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A B S T R A C T

While inter-subject correlation (ISC) analysis is a powerful tool for naturalistic scanning data, drawing appropriate statistical inferences is difficult due to the daunting
task of accounting for the intricate relatedness in data structure as well as handling the multiple testing issue. Although the linear mixed-effects (LME) modeling
approach (Chen et al., 2017a) is capable of capturing the relatedness in the data and incorporating explanatory variables, there are a few challenging issues: 1) it is
difficult to assign accurate degrees of freedom for each testing statistic, 2) multiple testing correction is potentially over-penalizing due to model inefficiency, and 3)
thresholding necessitates arbitrary dichotomous decisions. Here we propose a Bayesian multilevel (BML) framework for ISC data analysis that integrates all regions of
interest into one model. By loosely constraining the regions through a weakly informative prior, BML dissolves multiplicity through conservatively pooling the effect of
each region toward the center and improves collective fitting and overall model performance. In addition to potentially achieving a higher inference efficiency, BML
improves spatial specificity and easily allows the investigator to adopt a philosophy of full results reporting. A dataset of naturalistic scanning is utilized to illustrate
the modeling approach with 268 parcels and to showcase the modeling capability, flexibility and advantages in results reporting. The associated program will be
available as part of the AFNI suite for general use.
1. Introduction

Naturalistic scanning provides a window into shared brain responses
at the population level under scenarios such as watching movies or
listening to speech (Hasson et al., 2004, Hasson et al., 2008a). With
minimal manipulation and dynamically evolving context, the naturalistic
paradigm is closer to real-life experiences and more engaging than
typical task-related experiments, and less vulnerable to confounds such
as head motion and physiological artifacts than resting-state acquisitions.
Under a context closer to the natural environment, neural responses are
more reproducible and reliable than traditional simple repetitive stimuli
(Hasson et al., 2010) due to the involvement of extensive cognitive
processing (such as working memory, judgment, reasoning, social
cognition, etc.). Its adoption has been steadily growing in investigating
various aspects of brain function such as music imagery (Zhang et al.,
2017), early childhood development (Moraczewski et al., 2018), per-
sonality traits (Finn et al., 2018) and mental illnesses and disorders
(Salmi et al., 2013; Guo et al., 2015).

For typical task-related designs, the focus is usually on identifying
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regions activated by an explicit task or condition. In contrast, the interest
for naturalistic scanning often hinges on the synchronization or similarity
between any pair of subjects. For example, onemajor analytical approach
is to calculate the inter-subject correlation (ISC) or the Pearson correla-
tion between the EPI time series at the same voxel or region of the two
subjects. In the end, the main issue is to summarize the results at the
population level because of the complex relatedness among the subject
pairs.

Various methods including both parametric and nonparametric ap-
proaches have been developed over the years to handle the complex
relatedness in ISC analysis (Bartels and Zeki, 2004; Hasson et al., 2008a;
Wilson et al., 2008; Abrams et al., 2013; Kauppi et al., 2014; Schm€alzle
et al., 2013, 2015; Cantlon and Li, 2013). For example, a popular but
problematic approach is to first calculate the ISC value between a voxel’s
BOLD time course of a subject and the average of that voxel’s BOLD time
course among all other subjects (Kauppi et al., 2010; Honey et al., 2012;
Schm€alzle et al., 2013, 2015), and then perform the typical group anal-
ysis (e.g., Student’s t-test) under the false assumption that all the ISC
values are independent across subjects. Recently, we examined the
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Fig. 1. Inter-subject correlation (ISC) matrix RðnÞ
k among the n subjects for the kth spatial unit and its Fisher-transformed counterpart ZðnÞ

k . Due to the symmetry, only
half of the off-diagonal elements (shaded in gray) are usually considered during ISC analysis.
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validity of those methods, and proposed more rigorous approaches (Chen
et al., 2016, 2017a), among which the most flexible one in terms of
analytical capability is linear mixed-effects (LME) modeling with a
crossed random-effects structure (Chen et al., 2017a).

1.1. Preamble

We summarize briefly the background, notations, framework, and
structure of ISC group analysis that were introduced in our previous work
(Chen et al., 2016, 2017a), since some shared concepts apply to the
model formulation introduced here. Throughout this article, italic letters
in lower case (e.g., α) stand for scalars; lowercase, boldfaced italic letters
(a) and upper (X) cases for column vectors and matrices, respectively.
With one group of n > 2 subjects S1; S2;…:; Sn andm spatial units (voxels
or regions), the total number of unique ISC values per spatial unit is N ¼
1
2 nðn � 1Þ. For the kth spatial unit (k ¼ 1;2;…;m), the ISC values frijkg
correspond to N subject pairs, and they form a symmetric (rijk ¼ rjik;i;j ¼
1;2;…;n) n� n positive semi-definite matrix RðnÞ

k with diagonals riik ¼ 1

(Fig. 1, left). Their Fisher transformed version ZðnÞ
k (Fig. 1, right) through

z ¼ arctanhðrÞ is usually adopted during analysis so that methods
assuming Gaussian distribution may be utilized, as Fisher z-values are
more likely to be Gaussian-distributed than raw Pearson correlation co-

efficients. Because RðnÞ
k and ZðnÞ

k are both symmetric in (i; j), inferences at
the population level can be made through the N elements in the lower
triangular part (i > j, shaded gray in Fig. 1).

The general interest of ISC analysis at the population level is the
statistical inference about the population effect for each spatial unit.
However, a complex issue to manage is that each ISC matrix element is
correlated with some of others (Chen et al., 2017a). Suppose that zi1 j1k
and zi2 j2k are two z-values that are associated with the ISC values of the
kth spatial unit, ri1 j1k and ri2 j2k, of two subject pairs. When any pair of two
elements in the ISC matrix, zi1 j1k and zi2 j2k, involve four separate subjects
(i.e., i1 6¼ i2 and j1 6¼ j2), we assume that the two elements are unrelated;
that is, their correlation is 0. We denote the correlation between any two
elements, zi1 j1k and zi2 j2k, that pivot around a common subject (e.g., i1 ¼ i2
or j1 ¼ j2) as ρ, with the assumption that the relatedness ρ remains the
same across all subjects.1 In other words, ρ characterizes the
inter-relatedness of zi1 j1k and zi1 j2k among the three subjects among which
the two subject pairs share a common subject. To consider the
group-wide set of ISCs, we further define zk ¼ vecðfzijk; i> jgÞ to be the
vector of length N whose elements are the column-stacking of the lower
triangular part of the matrix ZðnÞ in Fig. 1. That is, zk is the

half-vectorization of ZðnÞ
k excluding the main (or principal) diagonal: zk ¼

vech
�
ZðnÞ
k

�
\ diag

�
ZðnÞ
k

�
. The variance-covariance matrix of zk can be
1 When no prior information exists to differentiate the subjects, then the
statistically parsimonious assumption is to approximate the correlation between
any two ISC values that share one common subject as being the same, based on
the exchangeability or symmetry among the subjects. One can also note that
having the same correlation is just a corollary from the linear decomposition of
ISC values in the LME and BML models as shown in the ICC formulas (3), (8),
and (14).

2

expressed as the N � N matrix,

ΣðnÞ ¼ μ2PðnÞ; (1)

where μ2 is the variance of zijk, i > j, and PðnÞ is the correlationmatrix that

is composed of 1 (diagonals), ρ and 0. An example of Pð5Þ is shown in
Fig. 2. It has been analytically shown (Chen et al., 2016) that � 1=½2ðm �
2Þ� � ρ � 0:5 ðwhen m> 3Þ, and because of the presence of correlations

among some elements of ZðnÞ
k , it becomes crucial to capture this corre-

lation structure PðnÞ in any modeling framework.
The situation with two groups can be similarly formulated (Chen

et al., 2016, 2017a). Previously both nonparametric and parametric
methods have been proposed to handle ISC analysis at the population
level. Here we briefly summarize those methods, and lay out the back-
ground and motivations for our current work.

1.2. ISC analysis with conventional approaches

Early pioneering work with naturalistic stimuli was conducted either
within each subject when the natural stimulus was repeated several times
(Hasson et al., 2008b) or through ISC for each subject pair separately
without summarization at the group level (Hasson et al., 2004), in which
case the ISC results were typically verified through seed-based correla-
tion analysis (Hasson et al., 2004, 2008b; Schm€alzle et al., 2013). Later
on, some investigators simply ran one-sample (Bartels and Zeki, 2004;
Hasson et al., 2008a; Wilson et al., 2008; Abrams et al., 2013; Kauppi
et al., 2014), two-sample (Schm€alzle et al., 2013; Cantlon and Li, 2013)
or paired (Abrams et al., 2013; Schm€alzle et al., 2015) t-tests on
Fisher-tranformed z-values {zijk; i > j} of correlation coefficients, while it
was generally acknowledged that the N elements {zijk; i > j} were not

independent, as illustrated in the correlation structure of PðnÞ in (1),
thereby violating the independence assumption in the Student’s t-test
and leading to the inflated degrees of freedom for the t-distribution as
well as the underestimated standard error for the ISC estimate. The
approach was mainly justified based on the observation that the null
results generated by shifting each pair of time series by random steps
roughly fitted to a tðN � 1Þ-distribution curve (Wilson et al., 2008).

