that you have collected a sample in which thousands of par-
icipants were scanned hundreds of times each. You generate functional
onnectivity matrices for each scan session using a hypothetical pipeline
hat results in perfect fingerprinting accuracy and (although we empha-
ized in the previous section that such matrices would not necessarily
redict behavior) perfect prediction of individual differences in work-
ng memory capacity. How successful would these fingerprints be for
redicting states rather than people? For example, would they capture
uctuations in working memory from one task trial to the next? Im-
rovements in working memory after a surprisingly successful interven-
ion? Changes in capacity across development? Using this example as a
umping-off point, here we discuss how connectome fingerprints can re-
ect —or obscure —meaningful changes in mental states across repeated
bservations separated by moments to days to years. 

.1. Short time-scale predictions (i.e., within fMRI runs) 

So far we have implicitly focused on functional connectome finger-
rinting techniques that take as input run-specific or session-specific
unctional connectivity matrices. Connectivity matrices, however, can
lso be calculated from subsets of BOLD signal time series from a single
un. Subsets are typically defined with data-driven approaches that ap-
ly sliding windows (e.g., Gonzalez-Castillo et al., 2015 ; Sako ğlu et al.,
010 ) or detect hidden states (e.g., with Hidden Markov modeling;
u et al., 2015 ; Robinson et al., 2015 ; Shappell et al., 2019 ) or change-
oint estimation ( Cribben et al., 2012 ; Xu and Lindquist, 2015 ); see
urie et al., 2020 for a recent review). Subsets can also be defined
4 For a plot of the number of participants and scan hours per individual in 
urrent publicly available fMRI datasets, see Naselaris et al. (2021) . 
5 Further underscoring the importance of cognitive performance fluctua- 

ions, intra-individual differences in behavior may in some cases explain inter- 
ndividual differences. For example, what distinguishes individuals with higher 
nd lower working memory capacities is not the maximum number of items 
hey can hold in mind, but rather how often they successfully maintain that 
aximum in memory ( Adam et al., 2015 ). 
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4 
ith hypothesis-driven approaches such as those that divide time se-
ies based on features of a cognitive ( Rosenberg et al., 2020 ) or natu-
alistic ( Finn and Bandettini, 2020 ) task. Recent work has even obvi-
ted the need for subset definitions in some cases, validating “instanta-
eous ” measures such as change-point connectivity requiring two con-
ecutive TRs ( Ramot and Gonzalez-Castillo, 2019 ) and edge-centric con-
ectivity reflecting concurrent fluctuations in pairs of nodes at every TR
 Esfahlani et al., 2020 ; Faskowitz et al., 2020 ). 

Regardless of how subsets of data are selected, generating mul-
iple functional connectivity matrices per fMRI run allows us to ask
hether within-run changes in connectivity are associated with concur-

ent changes in behavior. Of course, functional connectomes can vary
or more or less interesting reasons, which is why validating connectivity
ynamics with “ground truth ” measures of mental states (ongoing task
erformance, eye-tracking data, experience sampling responses, etc.) is
o crucial ( Song and Rosenberg, 2021 ). Although optimizing for stable
ub-run connectomes would minimize the variance due to uninteresting
auses such as sampling variability and head motion ( Laumann et al.,
017 ), it also would dampen any variance due to interesting causes.
ather than strive to maximize fingerprinting accuracy, we should strive

o supplement our fMRI data with densely sampled behavioral and/or
hysiological measures and test replication of observed connectivity-
ehavior relationships in new individuals and datasets ( Poldrack et al.,
020 ; Scheinost et al., 2019 ). 

In addition to informing how behavioral states emerge from brain
etwork dynamics, relating connectivity to behavior on short time-
cales can help address a fundamental question in connectome-based
rediction: Why can we predict behavior from resting-state data? Well-
eplicated results in the field demonstrate that predictions can be gen-
rated from fMRI data acquired in the absence of an explicit task. The
mplications are intriguing: We don’t need to, for example, give some-
ne an attention task —or any task for that matter —to measure how
ell they pay attention overall ( Kessler et al., 2016 ; Poole et al., 2016 ;
osenberg et al., 2016 ; Wu et al., 2020 ). Is this because “intrinsic ” func-

ional brain organization reflects attentional abilities? Because individu-
ls with stronger and weaker sustained attentional abilities are engaged
n systematically different cognitive states during rest? A combination
f the two? Although work has taken care to rule out potential con-
ounds such as in-scanner motion as drivers of this effect, the question
emains largely unresolved. Looking ahead, we are unlikely to discover
he answer if, as a field, our sole success metric for functional connec-
ivity processing pipelines is fingerprinting accuracy, a proxy —albeit an
mperfect one —for connectome reliability. 

.2. Medium time-scale predictions (i.e., hours to days to weeks) 

Those who agree that characterizing connectivity dynamics is worth-
hile and important may still argue that,when it comes to static func-

ional connectivity matrices,the more reliable the better. Reliability met-
ics, however, disregard the fact that not all scan-to-scan variability is
oise. For example, although evidence suggests that traits rather than
tates dominate functional network organization, the interaction be-
ween a person’s identity and the task they are performing explains
bout 20% of the variance in similarity between functional networks
bserved during different fMRI runs in the Midnight Scan Club dataset
 Gratton et al., 2018 ). This individual-by-task interaction, reflecting
eaningful scan-to-scan variability in the form of an individual-specific

tate effect, is the third-largest source of variance in network similar-
ty after group and participant identity, each of which explain about
5-40% of the variance in network similarity. Complementary work
as demonstrated that functional networks —and even node boundaries
hemselves ( Salehi et al., 2020 ) —vary across scan runs and sessions with
actors including internal states (e.g., attention; Rosenberg et al., 2020 )
nd pharmacological agents (e.g., caffeine; Wong et al., 2012 ). 

Because states explain less variance in functional connectivity
atterns than do traits, elucidating reliable state-specific patterns
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d  
ill require substantial amounts of data per individual and cogni-
ive/behavioral state of interest. Furthermore, as with dynamic connec-
ivity analyses, it will be critical to validate connectivity changes ob-
erved across days to weeks with observed “ground truth ” changes in
ehavior, and to replicate results across novel individuals and datasets.

Although improving session-to-session functional connectivity relia-
ility is important for certain research questions, if functional connectiv-
ty is ever to be used in real-world settings to evaluate clinical symptom
rajectories or treatment or intervention efficacy, we should also aim
o capture reliable changes in connectivity over timescales relevant to
hese processes. One might imagine that large swings in symptoms over
ays to weeks within an individual —e.g., whether a patient with bipolar
isorder is currently euthymic or in the throes of a manic episode —could
ccount for substantial variance in connectivity, just as task manipula-
ions do in healthy volunteers ( Gratton et al., 2018 ). Given that one
ltimate goal of connectome-based prediction is to inform clinical deci-
ion making, scan-to-scan variability should not be dismissed as noise
ut of hand. 

.3. Long time-scale predictions (i.e., months to years) 

Studies are beginning to characterize functional connectome stabil-
ty across developmental time. Recent work, for example, demonstrated
uccessful connectome fingerprinting using scans separated by one to
wo years in development, with modest success for scans separated by
hree years ( Horien et al., 2019 ). Although this work provides valuable
nsight into the stability of functional brain organization across years, it
s important to consider what realistic ceiling on functional connectome
ngerprinting accuracy we should expect for longitudinal data given
idespread changes in brain structure and function across the lifes-
an —from infancy to childhood, adolescence, younger adulthood, and
lder adulthood ( Casey et al., 2005 ; Cox et al., 2016 ; Giedd et al., 1999 ;
edman et al., 2012 ; Knickmeyer et al., 2008 ; Mills et al., 2016 ). Intro-
ucing techniques to maximize identification using scans separated by
onths to years may, depending on participants’ ages, conceal meaning-

ul developmental change. Instead, measuring the aspects of functional
onnectivity patterns that do and do not vary with development, ag-
ng, and cognitive changes across the lifespan can inform behaviorally
eaningful trajectories of functional brain organization 6 . Characteriz-

ng longitudinal change in connectivity patterns and behavior may also
elp us overcome a limitation of nearly all connectome-based predic-
ive modeling work to date: that it is technically postdiction, estimating
ehavior that has already been measured. In other words, tracking re-
iable connectome trajectories in development and aging may allow us
o better forecast future outcomes and improve the real-world utility of
onnectome-based prediction. 