Previous studies have also proposed nonparametric methods. For
example, one popular approach with one group of subjects is to construct
a null distribution for the whole brain by randomizing the time series
across voxels and time points (e.g., circularly shifting each subject’s time
series by a random lag so that they were no longer aligned in time across
the subjects), as implemented into an analytical package ISC toolbox in
Matlab (Kauppi et al., 2014; https://www.nitrc.org/projects/isc
-toolbox/). Alternatively, phase randomization of EPI time series has
also been adopted to construct a sampling distribution (e.g., Lerner et al.,
2011). However, a recent study has shown that all of these methods lead
to largely inflated false positive rate (FPR) (Chen et al., 2016). One
variation of these ISC analytical approaches is called leave-one-out: first
calculate the ISC value between a voxel’s BOLD time course in one
subject and the average of that voxel’s BOLD time course in the
remaining subjects (Honey et al., 2012; Schm€alzle et al., 2013, 2015);
then, perform Student’s t-test at the group level. The step of averaging
time series across subjects, as a smoothing process, adds more complexity

https://www.nitrc.org/projects/isc-toolbox/
https://www.nitrc.org/projects/isc-toolbox/


Fig. 2. ISC with n ¼ 5 subjects. Left: pictorial representation of 5� 5 subject pairs. Right: The complex relatedness among the off-diagonal elements in ZðnÞ
k is

illustrated with the correlation matrix Pð5Þ for n ¼ 5 subjects, in which ρ represents the correlation when two elements (e.g., z32 and z53, colored in red) are associated
with a common subject (e.g., S3). Without loss of generality, the third index k in zijk for brain location is dropped here for clarity.

G. Chen et al. NeuroImage 216 (2020) 116474
besides the issue of relatedness in the ISC data. As a result, the ISC esti-
mates get substantially inflated without proper adjustment at the group
level and the FPR controllability remains problematic (Fig. 5 in Appendix
A).

A new set of nonparametric approaches, based on subject-wise
resampling at the population level, has been proposed recently (Chen
et al., 2016). In addition to satisfying exchangeability and independence
assumptions and accounting for the correlation structure in PðnÞ, it was
shown that proper FPR controllability under the conventional null hy-
pothesis significance testing (NHST) can be achieved with subject-wise
bootstrapping for ISC analysis with one group and with subject-wise
permutation testing for the ISC comparison between two groups.

However, nonparametric methods are limited in terms of modeling
flexibility. For instance, they have difficulty in incorporating explanatory
variables; in addition, they are deficient, unwieldy and unconducive to
data structure characterization and model comparisons. To counter these
limitations, a linear mixed-effects (LME) modeling approach has been
adopted (Chen et al., 2017a) with the benefit that the LME platform of-
fers wider adaptability, more powerful interpretations, and greater
quality control capability than nonparametric methods. Specifically, the
LME model with crossed random effects is applied with a data-doubling
step that further conveniently tracks the subject index in easy
implementations.
1.3. ISC analysis with univariate linear mixed-effects modeling

Our previous work (Chen et al., 2017a), as implemented in the AFNI
(Cox, 1996) program 3dISC, adopts a linear-effects model by decom-
posing an ISC effect zijk into multilevel components associated with
subjects i and j at the kth voxel (k ¼ 1; 2;…;m),

zijk ¼ ~b0k þ ~ξik þ ~ξjk þ ~εijk ; i; j ¼ 1; 2; ::; n ði> jÞ; (2)

where ~b0k is the fixed effect (an unknown constant) under LME, repre-
senting the population ISC effect at the kth voxel or region; ~ξik and ~ξjk are
additive and independent random effects attributable to subjects i and j,
respectively, that are the deviations from the population ISC effect ~b0k;
and ~εijk is the residual or error term for each subject pair (i; j). Due to the

data symmetry in ZðnÞ
k , only half of the elements excluding the diagonals

(either the lower or upper triangular part) are utilized in the model (2),
and thus the index inequality of i > j is placed for the input data. As a
special LME model, the formulation (2) can actually be conceptualized as
a two-way random-effects ANOVA with the two subject-specific terms
serving as random-effects factors. The two random effects ~ξik and ~ξjk form
a stratified or crossed structure with a factorial (or combinatorial) layout
among the levels (or indices) i and j of the two subject-specific factors.
3

One important aspect of the LME framework, which nonparametric
methods lack, is that the interrelationships among the ISC values, as
characterized in the correlation matrix PðnÞ, can be quantitatively
captured. With the assumption of independent Gaussian distributions,
~ξik;~ξjkeN ð0;~λ2kÞ and ~εijkeN ð0; ~σ2kÞ, the model (2) can be solved under
LME. A big advantage of the LME model (2) over the nonparametric
methods is the capability of characterizing as well as maintaining the
integrity of the data structure. For example, the correlation ρ, as captured
in PðnÞ of (1), between any two ISC effects that pivot around a common
subject is related to intraclass correlation (ICC) and can be expressed as
(Chen et al., 2017a),

0� ρ ¼
~λ
2
k

2~λ
2
k þ ~σ2

k

� 0:5: (3)

The LME model (2) can be easily extended to scenarios where the
investigator would like to incorporate one or more subject-specific
explanatory variables, either categorical (e.g., sex) or quantitative (e.g.,
age). For example, a model with one explanatory variable x can be
formulated as,

zijk ¼ ~b0k þ ~b1kxi þ ~b2kxj þ ~ξik þ ~ξjk þ ~εijk ; i > j; (4)

where xi and xj are the x values for subjects i and j, respectively. Their

corresponding effects ~b1k and ~b2k are presumably equal, but in the
practical implementation of subject-specific effects through two separate
components, the two fixed effects of ~b1k and ~b2k that are associated with
the explanatory variable x would also have to be estimated separately
through data duplication. The situation with more than one explanatory
variable would be similar, and this modeling strategy has been applied at
the whole-brain voxel level to a few studies (e.g., Moraczewski et al.,
2018; Finn et al., 2018).

Nevertheless, the LME framework faces a few challenges. First, input
data has to be duplicated in currently available implementations. Even
though the random effects, ~ξik and ~ξjk, are assumed to follow the same

Gaussian distribution N ð0; ~λ2Þ, they would have to be treated as two
separate components in practice through implementations (e.g, function
lmer in the R package lme4). Furthermore, due to the fact that only half of

the off-diagonal elements in ZðnÞ
k are utilized as input, ~ξik and ~ξjk are

generally not evenly arranged among all the subject pairs, leading to
unequal estimation of the two components. On the one hand, ~ξik and ~ξjk

are basically cycled through those random effects from the n subjects, ~ξ1k;
~ξ2k;…; ~ξnk, and the order of ~ξik and ~ξjk can be rearranged without any
impact on the model formulation. On the other hand, balance cannot be
achieved under all scenarios. For example, when n is odd, a balance
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between the two factors can be achieved through the following: if the
difference between i and j is odd, switch their order (i.e., zij effectively
changes to zji); otherwise, no change is made. However, when n is even,
balance cannot be reached but can be approximated with the first index
alternatively one more (or less) than the second one.2 Nevertheless, even
if balance can be established between the two sets of indices (i.e., n is
odd), simulations indicate unsatisfying FPR control for the population
effect. Because of this limitation, a data doubling strategy (i.e., i 6¼ j) was

used with both the lower (i > j) and upper (i < j) triangular parts of ZðnÞ
k

as input to achieve the balance and proper FPR control (Chen et al.,

2017a). As a result, in practice two copies of the variance ~λ
2
k are estimated

in (2) and (4) with the currently available implementation in the R
package lme4, and inferences have to be properly adjusted to compensate
for the inflated standard error (Chen et al., 2017a).

The second challenge is multiplicity. The LME model is analyzed
through a massively univariate approach in which the same model is
applied as many times as the number of voxels and with the presumption
that all the voxels or regions are isolated and unrelated. Therefore, just as
the typical neuroimaging data analysis with the massively univariate
approach has to correct for multiple testing, so does such an ISC analysis
face the issue of multiple testing, and has to be followed by an extra step:
paying the heavy price of multiplicity for the false assumption that no
common information exists among voxels or regions. One approach is to
control the overall FPR at the cluster level by leveraging the spatial extent
among the neighboring voxels (“clustering”). Currently, permutation-
based correction approaches through the integration of statistical evi-
dence and spatial extent (e.g., Smith and Nichols, 2009) would be
impractical due to the prohibitively high computation cost. On the other
hand, cluster-based methods are purely based on leveraging spatial
extent (e.g., Monte Carlo simulations, random field theory), thus it re-
mains challenging to estimate the spatial correlation due to the difficulty
in separating the pure noise from the signal. Specifically, cluster-size
thresholds are determined based on the intrinsic smoothness of the
data, which is estimated using the model residuals. However, it is not
clear how to implement this method for naturalistic scanning with
ISC-based methods, since there is no explicit (i.e., forward) model of the
task, and therefore no residuals from which to estimate smoothness.
Specific correction methods aside, the penalty is usually severe so that
smaller brain regions may fail to survive the correction, in addition to
other disadvantages of the massively univariate approach (Chen et al.,
2019a, 2019b).

There are a few other limitations with the LME approach. For
example, it remains difficult or even impossible to assign accurate de-
grees of freedom for each testing statistic under LME. In addition, the
typical correction methods for multiple testing through spatial extent
tend to dichotomize the statistical evidence and result in spatial clusters
that are not necessarily aligned with anatomical structures in the brain,
leading to interpretation ambiguities about spatial specificity. Lastly,
correction for multiplicity tends to be over-penalizing (Chen et al.,
2019a), and dichotomous decisions under NHST through thresholding
are controversial in general (McShane et al., 2017; Amrhein and
Greenland, 2017) and equally problematic in neuroimaging as well
(Chen et al., 2019a). For instance, the popular practice of only reporting
“statistically significant” results in neuroimaging not only wastes data
information, but also distorts the full results as well as perpetuates the
reproducibility crisis because of the fact that the difference between a
“significant” result and a “non-significant” one is not necessarily signif-
icant (Cox et al., 1977).
2 The phenomenon is due to the following fact: with N ¼ 1
2 nðn�1Þ pairs of

indices, there are totally 2N ¼ nðn�1Þ indices. When n is odd, each index re-
peats n� 1 times, thus they can be evenly distributed between the two sets after
rearrangement because n� 1 is even; in contrast, when n is even, balance cannot
be established because n� 1 is odd.

4

To address those limitations, here we propose a Bayesian multilevel
(BML) framework that integrates all the spatial elements (i.e., regions of
interest) into one model. Such a framework has been applied to typical
task-related FMRI experiments (Chen et al., 2019a; Xiao et al., 2019) as
well as matrix-based data analysis (Chen et al., 2019b; Yin et al., 2019).
We use a dataset of naturalistic viewing to illustrate the modeling
approach and to showcase the modeling capability, flexibility and ad-
vantages in reporting results. This paper is a sequel (i.e., Part III) to our
previous work of Part I (Chen et al., 2016) and Part II (Chen et al.,
2017a).
1.4. Structure of the work

In light of the aforementioned backdrop, we believe that the uni-
variate LME approach can be further improved, because its current
formulation ignores the common information shared across the brain.
Here we propose a more integrative and efficient approach through
Bayesian multilevel (BML) modeling that could be used to confirm,
complement or replace the LME method. As a first step, we adopt an LME
strategy by incorporating ROIs as crossed random effects relative to each
subject pair. Then we translate the LME model to a Bayesian platform,
resolving two issues: input data doubling and multiple testing. Those
ROIs can be either determined independently from the current data at
hand, or selected through various methods such as previous studies, an
anatomical/functional atlas or parcellation. The proposed BML approach
improves inference efficiency by dissolving multiple testing through a
multilevel model that more accurately accounts for data structure as well
as shared information.

The paper is structured as follows. In the next section, we first extend
the region-wise LME model (2) to another LME by pivoting the ROIs as
random effects, and then convert the extended LME to a full BML. The
BML framework does not make statistical inferences for each region in
isolation, but rather weights and borrows information based on the
precision information across the full set of regions, striking a balance
between local and global information; in a nutshell, the crucial feature
here is that the ROIs, instead of being treated as isolated and unrelated
with the univariate approaches, are associated with each other through a
Gaussian distribution under BML. As a practical exemplar, we apply the
modeling approach to an ISC dataset with 68 subjects at 268 ROIs. In the
Discussion section, we elaborate the advantages and limitations of BML
modeling for ISC data analysis.

2. Theory: ISC analysis through Bayesian multilevel modeling

Herein Roman and Greek letters, respectively, differentiate fixed and
random effects in the conventional statistics context such as ANOVA and
LME on the righthand side of a model equation. Although the terms of
“fixed” and “random” effects are non-Bayesian, we expect most readers to
be familiar with the conventional terminology. For instance, a fixed-
effects parameter under ANOVA and LME is treated as constant (e.g,
population mean), and a random-effect parameter as variable because it
differs from one entity (e.g., subject, ROI) to another. The conventional
distinction of fixed-vs. random-effects is replaced by one that separates
the modeling decision (a parameter as varying or non-varying) under the
Bayesian framework from the inference decision (e.g., prior choices or
partial pooling) (Gelman, 2005).
2.1. Bayesian modeling based on three-way random-effects ANOVA

We start with the simple LME model (2), without the complication of
explanatory variables, for ISC analysis at m ROIs instead of whole brain
voxel-wise modeling. With the Gaussian assumptions for ~ξik, ~ξjk, and ~εijk,
the m univariate LME models in (2) can be solved independently, but for
the sake of model comparisons, the m separate LMEs can be merged into
one by pooling the residual variances across the m ROIs with the ROI
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index k incorporated into the conventional LME formulation (2),

zijk ¼ bk þ ~ξik þ ~ξjk þ ~εijk; i; j ¼ 1; 2;…; n ði 6¼ jÞ; k ¼ 1; 2;…;m: (5)

The essential difference between the two approaches, (2) and (5), lies
in the assumption about the residuals. Under (2) each ROI is assumed to
have its own residual distribution ~εijkeN ð0;~σ2kÞ;k ¼ 1; 2;::;m; in contrast,
all the regions share the same residual distribution ~εijkeN ð0; ~σ2Þ under
(5). The two approaches usually render similar inferences unless the
sampling variances are dramatically different across the m ROIs. To
compare different models through leave-one-out information criteria3

(LOOIC) (Vehtari et al., 2017), we can solve the LME (5) in a Bayesian
fashion,
LME0 : ρs ¼ corr
�
zi1 jk ; zi2 jk

� ¼ cov
�
a0 þ ξi 1

þ ξj þ π0k þ εi 1 jk ; a0 þ ξi2 þ ξj þ π0k þ εi2 jk
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
var

�
bþ ξi 1

þ ξj þ π0k þ εijk
�
var

�
bþ ξi2 þ ξj þ π0k þ εijk

�q

¼ λ2 þ τ2

2λ2 þ τ2 þ σ2
; i1; i2 ¼ 1; 2; ::; n ði1 6¼ i2; i1 6¼ j; i2 6¼ jÞ; k ¼ 1; 2:::;m:

(8)
zijk
��bk;~ξik ;~ξjk eN �

bk þ~ξik þ~ξjk ; ~σ
2�; ~ξik ;~ξjk eN �

0;~λ
2�
; ~εijk eN �

0; ~σ2
�
;

i; j¼ 1; 2;…; n; k¼ 1; 2;…;m; (6)
LME0 : ρr ¼ corr
�
zijk1 ; zijk2

� ¼ cov
�
a0 þ ξi þ ξj þ πk1 þ εijk1 ; a0 þ ξi þ ξj þ πk2 þ εijk2

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
var

�
bþ ξi þ ξj þ ξk1 þ εijk1

�
var

�
bþ ξi þ ξj þ ξk2 þ εijk2

�q

¼ 2λ2

2λ2 þ τ2 þ σ2
; j1; j2 ¼ 1; 2; ::; n ði 6¼ jÞ; k1; k2 ¼ 1; 2; :::;m ðk1 6¼ k2Þ:

(9)
where bk are assigned with a noninformative prior (i.e., uniform distri-
bution) so that no information is shared among the ROIs, leading to
virtually identical inferences as the LME (5). In fact, all the three LME
models, (2), (5), or (6), share the same feature of no pooling: the infor-
mation at one ROI reveals nothing about any other ROIs. Therefore, these
three LMEmodels all face the samemultiplicity issue andmay potentially
lead to overfitting.

To improvemodel fitting and achieve higher efficiency, we first adopt
a three-way random-effects ANOVA or LME by adding ROIs as random
effects, and formulate the following platform,

LME0 : zijk ¼ a0 þ ξi þ ξj þ π0k þ εijk ; i; j ¼ 1; 2;…; n ði 6¼ jÞ; k

¼ 1; 2;…;m; (7)

where a0 represents the population ISC effect across all ROIs and all
subjects; ξi and ξj code the random effect of the ith and jth subject,

respectively, and both share the same iid Gaussian distribution N ð0;λ2Þ;
3 Conventional predictive accuracy indices such as the Akaike information
criterion (AIC) and the deviance information criterion (DIC) condition on the
point estimate. In contrast LOOIC uses the log-likelihood evaluated at the whole
posterior distribution. The availability of the standard error for LOOIC provides
another advantage over conventional criteria when comparing models (Vehtari
et al., 2017). Similar to the conventional criteria, models with lower LOOIC
values are expected to have higher predictive accuracy.

5

π0k embodies the random effect at the kth ROI, and is assumed to be iid
with N ð0; τ2Þ; and εij is the residual term that follows N ð0;σ2Þ.

One essential feature of the extended LME model (7) lies in infor-
mation sharing or partial pooling among the ROIs. Just as we typically
assume a Gaussian distribution for cross-subject variability in linear
models, so too we make a Gaussian assumption for the cross-region
variability π0k in (7), playing the role of global calibration. In contrast,
with the conventional approach of no pooling, one implicitly assumes a
uniform distribution of variabilities across voxels or regions in the brain,
and it is this assumption that leads to the multiplicity issue, as shown in
the no-pooling model (2), (5), or (6).