.4. Predicting behavioral states with connectivity traits 

Automatically dismissing variable functional connectomes as scien-
ifically uninteresting is misguided because what appears to be “unreli-
bility ” may in fact reflect changing mental states. It is an open ques-
ion, however, whether connectome dynamics are necessary and/or suf-
cient for predicting behavior dynamics. In many cases they may not be.
or example, a single measure of static functional connectivity observed
arly in development may predict risk for or resilience to psychopathol-
gy, and trait-like aspects of the connectome may predict response to
reatment . It may also be the case that brain dynamics observed over
6 Longitudinal analyses face unique methodological challenges, such as data 
oints that are not missing at random and measurements whose validity and 
rror varies over time. Models of developmental change must also account for 
omplex nonlinear trajectories in brain function and behavior. Recent work pro- 
ides new approaches to and recommendations for longitudinal data analysis in 
evelopmental cognitive neuroscience (e.g., Kievit et al., 2018 ; King et al., 2018 ) 
hat can inform long time-scale predictions of behavior from fMRI data. 
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5 
ne timescale predict behavior dynamics across another (e.g., perhaps
hort-term functional connectivity dynamics during an emotional movie
redict mood disorder symptom trajectories over a longer term). Testing
ifferent models using trait- and state-like aspects of functional connec-
ivity to predict trait- and state-like aspects of behavior can shed light on
hich aspects of the functional connectome are necessary and sufficient

or predicting a given behavior of interest. 

. Choosing the right behavior(s) 

Throughout this article, we have focused on the brain side of the
rain-behavior equation, arguing that we should optimize our brain
easures to be maximally sensitive to behavior, broadly defined. But
hich behavioral measures are most important? How meaningful are

hese measures? Although the behavior side of the equation often gets
uch less attention from neuroimagers, it is perhaps even more impor-

ant for building reliable, valid predictive models. We often use targets
f convenience, i.e., self-report and lab-based tasks that are collected
longside neuroimaging data, to establish proof-of-principle for a brain-
ehavior relationship. Yet both recent and longer-standing work calls
nto question the reliability and construct validity of many of these mea-
ures as they are typically used ( Eisenberg et al., 2019 ; Hedge et al.,
018 ; Spearman, 1910 ). 

However, recent developments give reason to be optimistic on this
ront. First, in computational phenotyping, rather than take task-elicited
easures (e.g., accuracy, reaction time) at face value, computational
odels are fit to derive a set of latent variables that characterize a per-

on’s behavior or “style ” on one or more tasks ( Patzelt et al., 2018 ,
ontague et al., 2012 , Wiecki et al., 2015 , Schwartenbeck and Fris-

on, 2016 ). This approach can offer more mechanistic insights into be-
avioral tendencies that may be shared across a variety of cognitive
nd affective domains ( Thompson et al., 2019 ). Still, it is early days
or many of these models, and we will need to assess their longer-term
onstruct validity just as we do for more traditional measures. Second,
igital phenotyping, in which data are harvested from smartphones and
ther devices (e.g., levels of movement and sociality, location, voice
nd text analysis) to provide a picture of activity “in the wild ”, is an-
ther promising source of behavior prediction targets to understand
he bidirectional relationship between brain and behavior ( Insel, 2017 ,
eller et al., 2020 ). Finally, as mentioned in the previous section, lon-
itudinal prediction of clinical and other real-world outcomes will be
he true translational test for this line of work. This will likely require
ntegration with health system medical records, which will pose privacy
hallenges, but will be necessary for any eventual applications. 

In the meantime, although the “correct ” targets for prediction remain
n open question, this should not diminish our commitment to bench-
arking functional connectomes according to some kind of relevance for

ehavior. Focusing on behavior prediction will encourage neuroimaging
esearchers to stay abreast of the latest developments in these fields, and
romote valuable cross-talk between behavior- and brain-based pheno-
yping efforts. 

. Conclusions 

If perfect functional connectome fingerprinting implies perfect sta-
ility in brain function and mental life, it is neither a realistic nor a
esirable goal. Now, the more pressing challenges are to optimize con-
ectivity patterns for behavior prediction, isolate trait-like and state-like
onnectivity components ( Song and Rosenberg, 2021 ), and tease apart
tate variability reflecting signals of interest from those of no interest. In
he future, with more neuroimaging and behavioral data per individual,
e may be able to optimize for state-specific fingerprinting accuracy.
ntil then, optimizing fingerprinting will not necessarily improve be-
avior prediction or advance understanding of relationships between
he brain and the mind. 



E.S. Finn and M.D. Rosenberg NeuroImage 239 (2021) 118254 

D

C

 

–  

–

A

 

c  

R  

f

D

 

d

F

 

t

R

A  

 

A  

 

A  

 

 

A  

 

 

A  

B  

 

B  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

B  

 

 

 

B

B  

 

C  

 

 

C  

C  

C  

 

 

C  

 

C  

 

C  

 

 

C  

 

C  

 

D  

 

d  

 

D  

 

 

 

D  

 

D  

 

E  

 

E  

 

 

 

E  

 

 

E  

 

F  

 

 

 

F  

 

F  
eclaration of Competing Interest 

The authors declare no competing financial interests. 

redit authorship contribution statement 

Emily S. Finn: Conceptualization, Writing – original draft, Writing
review & editing. Monica D. Rosenberg: Conceptualization, Writing
original draft, Writing – review & editing. 

cknowledgments 

The authors thank Chameleon Studios ( https://www.chamstudios.
om ) for Fig. 1 conceptualization and design. The authors also thank
ichard Betzel, Theodore Satterthwaite, and one anonymous reviewer

or helpful feedback. 

ata and code availability statement 

This article is a review/opinion piece and does not use any empirical
ata or code. 

unding sources 

This work was supported by NIH grant R00MH120257 (E.S.F.) and
he University of Chicago Social Sciences Division (M.D.R.). 

eferences 

bbas, K., Amico, E., Svaldi, D.O., Tipnis, U., Duong-Tran, D.A., Liu, M., Rajapandian, M.,
Harezlak, J., Ances, B.M., Goñi, J., 2020. GEFF: Graph embedding for functional fin-
gerprinting. Neuroimage 221, 117181. doi: 10.1016/j.neuroimage.2020.117181 . 

dam, K.C.S., Mance, I., Fukuda, K., Vogel, E.K, 2015. The contribution of attentional
lapses to individual differences in visual working memory capacity. J. Cogn. Neurosci.
27 (8). doi: 10.1162/jocn_a_00811 . 

delstein, J.S., Shehzad, Z., Mennes, M., DeYoung, C.G., Zuo, X.N., Kelly, C., Mar-
gulies, D.S., Bloomfield, A., Gray, J.R., Castellanos, F.X., Milham, M.P., 2011. Per-
sonality is reflected in the brain’s intrinsic functional architecture. PLoS One 6 (11).
doi: 10.1371/journal.pone.0027633 . 

iran, R.D., Vogelstein, J.T., Pillai, J.J., Caffo, B., Pekar, J.J., Sair, H.I., 2016.
Factors affecting characterization and localization of interindividual differences
in functional connectivity using MRI. Hum. Brain Mapp. 37 (5), 1986–1997.
doi: 10.1002/hbm.23150 . 

mico, E. , Goñi, J. , 2018. The quest for identifiability in human functional connectomes.
Sci. Rep. 8 (1), 8254 . 

ari, S., Amico, E., Vike, N., Talavage, T.M., Goñi, J., 2019. Uncovering multi-site iden-
tifiability based on resting-state functional connectomes. Neuroimage 202, 115967.
doi: 10.1016/j.neuroimage.2019.06.045 . 