Under the extended LME model (7), the correlation between two
subject pairs, ði1; jÞ and ði2; jÞ (i1 6¼ i2), that share a common subject Sj can
be derived as,
Similarly, the correlation of the same subject pairs between two ROIs,
k1 and k2, can be derived as,
Due to the incorporation of ROI effects into the extended LME model
(7), a slightly different formulation (8) at the group level for the corre-
lation between two subject pairs that share a common subject exists from
the interrelationship (3) at the individual subject level. Because of this
difference, the upper bound of 0.5 in (3) does not hold for ρs in (8) and is
replaced by 1, which is reached when both cross-subject and residual
variances λ2 and σ2 are 0.

In addition to the challenge of input data redundancy discussed in the
Introduction, now we have a different hurdle in place of multiplicity.
Under this new LME framework (7), we need to refocus on the effects of
interest. The overall ISC effect a0 across all ROIs is usually not our focus;
instead, it is the ISC effect at each ROI,

b0k ¼ a0 þ π0k; k ¼ 1; 2; ::;m; (10)

that is typically of research interest. However, the LME formulation (7)
cannot offer a solution in making inferences regarding the ROI effects b0k:
to estimate b0k, the LME (7) would become over-parameterized or
overfitting.

To proceed, a shift of modeling framework is needed here. We adopt a
Bayesian approach that extends the LME model (2) from our previous
work using LME modeling for voxelwise ISC analysis (Chen et al., 2017a)
and utilizing region-based group analysis for neuroimaging data (Chen
et al., 2019a) as well as the BML approach for matrix-based analysis
(Chen et al., 2019b),
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BML0 : zijk jξi;ξj;π0keN a0þξiþξjþπ0k;σ
2 ; ξi;ξjeN 0;λ2 ; π0keN 0;τ2 ;

i; j¼1;2;…;n ði> jÞ; k¼1;2;…;m:
� � � � � �

(11)

In fact, the effect decomposition of zijk under the BML framework (11)
is basically the same as its LME counterpart (7). The different model
expression here is formulated to accentuate the paradigm shift and to
emphasize the fact that the responses zijk under BML are conditional on
the parameters and priors. One crucial aspect of this paradigm shift is
that the distinction between fixed- vs. random-effects in conventional
statistics is fundamentally dissolved under the Bayesian framework
(Chen et al., 2019c), enabling a new approach to making statistical in-
ferences. For example, the component π0k associated with the kth region
is considered a random effect under the LME model (7); thus, we would
LME1 : zijk ¼ a0 þ ξi þ ξj þ ηij þ ζik þ ζjk þ π0k þ εijk ; i; j ¼ 1; 2;…; n ði 6¼ jÞ; k ¼ 1; 2;…;m;

ξi; ξj eiidN �
0; λ2

�
; ηijeN �

0; μ2
�
; ζik ; ζjkeN �

0; ν2
�
; π0k eiidN �

0; τ2
�
; εijkeN �

0; σ2
�
;

(13)
be able to estimate the cross-region variance τ2, but little can be inferred
about the effect estimate at that region. In contrast, the BML model (11)
can directly make inferences at each region as elaborated below.

Both of the aforementioned challenges under the LME model (2) can
be resolved now under the BML framework (11). First, only half of the
off-diagonal elements (e.g., the lower triangular part) in ZðnÞ are required
as input under BML through a numerical implementation of multi-
membership modeling scheme4 (Bürkner, 2018). Second, with a prior
(e.g., noninformative uniform distribution) for a0, the posterior distri-
bution for each ROI can be obtained through the formulation (10). In
addition, the ISC effect that is attributable to each subject can be similarly
derived through the corresponding posterior distribution with

si ¼ 1
2
a0 þ ξi; i ¼ 1; 2;…; n: (12)

The factor of 1
2 in the subject-specific effect formula for si in (12) re-

flects the fact that the effect of each subject pair is evenly shared between
the two associated subjects. The subject-specific effects si can be utilized
to assess the contribution or importance of a subject relative to all other
subjects, which might provide some auxiliary information for further
association with, for example, subject-level effects such as sex, disease,
age or behavioral data.

Recently we applied the BML modeling approach to matrix-based
analyses (Chen et al., 2019b) when the input data are either functional
(e.g. inter-region correlation) or structural (e.g., white matter properties
among gray matter regions) attribute matrix from each subject. In that
case, the intricacy lies in the interrelationships among the brain region
pairs while the summarization or generalization hinges upon the sub-
jects, and three basic entity-level components are specified in the cor-
responding BML model: subject and the two regions that are associated
with each region pair. In contrast, ISC analyses deal with the in-
terrelationships among subject pairs while at the same time the sum-
marization or generalization is made across subjects; the regions under
BML are pooled together among each other through the shrinkage effect
of the Gaussian distribution (Chen et al., 2019a, 2019c). In fact, the
4 A multi-membership model accounts for the hierarchical structure
embedded in the data, where lower level effects (e.g., two subjects i and j
forming a pair) from the members of the same group are nested within a higher
level effect (e.g., ISC value zijk); this is in contrast to a general hierarchical
model, in which the lower level effects are not necessarily from the same group
(e.g., subject and region in the current context).
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theoretical aspects of BML application for ISC analyses can largely be
borrowed from our previous work for matrix-based analysis (MBA; Chen
et al., 2019b) by swapping the entities between subject and region.
Therefore, here we only present the modeling framework directly related
to the ISC context. Refer to our previous work (Chen et al., 2019a, 2019c)
for the coverage of common issues such as partial pooling, prior selec-
tion, model validation and multiplicity handling.
2.2. Further extensions of BML for ISC analyses

The LME0 model in (7) can be expanded by including two types of
random-effects interaction components - one component is the subject-
pair-specific term (i.e., the interaction between two subjects), and the
other component is the interaction between a region and a subject:
where ηij is the effect of the subject pair that is associated with subjects i
and j (i.e., the interaction effect between two subjects i and j) relative to
the overall effect a0 and the two subject effects, ξi and ξj, while ζik and ζjk
are the interaction effects between subject i and region k as well as the
interaction between subject j and region k, respectively. We note that the
subject-pair-specific effect ηij captures the unique global (i.e., brain-wide)
effect of each subject pair in addition to the overall population effect a0
and the common effects from the two involved subjects, ξi and ξj; the
same subtlety applies to the subject-region interactions ζik and ζjk. The
two ICC measures in (8) and (9) can be correspondingly updated to,

LME1 : ρs ¼
λ2 þ ν2 þ τ2

2λ2 þ μ2 þ 2ν2 þ τ2 þ σ2
; ρr ¼

2λ2 þ μ2

2λ2 þ μ2 þ 2ν2 þ τ2 þ σ2
:

(14)

We further consider two types of BML extension based on the primary
model BML0 in (11). The first type involves all potential interaction ef-
fects, in parallel with the three LME expansions from LME0. Specifically,
we incorporate the interaction effect between the two subjects of each
subject pair as well as the interaction effect between each region and
each subject:

BML1 : zijk ja0; ξi; ξj;ηij; ζik ; ζjk ;π0keN �
a0 þ ξi þ ξj þ ηij þ ζik þ ζjk þ π0k;σ2

�
;

ξi; ξj eiidN �
0;λ2

�
;ηij eiidN �

0;μ2
�
; ζik ; ζjk eiidN �

0;ν2
�
;π0k eiidN �

0; τ2
�
;

i; j¼ 1;2;…;n ði> jÞ; k ¼ 1;2;…;m;

(15)

where ηij is the subject-pair-specific effect or the interaction between
subjects i and j, while ζik is the interaction effect between subject i and
region k and ζjk, between subject j and region k. The two interaction
effects, ζik and ζjk, are considered as two members, i and j, of a multi-
membership cluster. Under the extended BML model (15), the region-
and subject-specific effects can be similarly reassembled through (10)
and (12), respectively.

Another type of model extension is to investigate the effect associated
with a subject-level (e.g., sex, disease, genotype, age, behavioral mea-
sure) explanatory variable. With one explanatory variable x, we may
have,



BML0� : zijk
��a0; a1; xi; xj; ξi; ξj; π0k ; π1keN �

a0 þ a1
�
xi þ xj

�þ ξi þ ξj þ π0k þ π1k

�
xi þ xj

�
; σ2

�
;

ξi; ξjeN �
0; λ2

�
; ðπ0k; π1kÞTeN ð0; τÞ; i; j ¼ 1; 2;…; n ði > jÞ; k ¼ 1; 2;…;m;

(16)

BML1� : zijk
��a0; a1; xi; xj; ξi; ξj; ηij; π0k; π1keN �

a0 þ a1
�
xi þ xj

�þ ξi þ ξj þ ηij þ π0k þ π1k

�
xi þ xj

�
; σ2

�
;

ξi; ξjeN �
0; λ2

�
; ηijeN �

0; μ2
�
; ðπ0k; π1kÞTeN ð0; τÞ; i; j ¼ 1; 2;…; n ði > jÞ; k ¼ 1; 2;…;m;

(17)

5 The LKJ prior is a distribution over symmetric positive-definite matrices
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where τ is a 2� 2 variance-covariance matrices. For example, a between-
subject factor with l levels (e.g., l ¼ 2 for males vs females, or patients vs
controls) can be incorporated into the BML model with l� 1 dummy-
coded variables. On the other hand within-subject or repeated-
measures factors could be naturally modeled under BML through the
hierarchical structure; however, we recommend that one directly take
each contrast (e.g., condition A vs B) as input data zijk as a practical
approach to save computational time.