otvinik-Nezer, R., Holzmeister, F., Camerer, C.F., Dreber, A., Huber, J., Johannesson,
M., Kirchler, M., Iwanir, R., Mumford, J.A., Adcock, R.A., Avesani, P., Baczkowski,
B.M., Bajracharya, A., Bakst, L., Ball, S., Barilari, M., Bault, N., Beaton, D., Beitner,
J., Benoit, R.G., Berkers, R.M.W.J., Bhanji, J.P., Biswal, B.B., Bobadilla-Suarez, S.,
Bortolini, T., Bottenhorn, K.L., Bowring, A., Braem, S., Brooks, H.R., Brudner, E.G.,
Calderon, C.B., Camilleri, J.A., Castrellon, J.J., Cecchetti, L., Cieslik, E.C., Cole, Z.J.,
Collignon, O., Cox, R.W., Cunningham, W.A., Czoschke, S., Dadi, K., Davis, C.P., Luca,
A.D., Delgado, M.R., Demetriou, L., Dennison, J.B., Di, X., Dickie, E.W., Dobryakova,
E., Donnat, C.L., Dukart, J., Duncan, N.W., Durnez, J., Eed, A., Eickhoff, S.B., Erhart,
A., Fontanesi, L., Fricke, G.M., Fu, S., Galván, A., Gau, R., Genon, S., Glatard, T.,
Glerean, E., Goeman, J.J., Golowin, S.A.E., González-García, C., Gorgolewski, K.J.,
Grady, C.L., Green, M.A., Guassi Moreira, J.F., Guest, O., Hakimi, S., Hamilton, J.P.,
Hancock, R., Handjaras, G., Harry, B.B., Hawco, C., Herholz, P., Herman, G., Heunis,
S., Hoffstaedter, F., Hogeveen, J., Holmes, S., Hu, C.-P., Huettel, S.A., Hughes, M.E.,
Iacovella, V., Iordan, A.D., Isager, P.M., Isik, A.I., Jahn, A., Johnson, M.R., Johnstone,
T., Joseph, M.J.E., Juliano, A.C., Kable, J.W., Kassinopoulos, M., Koba, C., Kong, X.-Z.,
Koscik, T.R., Kucukboyaci, N.E., Kuhl, B.A., Kupek, S., Laird, A.R., Lamm, C., Langner,
R., Lauharatanahirun, N., Lee, H., Lee, S., Leemans, A., Leo, A., Lesage, E., Li, F.,
Li, M.Y.C., Lim, P.C., Lintz, E.N., Liphardt, S.W., Losecaat Vermeer, A.B., Love, B.C.,
Mack, M.L., Malpica, N., Marins, T., Maumet, C., McDonald, K., McGuire, J.T., Melero,
H., Méndez Leal, A.S., Meyer, B., Meyer, K.N., Mihai, G., Mitsis, G.D., Moll, J., Nielson,
D.M., Nilsonne, G., Notter, M.P., Olivetti, E., Onicas, A.I., Papale, P., Patil, K.R., Peelle,
J.E., Pérez, A., Pischedda, D., Poline, J.-B., Prystauka, Y., Ray, S., Reuter-Lorenz, P.A.,
Reynolds, R.C., Ricciardi, E., Rieck, J.R., Rodriguez-Thompson, A.M., Romyn, A., Salo,
T., Samanez-Larkin, G.R., Sanz-Morales, E., Schlichting, M.L., Schultz, D.H., Shen, Q.,
Sheridan, M.A., Silvers, J.A., Skagerlund, K., Smith, A., Smith, D.V., Sokol-Hessner,
P., Steinkamp, S.R., Tashjian, S.M., Thirion, B., Thorp, J.N., Tinghög, G., Tisdall, L.,
Tompson, S.H., Toro-Serey, C., Torre Tresols, J.J., Tozzi, L., Truong, V., Turella, L.,
van ’t Veer, A.E., Verguts, T., Vettel, J.M., Vijayarajah, S., Vo, K., Wall, M.B., Weeda,
W.D., Weis, S., White, D.J., Wisniewski, D., Xifra-Porxas, A., Yearling, E.A., Yoon, S.,
6 
Yuan, R., Yuen, K.S.L., Zhang, L., Zhang, X., Zosky, J.E., Nichols, T.E., Poldrack, R.A.,
Schonberg, T., 2020. Variability in the analysis of a single neuroimaging dataset by
many teams. Nature 582, 84–88. doi: 10.1038/s41586-020-2314-9 . 

ridgeford, E.W., Wang, S., Yang, Z., Wang, Z., Xu, T., Craddock, C., Dey, J., Kiar, G.,
Gray-Roncal, W., Colantuoni, C., Douville, C., Noble, S., Priebe, C.E., Caffo, B., Mil-
ham, M., Zuo, X.-N., Vogelstein, J.T., 2020. Eliminating accidental deviations to min-
imize generalization error and maximize reliability: applications in connectomics and
genomics. BioRxiv, 802629 doi: 10.1101/802629 . 

yrge, L., Kennedy, D.P., 2019. High-accuracy individual identification using a “thin slice ”
of the functional connectome. Network Neurosci. 3 (2). doi: 10.1162/netn_a_00068 . 

yrge, L., Kennedy, D.P., 2020. Accurate prediction of individual subject identity and
task, but not autism diagnosis, from functional connectomes. Hum. Brain Mapp. 41
(9), 2249–2262. doi: 10.1002/hbm.24943 . 

asey, B.J., Cohen, J.D., Jezzard, P., Turner, R., Noll, D.C., Trainor, R.J., Giedd, J., Kay-
sen, D., Hertz-Pannier, L., Rapoport, J.L., 1995. Activation of prefrontal cortex in
children during a nonspatial working memory task with functional MRI. Neuroimage
2 (3), 221–229. doi: 10.1006/nimg.1995.1029 . 

asey, B.J., Tottenham, N., Liston, C., Durston, S., 2005. Imaging the developing brain:
what have we learned about cognitive development? Trends Cogn. Sci. 9 (3), 104–
110. doi: 10.1016/j.tics.2005.01.011 . 

astellanos, F.X. , Di Martino, A. , Craddock, R.C. , Mehta, A.D. , Milham, M.P. , 2013. Clin-
ical applications of the functional connectome. NeuroImage 80, 527–540 . 

hauvin, L., Kumar, K., Wachinger, C., Vangel, M., de Guise, J., Desrosiers, C.,
Wells, W., Toews, M., 2020. Neuroimage signature from salient keypoints is
highly specific to individuals and shared by close relatives. Neuroimage 204.
doi: 10.1016/j.neuroimage.2019.116208 . 

hen, S., Hu, X., 2018. Individual identification using the functional brain finger-
print detected by the recurrent neural network. Brain Connect. 8 (4), 197–204.
doi: 10.1089/brain.2017.0561 . 

ole, M.W., Yarkoni, T., Repov š , G., Anticevic, A., Braver, T.S., 2012. Global connectivity
of prefrontal cortex predicts cognitive control and intelligence. J. Neurosci. 32 (26).
doi: 10.1523/JNEUROSCI.0536-12.2012 . 

ox, S.R., Ritchie, S.J., Tucker-Drob, E.M., Liewald, D.C., Hagenaars, S.P., Davies, G.,
Wardlaw, J.M., Gale, C.R., Bastin, M.E., Deary, I.J., 2016. Ageing and brain
white matter structure in 3,513 UK biobank participants. Nat. Commun. 7.
doi: 10.1038/ncomms13629 . 

ribben, I., Haraldsdottir, R., Atlas, L.Y., Wager, T.D., Lindquist, M.A., 2012. Dynamic
connectivity regression: determining state-related changes in brain connectivity. Neu-
roimage 61 (4). doi: 10.1016/j.neuroimage.2012.03.070 . 

ui, Z., Gong, G., 2018. The effect of machine learning regression algorithms and sample
size on individualized behavioral prediction with functional connectivity features.
Neuroimage 178, 622–637. doi: 10.1016/j.neuroimage.2018.06.001 . 

adi, K., Rahim, M., Abraham, A., Chyzhyk, D., Milham, M., Thirion, B., Varoquaux, G.,
2019. Benchmarking functional connectome-based predictive models for resting-state
fMRI. Neuroimage 192, 115–134. doi: 10.1016/j.neuroimage.2019.02.062 . 

eBettencourt, M.T., Keene, P.A., Awh, E., Vogel, E.K., 2019. Real-time triggering re-
veals concurrent lapses of attention and working memory. Nature Human Behav.
doi: 10.1038/s41562-019-0606-6 . 

osenbach, N.U.F. , Nardos, B. , Cohen, A.L. , Fair, D.A. , Power, J.D. , Church, J.A. , Nel-
son, S.M. , Wig, G.S. , Vogel, A.C. , Lessov-Schlaggar, C.N. , Barnes, K.A. , Dubis, J.W. ,
Feczko, E. , Coalson, R.S. , Pruett, J.R. , Barch, D.M. , Petersen, S.E. , Schlaggar, B.L ,
2010. Prediction of individual brain maturity using fMRI. Science 329 (5997), 1358
LP–1361 . 

ubois, J., Galdi, P., Han, Y., Paul, L.K., Adolphs, R., 2018a. Resting-state functional brain
connectivity best predicts the personality dimension of openness to experience. Per-
sonality Neurosci. 1. doi: 10.1017/pen.2018.8 . 

ubois, J., Galdi, P., Paul, L.K., Adolphs, R., 2018b. A distributed brain network predicts
general intelligence from resting-state human neuroimaging data. Philosoph. Trans.
R. Soc. B 373 (1756). doi: 10.1098/rstb.2017.0284 . 

isenberg, I.W., Bissett, P.G., Zeynep Enkavi, A., Li, J., MacKinnon, D.P., Marsch, L.A.,
Poldrack, R.A., 2019. Uncovering the structure of self-regulation through data-driven
ontology discovery. Nat. Commun. 10 (1), 2319. doi: 10.1038/s41467-019-10301-1 . 

lliott, M.L., Knodt, A.R., Cooke, M., Kim, M.J., Melzer, T.R., Keenan, R., Ireland, D., Ram-
rakha, S., Poulton, R., Caspi, A., Moffitt, T.E., Hariri, A.R., 2019. General functional
connectivity: shared features of resting-state and task fMRI drive reliable and herita-
ble individual differences in functional brain networks. Neuroimage 189, 516–532.
doi: 10.1016/j.neuroimage.2019.01.068 . 

merson, R.W. , Adams, C. , Nishino, T. , Hazlett, H.C. , Wolff, J.J. , Zwaigenbaum, L. , Con-
stantino, J.N. , Shen, M.D. , Swanson, M.R. , Elison, J.T. , Kandala, S. , Estes, A.M. , Bot-
teron, K.N. , Collins, L. , Dager, S.R. , Evans, A.C. , Gerig, G. , Gu, H. , McKinstry, R.C. , …
Piven, J. , 2017. Functional neuroimaging of high-risk 6-month-old infants predicts a
diagnosis of autism at 24 months of age. Sci. Transl. Med. 9 (393) . 

sfahlani, F.Z., Jo, Y., Faskowitz, J., Byrge, L., Kennedy, D.P., Sporns, O., Betzel, R.F.,
2020. High-amplitude cofluctuations in cortical activity drive functional connectivity.
PNAS 117 (45). doi: 10.1073/pnas.2005531117 . 

air, D.A., Nigg, J.T., Iyer, S., Bathula, D., Mills, K.L., Dosenbach, N.U.F., Schlaggar, B.L.,
Mennes, M., Gutman, D., Bangaru, S., Buitelaar, J.K., Dickstein, D.P., Martino, A.Di,
Kennedy, D.N., Kelly, C., Luna, B., Schweitzer, J.B., Velanova, K., Wang, Y.F., …
Milham, M.P., 2013. Distinct Neural Signatures Detected for ADHD Subtypes after
Controlling for Micro-Movements in Resting State Functional Connectivity MRI Data.
Frontiers in Systems Neuroscience FEB doi: 10.3389/fnsys.2012.00080 . 

askowitz, J., Esfahlani, F.Z., Jo, Y., Sporns, O., Betzel, R.F., 2020. Edge-centric functional
network representations of human cerebral cortex reveal overlapping system-level
architecture. Nat. Neurosci. 23 (12). doi: 10.1038/s41593-020-00719-y . 

inn, Emily S , Bandettini, P.A. , 2020. Movie-Watching Outperforms Rest for Functional
Connectivity-Based Prediction of Behavior BioRxiv . 

https://www.chamstudios.com
https://doi.org/10.1016/j.neuroimage.2020.117181
https://doi.org/10.1162/jocn_a_00811
https://doi.org/10.1371/journal.pone.0027633
https://doi.org/10.1002/hbm.23150
http://refhub.elsevier.com/S1053-8119(21)00531-0/sbref0005
http://refhub.elsevier.com/S1053-8119(21)00531-0/sbref0005
http://refhub.elsevier.com/S1053-8119(21)00531-0/sbref0005
https://doi.org/10.1016/j.neuroimage.2019.06.045
https://doi.org/10.1038/s41586-020-2314-9
https://doi.org/10.1101/802629
https://doi.org/10.1162/netn_a_00068
https://doi.org/10.1002/hbm.24943
https://doi.org/10.1006/nimg.1995.1029
https://doi.org/10.1016/j.tics.2005.01.011
http://refhub.elsevier.com/S1053-8119(21)00531-0/sbref0045a
http://refhub.elsevier.com/S1053-8119(21)00531-0/sbref0045a
http://refhub.elsevier.com/S1053-8119(21)00531-0/sbref0045a
http://refhub.elsevier.com/S1053-8119(21)00531-0/sbref0045a
http://refhub.elsevier.com/S1053-8119(21)00531-0/sbref0045a
http://refhub.elsevier.com/S1053-8119(21)00531-0/sbref0045a
https://doi.org/10.1016/j.neuroimage.2019.116208
https://doi.org/10.1089/brain.2017.0561
https://doi.org/10.1523/JNEUROSCI.0536-12.2012
https://doi.org/10.1038/ncomms13629
https://doi.org/10.1016/j.neuroimage.2012.03.070
https://doi.org/10.1016/j.neuroimage.2018.06.001
https://doi.org/10.1016/j.neuroimage.2019.02.062
https://doi.org/10.1038/s41562-019-0606-6
http://refhub.elsevier.com/S1053-8119(21)00531-0/sbref0022
http://refhub.elsevier.com/S1053-8119(21)00531-0/sbref0022
http://refhub.elsevier.com/S1053-8119(21)00531-0/sbref0022
http://refhub.elsevier.com/S1053-8119(21)00531-0/sbref0022
http://refhub.elsevier.com/S1053-8119(21)00531-0/sbref0022
http://refhub.elsevier.com/S1053-8119(21)00531-0/sbref0022
http://refhub.elsevier.com/S1053-8119(21)00531-0/sbref0022
http://refhub.elsevier.com/S1053-8119(21)00531-0/sbref0022
http://refhub.elsevier.com/S1053-8119(21)00531-0/sbref0022
http://refhub.elsevier.com/S1053-8119(21)00531-0/sbref0022
http://refhub.elsevier.com/S1053-8119(21)00531-0/sbref0022
http://refhub.elsevier.com/S1053-8119(21)00531-0/sbref0022
http://refhub.elsevier.com/S1053-8119(21)00531-0/sbref0022
http://refhub.elsevier.com/S1053-8119(21)00531-0/sbref0022
http://refhub.elsevier.com/S1053-8119(21)00531-0/sbref0022
http://refhub.elsevier.com/S1053-8119(21)00531-0/sbref0022
http://refhub.elsevier.com/S1053-8119(21)00531-0/sbref0022
http://refhub.elsevier.com/S1053-8119(21)00531-0/sbref0022
http://refhub.elsevier.com/S1053-8119(21)00531-0/sbref0022
https://doi.org/10.1017/pen.2018.8
https://doi.org/10.1098/rstb.2017.0284
https://doi.org/10.1038/s41467-019-10301-1
https://doi.org/10.1016/j.neuroimage.2019.01.068
http://refhub.elsevier.com/S1053-8119(21)00531-0/sbref0027
http://refhub.elsevier.com/S1053-8119(21)00531-0/sbref0027
http://refhub.elsevier.com/S1053-8119(21)00531-0/sbref0027
http://refhub.elsevier.com/S1053-8119(21)00531-0/sbref0027
http://refhub.elsevier.com/S1053-8119(21)00531-0/sbref0027
http://refhub.elsevier.com/S1053-8119(21)00531-0/sbref0027
http://refhub.elsevier.com/S1053-8119(21)00531-0/sbref0027
http://refhub.elsevier.com/S1053-8119(21)00531-0/sbref0027
http://refhub.elsevier.com/S1053-8119(21)00531-0/sbref0027
http://refhub.elsevier.com/S1053-8119(21)00531-0/sbref0027
http://refhub.elsevier.com/S1053-8119(21)00531-0/sbref0027
http://refhub.elsevier.com/S1053-8119(21)00531-0/sbref0027
http://refhub.elsevier.com/S1053-8119(21)00531-0/sbref0027
http://refhub.elsevier.com/S1053-8119(21)00531-0/sbref0027
http://refhub.elsevier.com/S1053-8119(21)00531-0/sbref0027
http://refhub.elsevier.com/S1053-8119(21)00531-0/sbref0027
http://refhub.elsevier.com/S1053-8119(21)00531-0/sbref0027
http://refhub.elsevier.com/S1053-8119(21)00531-0/sbref0027
http://refhub.elsevier.com/S1053-8119(21)00531-0/sbref0027
http://refhub.elsevier.com/S1053-8119(21)00531-0/sbref0027
http://refhub.elsevier.com/S1053-8119(21)00531-0/sbref0027
http://refhub.elsevier.com/S1053-8119(21)00531-0/sbref0027
https://doi.org/10.1073/pnas.2005531117
https://doi.org/10.3389/fnsys.2012.00080
https://doi.org/10.1038/s41593-020-00719-y
http://refhub.elsevier.com/S1053-8119(21)00531-0/sbref0031
http://refhub.elsevier.com/S1053-8119(21)00531-0/sbref0031
http://refhub.elsevier.com/S1053-8119(21)00531-0/sbref0031


E.S. Finn and M.D. Rosenberg NeuroImage 239 (2021) 118254 

F  

 

F  

 

F  

 

 

F  

 

G  

 

G  

 

G  

 

 

G  

 

 

G  

 

 

 

G  

 

H  

 

H  

 

 

H  

 

 

H  

 

H  

 

H  

 

I  

J  

 

 

K  

 

K  

 

K  

 

 

 

K  

 

 

K  

 

 

K  

 

 

L  

 

 

 

L  

 

 

 

L  

L  

 

 

 

L  

 

L  

 

 

 

 

M  

 

M  

 

 

 

 

 

 

M  

 

 

M  

N  

 

N  

 

N  

 

N  

 

N  

 

 

N  

 

 

O  

 

P  

 

 

P  

 

 

P  

 

P  

 

P  

 

P  

 

 

inn, Emily S. , Constable, R.T. , 2016. Individual variation in functional brain connectivity:
Implications for personalized approaches to psychiatric disease. Dialogues Clinical
Neurosci. 18 (3), 277–287 PMC . 

inn, Emily S., Scheinost, D., Finn, D.M., Shen, X., Papademetris, X., Constable, R.T., 2017.
Can brain state be manipulated to emphasize individual differences in functional con-
nectivity? Neuroimage doi: 10.1016/j.neuroimage.2017.03.064 . 

inn, E.S., Shen, X., Scheinost, D., Rosenberg, M.D., Huang, J., Chun, M.M., Pa-
pademetris, X., Constable, R.T., 2015. Functional connectome fingerprinting: Iden-
tifying individuals using patterns of brain connectivity. Nat. Neurosci. 18 (11).
doi: 10.1038/nn.4135 . 