Six aspects are noteworthy about the two extended models, BML0*
and BML1*. First, multi-membership modeling allows us to utilize only
half of the off-diagonals in the ISC matrix from each subject as input, as
indicated by the index relationship i > j. Second, the effect associated
with the covariate x at the population level, a1, and at the region level,
π1k, is shared by all subjects (including subject pairs), thus a simplified
notation for a derived covariate x�ij ¼ xi þ xj for each subject pair can be
adopted for easier implementation, in contrast to the LME counterpart in
which two separate effects have to be included in the model. Third, the
inclusion of any subject-level explanatory variable in the model is
intended to account for cross-subject variation in the data, thereby pre-
cluding the justification for incorporating the subject-region interaction
effects, ζij and ζjk, as shown BML1 (15). In light of this consideration, we
do not consider any extended models, in the presence of any subject-
specific covariate, that correspond to BML1 (15). Four, cases with more
than one explanatory variable can be similarly formulated as in the
BML0* and BML1*. Five, under BML0* or BML1*, the region- and
subject-specific effects can be similarly reassembled through (10) and
(12), respectively; in addition, the region-specific effect for the covariate
x can be derived through,

b1k ¼ a1 þ π1k; k ¼ 1; 2; ::;m: (18)

Lastly, model complexity under BML is usually not a concern from a
theoretical and numerical perspective except for computation cost. Even
though there have been some technical debates about the model selec-
tion between the maximum complexity (Barr et al., 2013) and a parsi-
monious one (Bates et al., 2018), a Bayesian model tends to be less likely
to have a convergence problem due to the regularization of priors.

To recapitulate our modeling strategy here about ISC analyses, we
first untangle each subject-pair-specific effect into the additive effects of
the two involved subjects through a multi-membership structure, main-
taining the relatedness as embodied in the correlation matrix PðnÞ.
Because of this untangling step, we can obtain the relative contribution, si
in (12), from each subject even though the input data (ISC values) are the
jointed contributions from subject pairs, not individual subjects. In
addition, the cross-region effects (and sometimes subject-region inter-
action effects) are included in the BMLmodels to account for cross-region
variability. The main difference between univariate LME (Chen et al.,
2017a) and BML lies in the assumption about the brain regions: the ef-
fects (e.g., π0k and π1k in (17)) are assigned with a Gaussian prior under
BML while they are assumed to have a noninformative flat prior under
the corresponding LMEmodel with the massively univariate approach. In
other words, the effect at each region is estimated independently from
other regions under univariate LME, thus there is no information shared
across regions. In contrast, the effects across regions are shared, regu-
larized and partially pooled through the Gaussian assumption under BML
7

for the effects across regions; the Gaussian assumption about cross-region
variability shares the same rationale as the cross-subject Gaussian dis-
tribution under the conventional framework (e.g., GLM). On the one
hand, partial pooling drags the region effects from both ends toward the
center, resulting in conservative effect estimates relative to univariate
LME. On the other hand, partial pooling through an integrative model
sidesteps the multiplicity issue (Chen et al., 2019c). In the same vein,
partial pooling has been previously applied to resting-state data in
improving predictability of a subject’s seed-based correlation with the
average of the other subjects in the group (Shou et al., 2014).

2.3. Implementations of BML for ISC analyses

As no analytical solution is available for BML models in general, we
draw samples from the posterior distributions via Markov chain Monte
Carlo (MCMC) simulations with the algorithms implemented in Stan, a
publicly available probabilistic programming language and a math li-
brary in Cþþ (Stan Development Team, 2019). The present imple-
mentations are executed with the R package brms that is based on Stan,
and multi-membership modeling is directly available in brms (Bürkner,
2017, 2018).

For typical BML models, the priors for cross-region and cross-subject
effects as well as their interactions have been laid out in the previous
section. We typically adopt an improper flat (noninformative uniform)
distribution for population parameters (e.g., a0 and a1 in BML0* (16) and
BML1* (17)). As for hyperpriors, we follow the general recommendations
in Stan (Stan Development Team, 2019). Specifically, for the scaling
parameters at the region and subject level, the standard deviations for the
cross-region and cross-subject effects, ξi, ξj, and πk as well as their in-
teractions, we adopt a weakly informative prior such as a Student’s
half-tð3;0; 1Þ or half-Gaussian N þð0;1Þ (restricting to the positive values
of the respective distribution). For covariance structure (e.g., τ in BML0*
(16) and BML1* (17)), the LKJ correlation prior5 is used with the shape
parameter taking the value of 1 (i.e., jointly uniform over all correlation
matrices of the respective dimension) (Gelman et al., 2017). Lastly, the
standard deviation σ for the residuals is assigned using a half-Cauchy
prior with a scale parameter depending on the standard deviation of
zijk. To summarize, besides the Bayesian framework under which
hyperpriors provide a computational convenience through numerical
regularization, the major difference between BML and its univariate LME
counterpart is the application of the Gaussian prior in the BML models
that plays the pivotal role of pooling and sharing the information among
the brain regions. It is this partial pooling that effectively takes advantage
of the effect similarities among the ROIs and achieves higher modeling
efficiency (Chen et al., 2019c).

Bayesian inferences are usually expressed in the whole posterior
distribution of each effect of interest. For practical considerations in re-
sults reporting, point estimates from these distributions such as mean and
median are typically used to show the effect centrality, while quantile-
based (e.g., 90%, 95%) intervals also provide a condensed summary of
the posterior distribution. A typical workflow to obtain the posterior
with the diagonals of 1s.
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distribution is the following. Multiple (e.g., 4) Markov chains are usually
run in parallel with each of them going through a predetermined number
(e.g., 2000) of iterations, half of which are thrown away as warm-up (or
“burn-in”) iterations while the rest are used as random draws fromwhich
posterior distributions are derived. To gauge the consistency of an

ensemble of Markov chains, the split bR statistic (Gelman et al., 2014) is
provided as a potential scale reduction factor on split chains and as a
diagnostic parameter to assist the analyst in assessing the quality of the
chains. In practice bR < 1:1 is considered acceptable. Another useful
statistic, effective sample size (ESS), measures the number of indepen-
dent draws from the posterior distribution that would be expected to
produce the same amount of information of the posterior distribution as
is calculated from the dependent draws obtained by the MCMC algo-
rithm. We suggest a minimum ESS of 200 for deriving the quantile in-
tervals for the posterior distribution.

3. BML applied to ISC data

To demonstrate the modeling capability and performances of BML,
we used a dataset from the Child Mind Institute Healthy Brain Network
(CMI-HBN), a publicly available naturalistic scanning dataset (Alexander
et al., 2017). Briefly, the dataset consisted of a community-based sample
of generally healthy children and adolescents who were scanned while
resting as well as watching two different videos. Rich phenotypic data are
also available for each individual. We focus here on the data acquired
during “The Present,” an animated short about a boy who receives a
puppy as a gift. The video has a social theme and is emotionally evoca-
tive, which led us to hypothesize that it would evince individual differ-
ences along a phenotypic spectrum related to social functioning. The data
used here come from the CMI-HBN data releases 1 and 2, which repre-
sented all of the available data in January 2018 when we began the
project.

Functional MR images were acquired with the following EPI scan
parameters: B0¼ 3 T, flip angle¼ 31�, TR¼ 800 msec, TE¼ 30 msec, 60
slices, voxel size ¼ 2.4 mm isotropic, multiband factor ¼ 6, 250 volumes
with a total scanning time of 3:20 min:sec. Other details, including pa-
rameters for anatomical scans as well as full protocols for MRI and
phenotypic data, can be found in the data descriptor (Alexander et al.,
2017) and at the following URL: http://fcon_1000.projects.nitrc.org/indi
/cmi_healthy_brain_network/

Data were preprocessed as follows. First, we used Freesurfer (Fischl,
2012) to extract subject-specific ventricle and white-matter masks using
each subject’s anatomical image. Next, we used the afni_proc.py program
in AFNI to perform the following preprocessing steps on the functional
images: despiking, head motion correction, affine alignment with anat-
omy, nonlinear alignment to a standard template, and smoothing with an
isotropic FWHM of 5 mm. Confounding effects during preprocessing
included: the first three principal components of the ventricles, local
white matter regressors generated from fast ANATICOR (Jo et al., 2010),
each subject’s 6 motion time series, their derivatives and linear poly-
nomials for slow drifts. Censoring of time points was performed when-
ever the per-time-point motion (Euclidean norm of the motion
derivatives) was 0.3 mm or more or when more than 10% of the brain
voxels were outliers. Censored time points were set to zero rather than
removed altogether (this is the conventional way to do censoring, but
especially important for inter-subject correlation analyses, to preserve
the temporal structure across participants). Because this is a pediatric
sample, we used a recently developed pediatric template brain as the
standard template (“Haskins template”; Molfese et al., in prep).

Our primary phenotypic measure of interest was the Social Respon-
siveness Scale-2, abbreviated here as SRS (Constantino and Gruber,
2012). This parent-report scale measures the presence and severity of
social impairment using items such as “seemsmuchmore fidgety in social
situations than when alone”, “takes things too literally and doesn’t get
the real meaning of a conversation”, and “avoids eye contact or has
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unusual eye contact”. There are 65 total items and each is rated on a
Likert scale from 0 to 3; higher scores indicate poorer social functioning.

We selected a subset of subjects for analysis based on the following
criteria: (1) a usable T1-weighed anatomical image (for registration
purposes), (2) the functional movie-watching run of interest (“The Pre-
sent”), with at least 85% (213/250) volumes remaining after censoring of
head motion and outliers, (3) valid demographic information including
age and sex; and (4) a valid SRS score. There were 68 subjects that met
these criteria (age range ¼ 6–17 years, mean � standard deviation ¼
10:8� 3:1 years; 30 females). SRS scores followed a right-skewed dis-
tribution with range¼ 3–140, median (mean)¼ 43.5 (53.3), and median
absolute deviation (standard deviation) ¼ 17 (33.6). In this subset, there
was negligible correlation between age and SRS (r ¼ 0:046) or between
head motion (as measured by mean frame-wise displacement) and SRS
(r ¼ � 0:064). There was a moderate negative correlation between age
and head motion (r ¼ � 0:25). Males and females did not differ much in
age (males 10:35� 2:95 years, females 11:3� 3:19 years). However, SRS
scores were moderately higher among males than females (males
58:26� 35:26, females 47:07� 30:88).

Owing to the computational intractability of conducting BML at the
voxel-wise level, we defined ROIs using a preexisting functional brain
parcellation (Shen et al., 2013), which contains 268 regions covering the
whole brain (cortex, subcortex and cerebellum). It was originally defined
in MNI space and nonlinearly warped to Haskins template space using
3dQwarp in AFNI for purposes of this study. Region-wise time courses for
each subject were calculated by averaging the signal of all the voxels in
each region at each time point. Thus, the final dataset that entered into
the ISC calculation consisted of 268 regions � 250 time-points � 68
subjects. To demonstrate that the method is robust to the choice of ROIs
and spatial resolution of the parcellation, we also conducted the same
analysis using a coarser, anatomically defined parcellation containing
107 nodes that is included as part of the Haskins template space (Molfese
et al., in prep).

The ISC data of Fisher-transformed z-values from the n ¼ 68 subjects
at m ¼ 268 ROIs were analyzed with three models: BML0* (16) and
BML1* (17), and the region-wise LME model that corresponds to BML1*.
Three explanatory variables (SRS, Age, and Sex), plus their two- and
three-way interactions, yield a total of eight effects of interest at each
ROI: overall ISC (intercept), main effects (SRS, Age, Sex), two-way in-
teractions (SRS:Age, SRS:Sex, Age:Sex), and three-way interaction
(SRS:Age:Sex). The ROI dataset was analyzed with the three models
using the R package brms. Runtime for BML was three weeks on a Linux
system of Fedora 25 with AMD Opteron 6376 at 1.4 GHz; in contrast, the
runtime of the same model with the coarser parcellation of 107 ROIs was
five days.

To compare the two BMLmodels, we assessed their point-wise out-of-
sample prediction accuracy through the LOOIC. As the LOOIC for the
BML1* model (with subject pair specific effects) relative to BML0*
(without subject pair specific effects) is � 56406:34� 474:65, the higher
predictive accuracy of BML1* is shown by its substantially lower LOOIC
than BML0*. We thereafter focus our results discussion on BML1*.

The summary of the BML1* parameter estimates is shown in Table 1.
One noteworthy aspect is that the interaction effect ηij of subject pairs
was substantial with a standard deviation μ ¼ 0:091 (with a 95% quan-
tile interval of ½0:090; 0:092�, Table 1), and such an interaction was
stronger than the additive effects of individual subjects ξi or ξj with a
standard deviation λ ¼ 0:079 (with a 95% quantile interval of ½0:076;
0:084�, Table 1). In other words, cross-subject-pairs effects ηij account for
a little more ISC variability than cross-subjects effects ξi and ξj. These
results justify our adoption of the extended BML1* model (17) that
contains the cross-subject-pairs effects ηij instead of BML0* (16) without
the effect ηij. This result is also interesting from a scientific perspective, as
it suggests that the interaction between a given subject pair is more
important for determining ISC than either of the two subjects on their
own. In other words, it is generally not the case that an individual subject

http://fcon_1000.projects.nitrc.org/indi/cmi_healthy_brain_network/
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Table 1
Summary results from the ISC dataset fitted with an extended version of BML1* in (17) and its LME counterpart LME1*. The column headers Estimate, SD, QI, and ESS
are short for effect estimate, standard deviation, quantile interval, effective sample size, respectively. LME1* shares the same effect components as BML1*, and shows
virtually the same effect estimate for the population mean b0 and the standard deviations for those effect components despite: (1) the two modeling frameworks were
solved through two different numerical schemes (REML for LME and MCMC for BML); and 2) in practice the input data for LME had to be duplicated to maintain the
balance between the two crossed random-effects components associated with each subject pair. In addition, the nearly identical parameter estimates between the two
models indicate that the use of priors under BML had negligible impact. However, the LME framework cannot provide uncertainty measures for those variances, as

indicated by the dashes in the table. bR is the split statistic of a convergence indicator for the Markov chains. All bR values under BML1* were less than 1.1, indicating that
all the four MCMC chains converged well. The effective sample sizes (ESSs) for the population- and region-level effects were large enough to warrant quantile accuracy
in summarizing the posterior distributions for region-specific effects. The correlations among the eight cross-region effects π	 k under BML are not shown in the table
because their inferences are not available under LME.

Term BML1* LME1*

Estimate SD 95% QI ESS bR Estimate SD

population-level effects
a0: Intercept 0.057 0.064 [0.045, 0.069] 104 1.04 0.057 0.063
a1: SRS �1.27e-4 8.35e-5 [-2.86e-4, 3.99e-5] 492 1.00 �1.31e-4 5.54e-5
a2: Age �1.12e-3 8.78e-4 [-2.78e-3, 5.80e-4] 377 1.00 �1.14e-3 6.06e-4
a3: Sex �3.54e-3 5.38e-3 [-1.39e-2, 7.37e-3] 349 1.01 �3.70e-3 3.76e-3
a4: Age:Sex 7.85e-4 3.23e-4 [ 1.51e-4, 1.42e-3] 317 1.01 7.54e-4 2.44e-4
a5: SRS:Sex 9.22e-6 3.07e-5 [-5.12e-5, 7.04e-5] 244 1.01 9.45e-6 2.21e-5
a6: Age:SRS 5.53e-6 5.35e-6 [-4.56e-6, 1.64e-5] 295 1.00 5.68e-6 3.81e-6
a7: Sex:Age:SRS 1.54e-6 6.30e-6 [-1.06e-5, 1.42e-5] 257 1.01 1.75e-6 4.56e-6
cross-subjects effects (levels: 68)
λ: standard deviation for ξi, ξj 0.079 0.060 [ 0.076, 0.084] 561 1.01 0.079 –

cross-subject-pairs effects (levels: 2278)
μ: SD for ηij 0.091 0.058 [ 0.090, 0.092] 395 1.01 0.091 –

cross-ROIs effects (levels: 268)
τ0: SD for Intercept π0k 0.106 0.060 [ 0.102, 0.111] 66 1.06 0.106 –

τ1: SD for SRS π1k 1.19e-4 6.14e-6 [ 1.08e-4, 1.31e-4] 563 1.01 1.23e-4 –

τ2: SD for Age π2k 1.40e-3 7.0e-5 [ 1.27e-3, 1.54e-3] 705 1.01 1.44e-3 –

τ3: SD for Sex π3k 8.0e-3 4.0e-4 [ 7.22e-3, 8.80e-3] 948 1.00 8.22e-3 –

τ4: SD for Age:Sex π4k 1.27e-3 7.54e-5 [ 1.13e-3, 1.43e-3] 1442 1.00 1.36e-3 –

τ5: SD for SRS:Sex π5k 1.05e-4 6.50e-6 [ 9.29e-5, 1.18e-4] 1468 1.00 1.14e-4 –

τ6: SD for Age:SRS π6k 2.03e-5 1.20e-6 [ 1.79e-5, 2.27e-5] 1130 1.00 2.22e-5 –

τ7: SD for Sex:Age:SRS π7k 1.48e-5 1.62e-6 [ 1.16e-5, 1.79e-5] 1274 1.00 1.96e-5 –

residuals
σ: SD for residuals 0.160 0.058 [ 0.160, 0.160] 3097 1.00 0.160 –
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tends to have high (or low) ISC values across the board (i.e., with all
potential pairs); rather, it is the specific subject pair that explains more
variability in observed ISC effects.

The results comparison between BML and LME is quite revealing.
Despite the injection of priors and hyperpriors, the two modeling
frameworks produced virtually identical estimates for the population
parameters and variances for cross-subjects, cross-subject-pairs and
cross-regions effects (Table 1), validating the adoption of the BML
approach. However, the differential treatment of model parameters
under LME and BML results in a crucial difference. Under LME we can
estimate the population effects (e.g., a0;a1;…;a7) and their uncertainties;
we can only obtain the standard errors (e.g., λ, μ, τ0s) for the random-
effects variables. In other words we cannot make inferences at the re-
gion level (e.g., effects of τ0s at each region) under LME. In contrast,
under BML we can directly assess these effects through (10) and (18)
with Bayesian simulations.