ortenbaugh, F.C. , DeGutis, J. , Germine, L. , Wilmer, J.B. , Grosso, M. , Russo, K. , Ester-
man, M. , 2015. Sustained attention across the life span in a sample of 10,000 dissoci-
ating ability and strategy. Psychol. Sci., 0956797615594896 . 

abrieli, J.D.E., Ghosh, S.S., Whitfield-Gabrieli, S, 2015. Prediction as a humanitarian and
pragmatic contribution from human cognitive neuroscience. Neuron 85 (1), 11–26.
doi: 10.1016/j.neuron.2014.10.047 . 

iedd, J.N. , Blumenthal, J. , Jeffries, N.O. , Castellanos, F.X. , Liu, H. , Zijdenbos, A. , Paus, T. ,
Evans, A.C. , Rapoport, J.L. , 1999. Brain development during childhood and adoles-
cence: a longitudinal MRI study. Nat. Neurosci. 2 (10), 861–863 . 

onzalez-Castillo, J., Hoy, C.W., Handwerker, D.A., Robinson, M.E., Buchanan, L.C.,
Saad, Z.S., Bandettini, P.A., 2015. Tracking ongoing cognition in individuals using
brief, whole-brain functional connectivity patterns. Proc. Natl. Acad. Sci. 112 (28),
8762. doi: 10.1073/pnas.1501242112 , LP –8767 . 

ratton, C., Kraus, B.T., Greene, D.J., Gordon, E.M., Laumann, T.O., Nelson, S.M.,
Dosenbach, N.U.F., Petersen, S.E, 2020. Defining individual-specific func-
tional neuroanatomy for precision psychiatry. Biol. Psychiatry 88 (1), 28–39.
doi: 10.1016/j.biopsych.2019.10.026 . 

ratton, C., Laumann, T.O., Nielsen, A.N., Greene, D.J., Gordon, E.M., Gilmore, A.W.,
Nelson, S.M., Coalson, R.S., Snyder, A.Z., Schlaggar, B.L., Dosenbach, N.U.F., Pe-
tersen, S.E, 2018. Functional brain networks are dominated by stable group and
individual factors, not cognitive or daily variation. Neuron 98 (2), 439–452.
doi: 10.1016/j.neuron.2018.03.035 , e5 . 

reene, A.S., Gao, S., Scheinost, D., Constable, R.T., 2018. Task-induced brain state
manipulation improves prediction of individual traits. Nat. Commun. 9 (1), 2807.
doi: 10.1038/s41467-018-04920-3 . 

edge, C., Powell, G., Sumner, P., 2018. The reliability paradox: why robust cognitive
tasks do not produce reliable individual differences. Behav. Res. Methods 50 (3),
1166–1186. doi: 10.3758/s13428-017-0935-1 . 

edman, A.M., van Haren, N.E.M., Schnack, H.G., Kahn, R.S., Hulshoff Pol, H.E.,
2012. Human brain changes across the life span: a review of 56 longitudi-
nal magnetic resonance imaging studies. Hum. Brain Mapp. 33 (8), 1987–2002.
doi: 10.1002/hbm.21334 . 

eller, A.S., Shi, T.C., Ezie, C.E.C., Reneau, T.R., Baez, L.M., Gibbons, C.J., Hartley, C.A.,
2020. Association between real-world experiential diversity and positive affect re-
lates to hippocampal–striatal functional connectivity. Nat. Neurosci. 23 (7), 800–804.
doi: 10.1038/s41593-020-0636-4 . 

orien, C., Noble, S., Finn, E.S., Shen, X., Scheinost, D., Constable, R.T., 2018. Considering
factors affecting the connectome-based identification process: comment on Waller et
a ∗ l. NeuroImage 169, 172–175. doi: 10.1016/j.neuroimage.2017.12.045 . 

orien, C., Shen, X., Scheinost, D., Constable, R.T., 2019. The individual func-
tional connectome is unique and stable over months to years. Neuroimage 189.
doi: 10.1016/j.neuroimage.2019.02.002 . 

su, W.-T., Rosenberg, M.D., Scheinost, D., Constable, R.T., Chun, M.M., 2018. Resting-
state functional connectivity predicts neuroticism and extraversion in novel individ-
uals. Soc. Cognit. Affect. Neurosci. 13 (2). doi: 10.1093/scan/nsy002 . 

nsel, T.R., 2017. Digital phenotyping: technology for a new science of behavior. JAMA
318 (13), 1215–1216. doi: 10.1001/jama.2017.11295 . 

albrzikowski, M., Liu, F., Foran, W., Klei, L., Calabro, F.J., Roeder, K., Devlin, B., Luna, B.,
2020. Functional connectome fingerprinting accuracy in youths and adults is similar
when examined on the same day and 1.5-years apart. Hum. Brain Mapp. 41 (15),
4187–4199. doi: 10.1002/hbm.25118 . 

ashyap, R., Kong, R., Bhattacharjee, S., Li, J., Zhou, J., Thomas Yeo, B.T., 2019.
Individual-specific fMRI-Subspaces improve functional connectivity prediction of be-
havior. Neuroimage 189, 804–812. doi: 10.1016/j.neuroimage.2019.01.069 . 

essler, D., Angstadt, M., Sripada, C., 2016. Growth charting of brain connectivity net-
works and the identification of attention impairment in youth. JAMA Psychiatry 73
(5), 481–489. doi: 10.1001/jamapsychiatry.2016.0088 . 

ievit, R.A., Brandmaier, A.M., Ziegler, G., van Harmelen, A.-L., de Mooij, S.M.M.,
Moutoussis, M., Goodyer, I.M., Bullmore, E., Jones, P.B., Fonagy, P., Lindenberger, U.,
Dolan, R.J., 2018. Developmental cognitive neuroscience using latent change score
models: a tutorial and applications. Development. Cognit. Neurosci. 33, 99–117.
doi: 10.1016/j.dcn.2017.11.007 . 

ing, K.M., Littlefield, A.K., McCabe, C.J., Mills, K.L., Flournoy, J., Chassin, L., 2018. Lon-
gitudinal modeling in developmental neuroimaging research: Common challenges,
and solutions from developmental psychology. Development. Cognit. Neurosci. 33,
54–72. doi: 10.1016/j.dcn.2017.11.009 . 

nickmeyer, R.C., Gouttard, S., Kang, C., Evans, D., Wilber, K., Smith, J.K., Hamer, R.M.,
Lin, W., Gerig, G., Gilmore, J.H., 2008. A structural MRI study of human brain
development from birth to 2 years. J. Neurosci. 28 (47). doi: 10.1523/JNEU-
ROSCI.3479-08.2008 . 

ong, R., Yang, Q., Gordon, E., Xue, A., Yan, X., Orban, C., Zuo, X.-N., Spreng, N.,
Ge, T., Holmes, A., Eickhoff, S., and Yeo, B. T. T. (2021). Individual-specific areal-
level parcellations improve functional connectivity prediction of behavior. BioRxiv,
2021.01.16.426943. 10.1101/2021.01.16.426943 

ake, E.M.R., Finn, E.S., Noble, S.M., Vanderwal, T., Shen, X., Rosenberg, M.D.,
Spann, M.N., Chun, M.M., Scheinost, D., Constable, R.T., 2019. The functional brain
7 
organization of an individual allows prediction of measures of social abilities trans-
diagnostically in autism and attention-deficit/hyperactivity disorder. Biol. Psychiatry
86 (4), 315–326. doi: 10.1016/J.BIOPSYCH.2019.02.019 . 

aumann, T.O., Snyder, A.Z., Mitra, A., Gordon, E.M., Gratton, C., Adeyemo, B.,
Gilmore, A.W., Nelson, S.M., Berg, J.J., Greene, D.J., McCarthy, J.E., Tagliazucchi, E.,
Laufs, H., Schlaggar, B.L., Dosenbach, N.U.F., Petersen, S.E, 2017. On the stabil-
ity of BOLD fMRI correlations. Cereb. Cortex 27 (10), 4719–4732. doi: 10.1093/cer-
cor/bhw265 . 

i, K. , Atluri, G. , 2018. Towards effective functional connectome fingerprinting. In: Con-
nectomics in NeuroImaging. Springer International Publishing, pp. 107–116 . 

iem, F., Varoquaux, G., Kynast, J., Beyer, F., Kharabian Masouleh, S., Huntenburg, J.M.,
Lampe, L., Rahim, M., Abraham, A., Craddock, R.C., Riedel-Heller, S., Luck, T., Loef-
fler, M., Schroeter, M.L., Witte, A.V., Villringer, A., Margulies, D.S., 2017. Predicting
brain-age from multimodal imaging data captures cognitive impairment. Neuroimage
148. doi: 10.1016/j.neuroimage.2016.11.005 . 

iu, J., Liao, X., Xia, M., He, Y., 2018. Chronnectome fingerprinting: identifying indi-
viduals and predicting higher cognitive functions using dynamic brain connectivity
patterns. Hum. Brain Mapp. 39 (2), 902–915. doi: 10.1002/hbm.23890 . 

urie, D.J., Kessler, D., Bassett, D.S., Betzel, R.F., Breakspear, M., Kheilholz, S., Kucyi, A.,
Liégeois, R., Lindquist, M.A., McIntosh, A.R., Poldrack, R.A., Shine, J.M., Thomp-
son, W.H., Bielczyk, N.Z., Douw, L., Kraft, D., Miller, R.L., Muthuraman, M.,
Pasquini, L., Razi, A., Vidaurre, D., Xie, H., Calhoun, V.D., 2020. Questions and contro-
versies in the study of time-varying functional connectivity in resting fMRI. Network
Neurosci. 4, 30–69. doi: 10.1162/netn_a_00116 . 

antwill, M., Gell, M., Krohn, S., Finke, C., 2021. Fingerprinting and behavioural
prediction rest on distinct functional systems of the human connectome. bioRxiv
doi: 10.1101/2021.02.07.429922 . 

arek, S., Tervo-Clemmens, B., Calabro, F.J., Montez, D.F., Kay, B.P., Hatoum, A.S., Dono-
hue, M.R., Foran, W., Miller, R.L., Feczko, E., Miranda-Dominguez, O., Graham, A.M.,
Earl, E.A., Perrone, A.J., Cordova, M., Doyle, O., Moore, L.A., Conan, G., Uriarte, J.,
Snider, K., Tam, A., Chen, J., Newbold, D.J., Zheng, A., Seider, N.A., Van, A.N., Lau-
mann, T.O., Thompson, W.K., Greene, D.J., Petersen, S.E., Nichols, T.E., Yeo, B.T.T.,
Barch, D.M., Garavan, H., Luna, B., Fair, D.A., Dosenbach, N.U.F., 2020. Towards Re-
producible Brain-Wide Association Studies. bioRxiv doi: 10.1101/2020.08.21.257758 .

ills, K.L., Goddings, A.L., Herting, M.M., Meuwese, R., Blakemore, S.J., Crone, E.A.,
Dahl, R.E., Güro ğlu, B., Raznahan, A., Sowell, E.R., Tamnes, C.K., 2016. Structural
brain development between childhood and adulthood: Convergence across four lon-
gitudinal samples. Neuroimage 141. doi: 10.1016/j.neuroimage.2016.07.044 . 

ontague, P.R. , Dolan, R.J. , Friston, K.J. , Dayan, P. , 2012. Computational psychiatry.
Trends Cogn. Sci. 16 (1), 72–80 . 

aselaris, T., Allen, E., Kay, K., 2021. Extensive sampling for complete mod-
els of individual brains. Current Opinion in Behavioral Sciences, 40
doi: 10.1016/j.cobeha.2020.12.008 . 

ielsen, A.N., Greene, D.J., Gratton, C., Dosenbach, N.U.F., Petersen, S.E., Schlaggar, B.L,
2019. Evaluating the prediction of brain maturity from functional connectivity after
motion artifact denoising. Cereb. Cortex 29 (6). doi: 10.1093/cercor/bhy117 . 

oble, S., Scheinost, D., Constable, R.T., 2019. A decade of test-retest reliability of func-
tional connectivity: a systematic review and meta-analysis. Neuroimage 203, 116157.
doi: 10.1016/j.neuroimage.2019.116157 . 

oble, S., Scheinost, D., Constable, R.T., 2021. A guide to the measurement and
interpretation of fMRI test-retest reliability. Curr. Opin. Behav. Sci. 40, 27–32.
doi: 10.1016/j.cobeha.2020.12.012 . 

oble, S., Spann, M.N., Tokoglu, F., Shen, X., Constable, R.T., Scheinost, D., 2017. Influ-
ences on the test–retest reliability of functional connectivity MRI and its relation-
ship with behavioral utility. Cereb. Cortex 27 (11), 5415–5429. doi: 10.1093/cer-
cor/bhx230 . 

ostro, A.D., Müller, V.I., Varikuti, D.P., Pläschke, R.N., Hoffstaedter, F., Langner, R.,
Patil, K.R., Eickhoff, S.B., 2018. Predicting personality from network-
based resting-state functional connectivity. Brain Struct. Function 223 (6).
doi: 10.1007/s00429-018-1651-z . 

u, J., Xie, L., Jin, C., Li, X., Zhu, D., Jiang, R., Chen, Y., Zhang, J., Li, L., Liu, T., 2015.
Characterizing and differentiating brain state dynamics via Hidden Markov models.
Brain Topogr. 28 (5). doi: 10.1007/s10548-014-0406-2 . 

annunzi, M., Hindriks, R., Bettinardi, R.G., Wenger, E., Lisofsky, N., Martensson, J., But-
ler, O., Filevich, E., Becker, M., Lochstet, M., Kühn, S., Deco, G., 2017. Resting-state
fMRI correlations: from link-wise unreliability to whole brain stability. Neuroimage
157, 250–262. doi: 10.1016/j.neuroimage.2017.06.006 . 

arkes, L., Satterthwaite, T.D., Bassett, D.S., 2020. Towards precise resting-state fMRI
biomarkers in psychiatry: Synthesizing developments in transdiagnostic research, di-
mensional models of psychopathology, and normative neurodevelopment. Curr. Opin.
Neurobiol. 65, 120–128. doi: 10.1016/j.conb.2020.10.016 . 

atzelt, E.H. , Hartley, C.A. , Gershman, S.J. , 2018. Computational phenotyping: Using
models to understand individual differences in personality, development, and mental
illness. Personal. Neurosci. 1 . 

eña-Gómez, C., Avena-Koenigsberger, A., Sepulcre, J., Sporns, O., 2018. Spatiotemporal
network markers of individual variability in the human functional connectome. Cereb.
Cortex 28 (8), 2922–2934. doi: 10.1093/cercor/bhx170 . 

ervaiz, U., Vidaurre, D., Woolrich, M.W., Smith, S.M., 2020. Optimis-
ing network modelling methods for fMRI. Neuroimage 211, 116604.
doi: 10.1016/j.neuroimage.2020.116604 . 

litt, M., Barnes, K.A., Wallace, G.L., Kenworthy, L., Martin, A., 2015. Resting-state
functional connectivity predicts longitudinal change in autistic traits and adap-
tive functioning in autism. Proc. Natl. Acad. Sci. U.S.A. 112 (48), E6699–E6706.
doi: 10.1073/pnas.1510098112 . 

http://refhub.elsevier.com/S1053-8119(21)00531-0/sbref0032
http://refhub.elsevier.com/S1053-8119(21)00531-0/sbref0032
http://refhub.elsevier.com/S1053-8119(21)00531-0/sbref0032
https://doi.org/10.1016/j.neuroimage.2017.03.064
https://doi.org/10.1038/nn.4135
http://refhub.elsevier.com/S1053-8119(21)00531-0/sbref0035
http://refhub.elsevier.com/S1053-8119(21)00531-0/sbref0035
http://refhub.elsevier.com/S1053-8119(21)00531-0/sbref0035
http://refhub.elsevier.com/S1053-8119(21)00531-0/sbref0035
http://refhub.elsevier.com/S1053-8119(21)00531-0/sbref0035
http://refhub.elsevier.com/S1053-8119(21)00531-0/sbref0035
http://refhub.elsevier.com/S1053-8119(21)00531-0/sbref0035
http://refhub.elsevier.com/S1053-8119(21)00531-0/sbref0035
https://doi.org/10.1016/j.neuron.2014.10.047
http://refhub.elsevier.com/S1053-8119(21)00531-0/sbref0037
http://refhub.elsevier.com/S1053-8119(21)00531-0/sbref0037
http://refhub.elsevier.com/S1053-8119(21)00531-0/sbref0037
http://refhub.elsevier.com/S1053-8119(21)00531-0/sbref0037
http://refhub.elsevier.com/S1053-8119(21)00531-0/sbref0037
http://refhub.elsevier.com/S1053-8119(21)00531-0/sbref0037
http://refhub.elsevier.com/S1053-8119(21)00531-0/sbref0037
http://refhub.elsevier.com/S1053-8119(21)00531-0/sbref0037
http://refhub.elsevier.com/S1053-8119(21)00531-0/sbref0037
http://refhub.elsevier.com/S1053-8119(21)00531-0/sbref0037
https://doi.org/10.1073/pnas.1501242112
https://doi.org/10.1016/j.biopsych.2019.10.026
https://doi.org/10.1016/j.neuron.2018.03.035
https://doi.org/10.1038/s41467-018-04920-3
https://doi.org/10.3758/s13428-017-0935-1
https://doi.org/10.1002/hbm.21334
https://doi.org/10.1038/s41593-020-0636-4
https://doi.org/10.1016/j.neuroimage.2017.12.045
https://doi.org/10.1016/j.neuroimage.2019.02.002
https://doi.org/10.1093/scan/nsy002
https://doi.org/10.1001/jama.2017.11295
https://doi.org/10.1002/hbm.25118
https://doi.org/10.1016/j.neuroimage.2019.01.069
https://doi.org/10.1001/jamapsychiatry.2016.0088
https://doi.org/10.1016/j.dcn.2017.11.007
https://doi.org/10.1016/j.dcn.2017.11.009
https://doi.org/10.1523/JNEUROSCI.3479-08.2008
https://doi.org/10.1016/J.BIOPSYCH.2019.02.019
https://doi.org/10.1093/cercor/bhw265
http://refhub.elsevier.com/S1053-8119(21)00531-0/sbref0058
http://refhub.elsevier.com/S1053-8119(21)00531-0/sbref0058
http://refhub.elsevier.com/S1053-8119(21)00531-0/sbref0058
https://doi.org/10.1016/j.neuroimage.2016.11.005
https://doi.org/10.1002/hbm.23890
https://doi.org/10.1162/netn_a_00116
https://doi.org/10.1101/2021.02.07.429922
https://doi.org/10.1101/2020.08.21.257758
https://doi.org/10.1016/j.neuroimage.2016.07.044
http://refhub.elsevier.com/S1053-8119(21)00531-0/sbref0065
http://refhub.elsevier.com/S1053-8119(21)00531-0/sbref0065
http://refhub.elsevier.com/S1053-8119(21)00531-0/sbref0065
http://refhub.elsevier.com/S1053-8119(21)00531-0/sbref0065
http://refhub.elsevier.com/S1053-8119(21)00531-0/sbref0065
https://doi.org/10.1016/j.cobeha.2020.12.008
https://doi.org/10.1093/cercor/bhy117
https://doi.org/10.1016/j.neuroimage.2019.116157
https://doi.org/10.1016/j.cobeha.2020.12.012
https://doi.org/10.1093/cercor/bhx230
https://doi.org/10.1007/s00429-018-1651-z
https://doi.org/10.1007/s10548-014-0406-2
https://doi.org/10.1016/j.neuroimage.2017.06.006
https://doi.org/10.1016/j.conb.2020.10.016
http://refhub.elsevier.com/S1053-8119(21)00531-0/sbref0075
http://refhub.elsevier.com/S1053-8119(21)00531-0/sbref0075
http://refhub.elsevier.com/S1053-8119(21)00531-0/sbref0075
http://refhub.elsevier.com/S1053-8119(21)00531-0/sbref0075
https://doi.org/10.1093/cercor/bhx170
https://doi.org/10.1016/j.neuroimage.2020.116604
https://doi.org/10.1073/pnas.1510098112