The eight effects of interest under BML1* can be shown with their
respective posterior distributions. However, with 268 ROIs, it is more
practical to summarize the results with themean, standard error and 90%
and 95% quantile intervals at each ROI. To demonstrate the results, here
we illustrate the four main effects at the 268 parcels in the brain (Fig. 3):
overall ISC, SRS, Sex, and Age. These effects can be interpreted in light of
what is known from previous naturalistic scanning studies and the de-
mographic and behavioral covariates of interest.

First, much of the brain shows a substantial overall ISC effect
(Fig. 3A). While this effect is particularly strong in primary visual and
auditory cortex, there is evidence for synchrony in higher-order regions
of association cortex as well. This is consistent with a large body of
literature using naturalistic scanning to show that by exposing subjects to
the same time-locked, complex, engaging stimulus, much of the brain
becomes synchronized across subjects (Hasson et al., 2010).
9

Atop this general synchrony, our method revealed that subject-level
covariates of interest affect the strength of ISC. In the case of Social
Responsiveness Scale (SRS), most of these effects are negative (Fig. 3B),
meaning that ISC is relatively stronger among children with low SRS
scores than those with higher SRS scores. This is the expected direction
given that lower SRS scores reflect better social function; in other words,
children with good social skills are more synchronized while viewing a
socially and emotionally evocative film as compared to children with
more autistic traits and tendencies, corroborating previous reports
(Hasson et al., 2009; Salmi et al., 2013; Byrge et al., 2015). There was
substantial evidence for an effect in this direction in anterior and pos-
terior regions along the midline as well as in temporal cortex, many of
which are known to be involved in processing social information.

In the case of Sex (Fig. 3C), we observed higher ISC among males as
compared to females in many posterior and central midline regions, as
well as some visual association areas. In contrast, we observed higher ISC
among females in the temporo-parietal junction and an inferior temporal
region partially encompassing the fusiform gyrus.

In the case of Age (Fig. 3D), we observed that ISC generally declines
with age, such that many regions (especially those in posterior midline
and visual association regions) are more synchronized in younger chil-
dren relative to older ones. One possible explanation for this is that
idiosyncratic (i.e., subject-specific) responses emerge with age, leading to
an increase in variance (and decrease in cross-subject synchrony) as
children get older. Another potential explanation of these effects might
be the choice of stimulus itself: the animated film may have been more
engaging for younger subjects than older ones, who require more so-
phisticated content to fully capture their attention; future studies should
explore the effect of stimulus on ISC values through development. The
exception was a handful of regions along the superior temporal lobe, in
which ISC increased with age. This may in part reflect language processes



Fig. 3. Four effects (overall ISC, SRS, Sex, and Age) derived from BML are shown here for the 268 parcels in sagittal view with slice numbers indicating the relative
left-right location. Warm (or cold) colors show positive (or negative) effects, with the colorbar range set to the 95% quantile of the respective effect; effect opacity is
determined by the posterior density: opaque regions outlined in black are beyond 90% quantile tail (strong evidence), with transparency increasing toward the median
(weak evidence). Note that the sex effect is shown as females minus males, meaning that in panel (C), blue regions show higher ISC in males while red regions show
higher ISC in females.
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that are developed and refined as children mature, leading to more
consistent responses among older subjects in these areas.

Beyond main effects, the BML framework also allows us to examine
interactions among the covariates. For example, as shown for the Sex:Age
interaction (Fig. 4A) and the Age effect in each sex (Fig. 4B, C), a region
in the inferior temporal lobe encompassing the fusiform gyrus seems to
increase its ISC with age among females (Fig. 4C), while among males
there is almost no evidence for such an age effect (Fig. 4B). Additionally,
in some of the regions along the superior temporal lobe and insula, the
increase in ISC with Age seems to be driven largely by females, which
may reflect differing developmental trajectories in language and affect
between the sexes.
Fig. 4. Interaction effects between sex and age derived from BML are shown here fo
right location. Warm (or cold) colors show positive (or negative) effects, with the c
determined by the posterior density: opaque regions outlined in black are beyond 90%
(weak evidence). Note that the sex effect is shown as females minus males, meaning
show higher age effect in females.
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One aspect in which ROI-based BML excels is the completeness and
transparency in results reporting: if the number of ROIs is not over-
whelming (e.g., less than 100), the summarized results for every ROI can
be completely presented in a tabular form or in full distributions of
posterior density (Chen et al., 2019a). It is worth emphasizing that
Bayesian inferences focus less on the point estimate of an effect and its
associated quantile interval, but more on the whole posterior density that
offers more detailed information about the effect uncertainty. Unlike the
whole brain analysis in which the results are typically reported as the tips
of icebergs above the water, posterior density reveals the extent of un-
certainty regardless of strength of statistical evidence. In addition, one
does not have to stick to a single harsh thresholding when deciding a
r the 268 parcels in sagittal view with slice numbers indicating the relative left-
olorbar range set to the 95% quantile of the respective effect; effect opacity is
quantile tail (strong evidence), with transparency increasing toward the median

that in panel (A), blue regions show higher age effect in males while red regions
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criterion on the ROIs for discussion; for instance, even if an ROI lies
outside of, but close to, the 95% quantile interval, it can still be reported
and discussed as long as all the details are revealed. Such flexibility and
transparency, as illustrated in Figs. 3 and 4, are difficult to navigate or
maneuver through the conventional cluster-based thresholding at the
whole-brain level.

4. Discussion

Here, we introduce an extension to the LME platform, namely
Bayesian multilevel modeling (BML), for jointly estimating inter-subject
correlation during naturalistic scanning in a series of predefined regions.
The advantages of this BML approach over previous approaches include:
dissolution of multiplicity, ability to incorporate covariates, modeling
efficiency, spatial specificity in outcome interpretation, results reporting
and visualization.

4.1. ROI-based ISC analysis through BML as an extension of LME

The advantage of multilevel modeling lies in its capability of strati-
fying the data in a hierarchical or multilevel layout so that complex de-
pendency or correlation structures can be properly accounted for
coherently within a single modeling platform. Specifically applicable in
the ISC context is a crossed or factorial layout across three crisscross
layers, two sets of subject pairs and the list of ROIs. Even though the LME
approach can quantitatively characterize the ISC effect of each subject
pair as the combined effect of the respective subjects, the decomposition
remains coarse. For instance, an LME model can accommodate neither
the uniqueness of each subject pair nor that of each subject-ROI inter-
action, due to the LME system being potentially underdetermined from
the overwhelming number of parameters. These limitations evince one
motivation for our current work with BML as an extension to our previous
work of LME modeling for ISC data analysis. That is, the idiosyncratic
effect of each subject pair as well as that of each subject-ROI interaction
can be modeled under BML since non-identifiability would be dissolved
under BML because a Bayesian model can be identified as long as the
posterior distribution is proper.

The multiple testing issue is a fundamental aspect of the massively
univariate approach widely adopted in neuroimaging, and it produces
several challenges, including artificial dichotomization of the results,
heavy penalty in statistcal power, inflated errors of incorrect sign and
incorrect magnitude, vulnerability to data manipulations, suboptimal
predictive accuracy, and lack of model validation (Chen et al., 2019c). To
address these limitations, we have adopted the use of a single, integrative
BML model that shares information across regions. Instead of fighting
multiplicity through leveraging the relatedness only among the neigh-
boring voxels, the hierarchical structure of BML implements just one
model that calibrates the information globally shared across all regions;
in addition to avoiding the need for an unrelated, corrective test, the BML
approach leads to better control of errors of incorrect sign and incorrect
magnitude; to improved modeling efficiency; to a reduction in the sus-
ceptibility to fishing expeditions; to inherent validation of each model;
and to complete results reporting.

One controversial aspect of Bayesian modeling in popular discussions
is the selection of priors, since Bayesian methods are frequently deemed
“subjective” due to this feature. It should be noted first that all statistical
models are subjective in the sense of idealizing or approximating reality –
consider analogous assumptions of model linearity or Gaussianity of re-
siduals in other modeling frameworks. The Gaussian priors adopted here
for cross-subject and cross-region effects under BML are based on two
considerations: one aspect is convention and pragmatism (many features
in practice tend to be approximately single-peaked and drop-off into
relatively thin tails), and the other is the fact that, per maximum entropy
principle, the Gaussian distribution is the most conservative choice if the
12
data have a finite variance. More importantly, the Gaussian priors only
stipulate the distribution shape, and its specific parameters (e.g., vari-
ance) are actually determined a posteriori through the model condi-
tioning on the data (Chen et al., 2019a, 2019c). In fact, the impact of our
prior choices for ISC analysis under BML is negligible as demonstrated in
Table 1. Lastly, the validity of prior choices and model specifications
(including LME and BML) can be assessed through validation tools under
the Bayesian framework – if a prior is ill-suited to the model and nega-
tively affects results, this step will alert the researcher.