E.S. Finn and M.D. Rosenberg NeuroImage 239 (2021) 118254 

P  

 

P  

 

 

R  

 

 

R  

 

 

R  

 

 

R  

 

R  

 

R  

 

R  

 

 

S  

 

 

S  

 

S  

 

S  

 

 

S  

S  

 

S  

 

 

S  

 

S  

 

S  

S  

 

S  

 

T  

 

T  

 

 

 

U  

W  

 

W  

 

 

W  

 

W  

W  

 

W  

 

W  

 

W  

W  

 

 

X  

 

Y  

 

 

 

Z  

 

Z  
oldrack, R.A., Huckins, G., Varoquaux, G., 2020. Establishment of best practices
for evidence for prediction: a review. JAMA Psychiatry doi: 10.1001/jamapsychia-
try.2019.3671 . 

oole, V.N., Robinson, M.E., Singleton, O., DeGutis, J., Milberg, W.P.,
McGlinchey, R.E., Salat, D.H., Esterman, M., 2016. Intrinsic functional con-
nectivity predicts individual differences in distractibility. Neuropsychologia
doi: 10.1016/j.neuropsychologia.2016.04.023 . 

amot, M., Gonzalez-Castillo, J., 2019. A framework for offline evaluation
and optimization of real-time algorithms for use in neurofeedback, demon-
strated on an instantaneous proxy for correlations. Neuroimage 188.
doi: 10.1016/j.neuroimage.2018.12.006 . 

amsey, N.F., Tallent, K., Gelderen, P.van, Frank, J.A., Moonen, C.T.W.,
Weinberger, D.R, 1996. Reproducibility of human 3D fMRI brain maps
acquired during a motor task. Hum. Brain Mapp. 4 (2), 113–121.
doi: 10.1002/(SICI)1097-0193(1996)4:2 > 113::AID-HBM3 < 3.0.CO;2-6 . 

obertson, I.H., Manly, T., Andrade, J., Baddeley, B.T., Yiend, J., 1997. Oops! ”: Perfor-
mance correlates of everyday attentional failures in traumatic brain injured and nor-
mal subjects. Neuropsychologia 35, 747–758. doi: 10.1016/S0028-3932(97)00015-8 .

obinson, L.F., Atlas, L.Y., Wager, T.D., 2015. Dynamic functional connectivity using state-
based dynamic community structure: method and application to opioid analgesia.
Neuroimage 108. doi: 10.1016/j.neuroimage.2014.12.034 . 

ombouts, S.A. , Barkhof, F. , Hoogenraad, F.G. , Sprenger, M. , Valk, J. , Scheltens, P. , 1997.
Test-retest analysis with functional MR of the activated area in the human visual
cortex. Am. J. Neuroradiol. 18 (7), 1317–1322 . 

osenberg, M.D., Finn, E.S., Scheinost, D., Papademetris, X., Shen, X., Constable, R.T.,
Chun, M.M., 2016. A neuromarker of sustained attention from whole-brain functional
connectivity. Nat. Neurosci. 19 (1), 165–171. doi: 10.1038/nn.4179 . 

osenberg, M.D., Scheinost, D., Greene, A.S., Avery, E.W., Kwon, Y.H., Finn, E.S., Ra-
mani, R., Qiu, M., Todd Constable, R., Chun, M.M., 2020. Functional connectivity
predicts changes in attention observed across minutes, days, and months. Proc. Natl.
Acad. Sci. U.S.A. doi: 10.1073/pnas.1912226117 . 

ako ğlu, Ü., Pearlson, G.D., Kiehl, K.A., Wang, Y.M., Michael, A.M., Calhoun, V.D., 2010. A
method for evaluating dynamic functional network connectivity and task-modulation:
application to schizophrenia. Magnetic Resonance Materials in Physics. Biol. Med. 23,
351–366. doi: 10.1007/s10334-010-0197-8 . 

alehi, M., Greene, A.S., Karbasi, A., Shen, X., Scheinost, D., Constable, R.T., 2020. There
is no single functional atlas even for a single individual: functional parcel definitions
change with task. Neuroimage, 116366 doi: 10.1016/j.neuroimage.2019.116366 . 

arar, G., Rao, B., Liu, T., 2021. Functional connectome fingerprinting using
shallow feedforward neural networks. Proc. Natl. Acad. Sci. U.S.A. 118.
doi: 10.1073/pnas.2021852118 . 

cheinost, D., Noble, S., Horien, C., Greene, A.S., Lake, E.M., Salehi, M., Gao, S., Shen, X.,
O’Connor, D., Barron, D.S., Yip, S.W., Rosenberg, M.D., Constable, R.T., 2019. Ten
simple rules for predictive modeling of individual differences in neuroimaging. Neu-
roimage 193. doi: 10.1016/j.neuroimage.2019.02.057 . 

chwartenbeck, P., Friston, K., 2016. Computational Phenotyping in psychiatry: a worked
example. ENeuro 3 (4). doi: 10.1523/ENEURO.0049-16.2016 . 

happell, H., Caffo, B.S., Pekar, J.J., Lindquist, M.A., 2019. Improved state change esti-
mation in dynamic functional connectivity using hidden semi-Markov models. Neu-
roimage 191, 243–257. doi: 10.1016/j.neuroimage.2019.02.013 . 

hojaee, A., Li, K., Atluri, G., 2019. A machine learning framework for accurate
functional connectome fingerprinting and an application of a siamese network.
In: Connectomics in NeuroImaging. Springer International Publishing, pp. 83–94.
doi: 10.1007/978-3-030-32391-2_9 . 

iegel, J.S., Mitra, A., Laumann, T.O., Seitzman, B.A., Raichle, M., Corbetta, M., Sny-
der, A.Z., 2017. Data quality influences observed links between functional connectiv-
ity and behavior. Cereb. Cortex 27 (9), 4492–4502. doi: 10.1093/cercor/bhw253 . 

ong, H., Rosenberg, M.D., 2021. Predicting attention across time and contexts
with functional brain connectivity. Current Opinion in Behavioral Sciences, 40
doi: 10.1016/j.cobeha.2020.12.007 . 
8 
pearman, C. , 1910. Correlation calculated from faulty data. Br. J. Psychol. 3 (3), 271–295 .
ripada, C., Rutherford, S., Angstadt, M., Thompson, W.K., Luciana, M., Weigard, A.,

Hyde, L.H., Heitzeg, M., 2020. Prediction of neurocognition in youth from resting
state fMRI. Mol. Psychiatry 25 (12). doi: 10.1038/s41380-019-0481-6 . 

ui, J., Jiang, R., Bustillo, J., Calhoun, V., 2020. Neuroimaging-based individualized pre-
diction of cognition and behavior for mental disorders and health: methods and
promises. Biol. Psychiatry 88 (11), 818–828. doi: 10.1016/j.biopsych.2020.02.016 . 

axali, A., Angstadt, M., Rutherford, S., Sripada, C., 2021. Boost in test–retest reliability
in resting state fMRI with predictive modeling. Cereb. Cortex 31 (6), 2822–2833.
doi: 10.1093/cercor/bhaa390 . 

hompson, W.K., Barch, D.M., Bjork, J.M., Gonzalez, R., Nagel, B.J., Nixon, S.J., Lu-
ciana, M., 2019. The structure of cognition in 9 and 10 year-old children and associa-
tions with problem behaviors: findings from the ABCD study’s baseline neurocognitive
battery. Development. Cognit. Neurosci. 36, 100606. doi: 10.1016/j.dcn.2018.12.004 .

ddin, L.Q., 2020. Bring the noise: reconceptualizing spontaneous neural activity. Trends
Cogn. Sci. 24 (9), 734–746. doi: 10.1016/j.tics.2020.06.003 . 

aller, L., Walter, H., Kruschwitz, J.D., Reuter, L., Müller, S., Erk, S., Veer, I.M., 2017.
Evaluating the replicability, specificity, and generalizability of connectome finger-
prints. Neuroimage 158. doi: 10.1016/j.neuroimage.2017.07.016 . 

ang, D., Li, M., Wang, M., Schoeppe, F., Ren, J., Chen, H., Öngür, D., Brady, R.O.,
Baker, J.T., Liu, H., 2020. Individual-specific functional connectivity markers track
dimensional and categorical features of psychotic illness. Mol. Psychiatry 25 (9).
doi: 10.1038/s41380-018-0276-1 . 

ang, L., Li, K., Chen, X., Hu, X.P., 2019. Application of convolutional recurrent neural
network for individual recognition based on resting state fMRI data. Front. Neurosci.
13. doi: 10.3389/fnins.2019.00434 . 

aschke, L. , Kloosterman, N.A. , Obleser, J. , Garrett, D.D. , 2021. Behavior needs neural
variability. Neuron 109 . 

eis, S., Patil, K.R., Hoffstaedter, F., Nostro, A., Yeo, B.T.T., Eickhoff, S.B, 2020. Sex
classification by resting state brain connectivity. Cereb. Cortex 30 (2), 824–835.
doi: 10.1093/cercor/bhz129 . 

iecki, T.V., Poland, J., Frank, M.J., 2015. Model-based cognitive neuroscience ap-
proaches to computational psychiatry: clustering and classification. Clin. Psychol. Sci.
3 (3), 378–399. doi: 10.1177/2167702614565359 . 

ong, C.W., Olafsson, V., Tal, O., Liu, T.T., 2012. Anti-correlated networks, global signal
regression, and the effects of caffeine in resting-state functional MRI. Neuroimage 63
(1). doi: 10.1016/j.neuroimage.2012.06.035 . 

oo, C.-W. , Chang, L.J. , Lindquist, M.A. , Wager, T.D. , 2017. Building better biomarkers:
Brain models in translational neuroimaging. Nat. Neurosci. 20 (3), 365 . 

u, E.X.W., Liaw, G.J., Goh, R.Z., Chia, T.T.Y., Chee, A.M.J., Obana, T., Rosenberg, M.D.,
Yeo, B.T.T., Asplund, C.L, 2020. Overlapping attentional networks yield divergent
behavioral predictions across tasks: neuromarkers for diffuse and focused attention?
Neuroimage doi: 10.1016/j.neuroimage.2020.116535 . 

u, Y., Lindquist, M.A., 2015. Dynamic connectivity detection: an algorithm for deter-
mining functional connectivity change points in fMRI data. Front. Neurosci. 9 (JUL).
doi: 10.3389/fnins.2015.00285 . 

amashita, M., Yoshihara, Y., Hashimoto, R., Yahata, N., Ichikawa, N., Sakai, Y., Ya-
mada, T., Matsukawa, N., Okada, G., Tanaka, S.C., Kasai, K., Kato, N., Okamoto, Y.,
Seymour, B., Takahashi, H., Kawato, M., Imamizu, H., 2018. A prediction model of
working memory across health and psychiatric disease using whole-brain functional
connectivity. ELife 7, e38844. doi: 10.7554/eLife.38844 . 

hang, C., Dougherty, C.C., Baum, S.A., White, T., Michael, A.M., 2018. Functional connec-
tivity predicts gender: evidence for gender differences in resting brain connectivity.
Hum. Brain Mapp. 39 (4), 1765–1776. doi: 10.1002/hbm.23950 . 

uo, X.-N., Xu, T., Milham, M.P., 2019. Harnessing reliability for neuroscience research.
Nature Human Behav. 3 (8), 768–771. doi: 10.1038/s41562-019-0655-x . 

https://doi.org/10.1001/jamapsychiatry.2019.3671
https://doi.org/10.1016/j.neuropsychologia.2016.04.023
https://doi.org/10.1016/j.neuroimage.2018.12.006
https://doi.org/10.1002/(SICI)1097-0193(1996)4:2<113::AID-HBM3>3.0.CO;2-6
https://doi.org/10.1016/S0028-3932(97)00015-8
https://doi.org/10.1016/j.neuroimage.2014.12.034
http://refhub.elsevier.com/S1053-8119(21)00531-0/sbref0085
http://refhub.elsevier.com/S1053-8119(21)00531-0/sbref0085
http://refhub.elsevier.com/S1053-8119(21)00531-0/sbref0085
http://refhub.elsevier.com/S1053-8119(21)00531-0/sbref0085
http://refhub.elsevier.com/S1053-8119(21)00531-0/sbref0085
http://refhub.elsevier.com/S1053-8119(21)00531-0/sbref0085
http://refhub.elsevier.com/S1053-8119(21)00531-0/sbref0085
https://doi.org/10.1038/nn.4179
https://doi.org/10.1073/pnas.1912226117
https://doi.org/10.1007/s10334-010-0197-8
https://doi.org/10.1016/j.neuroimage.2019.116366
https://doi.org/10.1073/pnas.2021852118
https://doi.org/10.1016/j.neuroimage.2019.02.057
https://doi.org/10.1523/ENEURO.0049-16.2016
https://doi.org/10.1016/j.neuroimage.2019.02.013
https://doi.org/10.1007/978-3-030-32391-2_9
https://doi.org/10.1093/cercor/bhw253
https://doi.org/10.1016/j.cobeha.2020.12.007
http://refhub.elsevier.com/S1053-8119(21)00531-0/sbref0098
http://refhub.elsevier.com/S1053-8119(21)00531-0/sbref0098
https://doi.org/10.1038/s41380-019-0481-6
https://doi.org/10.1016/j.biopsych.2020.02.016
https://doi.org/10.1093/cercor/bhaa390
https://doi.org/10.1016/j.dcn.2018.12.004
https://doi.org/10.1016/j.tics.2020.06.003
https://doi.org/10.1016/j.neuroimage.2017.07.016
https://doi.org/10.1038/s41380-018-0276-1
https://doi.org/10.3389/fnins.2019.00434
http://refhub.elsevier.com/S1053-8119(21)00531-0/sbref0107
http://refhub.elsevier.com/S1053-8119(21)00531-0/sbref0107
http://refhub.elsevier.com/S1053-8119(21)00531-0/sbref0107
http://refhub.elsevier.com/S1053-8119(21)00531-0/sbref0107
http://refhub.elsevier.com/S1053-8119(21)00531-0/sbref0107
https://doi.org/10.1093/cercor/bhz129
https://doi.org/10.1177/2167702614565359
https://doi.org/10.1016/j.neuroimage.2012.06.035
http://refhub.elsevier.com/S1053-8119(21)00531-0/sbref0111
http://refhub.elsevier.com/S1053-8119(21)00531-0/sbref0111
http://refhub.elsevier.com/S1053-8119(21)00531-0/sbref0111
http://refhub.elsevier.com/S1053-8119(21)00531-0/sbref0111
http://refhub.elsevier.com/S1053-8119(21)00531-0/sbref0111
https://doi.org/10.1016/j.neuroimage.2020.116535
https://doi.org/10.3389/fnins.2015.00285
https://doi.org/10.7554/eLife.38844
https://doi.org/10.1002/hbm.23950
https://doi.org/10.1038/s41562-019-0655-x

	Beyond fingerprinting: Choosing predictive connectomes over reliable connectomes
	1 Unique is not necessarily meaningful, and meaningful is not necessarily unique
	2 We’re not perfectly stable, so why should our functional connectomes be?
	2.1 Short time-scale predictions (i.e., within fMRI runs)
	2.2 Medium time-scale predictions (i.e., hours to days to weeks)
	2.3 Long time-scale predictions (i.e., months to years)
	2.4 Predicting behavioral states with connectivity traits

	3 Choosing the right behavior(s)
	4 Conclusions
	Declaration of Competing Interest
	Credit authorship contribution statement
	Acknowledgments
	Data and code availability statement
	Funding sources
	References