Applying the general BML modeling strategy (Chen et al., 2019a) to
the ISC context, we formulate the BML data generation mechanism for
each dataset on a set of ROIs by extending the univariate LME frame-
work. Our adoption of BML, as illustrated with the demonstrative data
analysis, indicates that BML holds some promises for ROI-based ISC data
analysis. By incorporating the effects from both subject pairs and region
pairs, we can formulate a BML model that accounts for both inter-subject
and inter-region relationships, potentially extending the BML-based ISC
and matrix-based analysis (Chen et al., 2019b) further to broader situa-
tions such as inter-subject functional correlation (Simony et al., 2016)
and representational similarity analysis (Cai et al., 2019). In general, the
BML approach offers several advantages over traditional voxel-wise
approaches:

1) Two multiplicity issues with the whole brain voxel-wise ISC analysis
form another background for our work here. Just as with conven-
tional whole-brain GLM-based analyses, ISC analysis through uni-
variate LME would still face the multiplicity issue in the sense that the
same model is applied as many times as the number of voxels.
Therefore, correction for FWE would still have to be executed as an
extra step. The popular approach of leveraging between cluster size
and statistical strength has been widely adopted to control the overall
FWE, but the penalty is usually too severe as the information shared
across brain regions is not effectively considered in modeling (Chen
et al., 2019a, 2019c). Another difficulty with the whole brain analysis
is the sidedness issue in statistical testing. For a symmetric statistical
distribution, one-sided testing for one direction (e.g., positive) would
be justified if prior information is available regarding the sign of the
effect for a particular brain region. When no prior information is
available for all regions in the brain, one cannot simply perform two
separate one-sided tests in place of one two-sided test, and such a
double-sidedness practice, although popularly practiced in neuro-
imaging, warrants a Bonferroni correction because the two directions
are independent with each other. However, simultaneously testing
both tails in tandem for whole brain analysis without correction for
sidedness is widely used without clear justification, and this forms a
source of multiplicity issue that needs proper accounting.

Instead of separately correcting for multiple testing, BML in-
corporates multiple testing as part of the model by assigning a prior
Gaussian distribution among the ROIs. In doing so, multiple testing is
handled under the scaffold of the multilevel data structure by
conservatively shrinking the original effects toward the center with
the reasonable assumption that the effects among brain regions are
usually similar and largely center within a finite range. In other
words, instead of leveraging cluster size or statistical strength, BML
leverages the commonality among ROIs through effective regulari-
zation, simultaneously achieving meaningful spatial specificity and
detection efficiency. Even though the conventional correction for
FWE in neuroimaging is considered desirable in controlling over-
blown FWE, it is not necessarily efficient nor practically meaningful
to fight the strawman of absolutely zero effect anywhere in the brain.
More importantly, arbitrary thresholding, regardless of the extent of
rigor, artificially dichotomizes the data, resulting in an undesirable
situation: reporting only the results that pass thresholding unavoid-
ably ignores the ones that may not differ much from the former.



6 A popular cluster reporting method among the neuroimaging packages is to
simply present the investigator only with the icebergs above the water, the
surviving clusters, reinforcing the illusionary either-or dichotomy under NHST.
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In addition, BML offers a flexible approach to dealing with double
sidedness at the ROI level. When prior information about the direc-
tionality of an effect is available on some, but not all, regions (e.g.,
from previous studies), with the massively univariate approach for
the whole brain one may face the issue of performing two one-tailed
t-tests at the same time in a blindfold fashion. In contrast, the
ROI-based BML approach disentangles the complexity since the pos-
terior inference for each ROI can be made separately.

2) No duplication for input data is needed under BML. To keep a
balanced data structure and to maintain proper overall FPR control-
lability under the current LME implementations, we have to duplicate
the input data with both the lower and upper triangular components
of the ISC correlation matrix due to the fact those two sets of subject
effects are parameterized as two separate parameter sets. In contrast,
input data duplication under BML is unnecessary thanks to an
implementation technique similar to the multi-membership modeling
strategy available in the R package brms (Bürkner, 2017), halving the
input data and the number of parameters for subject effects under
BML, as opposed to LME.

3) BML may achieve higher spatial specificity through efficient
modeling. A statistically identified cluster through the conventional
whole brain analysis is not necessarily anatomically or functionally
meaningful. In other words, a statistically identified cluster is not
always aligned well with a brain region for diverse reasons such as
“bleeding” effect due to contiguity among regions, and suboptimal
alignment to the template space, as well as spatial blurring. In fact,
investigators usually tabulate the location of the “peak” (i.e.,
maximum effect magnitude or statistic value) voxel for a cluster even
though the cluster may only partially cover an anatomical region or
overlap multiple brain regions or subregions. In contrast, under BML,
the regions are utilized as prior spatial information, and the statistical
inference for each region under BML is assessed by its effect strength
relative to its peers, not by its spatial extent, providing an alternative
to the conventional whole brain analysis with more accurate spatial
specificity.

4) BML may potentially alleviate the arbitrariness of data space selec-
tion. Under the conventional framework, if the data space changes
because of an evolving research focus (e.g., from whole brain to gray
matter, a large network or a list of regions), the impact due to the
different domain for multiple testing correction can be substantial,
leading to the vulnerability to the issue of “the garden of forking
paths”, “data snooping” or p-hacking. In contrast, the region-based
ISC analysis under the Bayesian framework is more adaptive to the
situation of region selection due to the adaptivity of the Gaussian
priors. In other words, the amount of regularization is derived from
the data through partial pooling that embodies the similarity
assumption of effects among the brain regions. Such adaptivity of the
Gaussian prior is supported by our ongoing analyses of a task-related
dataset but with different numbers of regions of interest (e.g., 30, 300,
and 1000), resulting in consistent inferences.

5) Full results reporting is possible for all ROIs under BML. The con-
ventional NHST focuses on the point estimate of an effect supported
with statistical evidence in the form of a p-value. In the same vein,
typically the results from the whole brain analysis are displayed with
sharp-thresholded maps or tables that only show the surviving clus-
ters with peak statistic- or p-values. In contrast, as the focus under the
Bayesian framework is on the posterior distribution, not the point
estimate, of an effect, the totality of BML results can be summarized as
shown in Figs. 3 and 4. Such totality is more advantageous than the
typical practice in which the effect estimates are usually not reported
in the whole brain analysis (Chen et al., 2017b). In other words, BML
modeling at the ROI level directly allows the investigator to present
the effect estimate. More importantly, BML substantiates the report-
ing advantage not only because of modeling at the ROI level, but also
due to the fact that the uncertainty associated with each effect esti-
mate can be demonstrated in a much richer fashion.
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To some extent, the ROI-based BML approach can alleviate the
arbitrariness of thresholding using the current FPR correction prac-
tices. Even though BML allows the investigator to present the whole
results for all regions, for example, in a table format, we do recognize
that the investigator may prefer to focus the discussion on some re-
gions with strong statistical evidence. Nevertheless, the decision can
hinge on the statistical evidence from the current data, combined
with prior information from previous studies. For example, one may
still choose the 95% quantile interval as an equivalent benchmark to
the conventional p-value of 0.05 when reporting the BML results.
However, those effects with, say, 90% quantile intervals can still be
utilized with a careful and transparent description, which can be used
as a reference for future studies to validate or refute; or, such effects
can be reported if they have been shown in previous studies. More-
over, rather than a cherry-picking approach on reporting and dis-
cussing statistically significant clusters in whole brain analysis,6 we
recommend a principled approach in results reporting in which the
ROI-based results be reported in totality with a summary as shown in
Figs. 3 and 4 and be discussed through transparency and soft, instead
of sharp, thresholding. We believe that such a highlighting and soft
thresholding strategy is more healthy and wastes less information for
a study that goes through a strenuous pipeline of experimental design,
data collection, and analysis.

5) Inferences at the level of individual subjects are possible. As BML
partitions the effect at the subject-pair level as the summation of
multiple additive effects including the two involved subjects, the ef-
fect from each individual subject can be teased apart, revealing the
contribution at the subject level as shown in formula (12), even
though the input data for ISC analysis are at subject-pair level. Such
effects at the subject level could be beneficial as auxiliary information
in exploring, for example, outlying subjects or association with
behavior data.

One crucial aspect of Bayesian modeling is model validation. In fact, a
full Bayesian workflow includes several steps, such as prior predictive
checks, model sensitivity analysis and posterior predictive checks (Gel-
man et al., 2014). Here we have demonstrated only the leave-one-out
information criterion for model comparison and cross validation be-
tween BML and its LME counterpart in Table 1, but the other steps can
play important roles in properly capturing the data structure and in
guaranteeing robust inferences. For example, data can be simulated from
prior distributions and fitted with the proposed model, and numerical
behaviors of Markov chains for the posterior distributions can be checked
(Chen et al., 2019a). Furthermore, simulation-based calibration can be
utilized to assess whether estimated posterior parameters follow the
same distribution as the true model parameters adopted to generate
simulated data. Building, comparing, tuning and improving models is a
daunting task with a sophisticated BML model due to the high compu-
tational cost. In the presence of the huge number of parameters involved
in the BML model for the current experiment dataset, it is impractical to
fully and systematically explore the full spectrum of the whole Bayesian
workflow here, but we plan to continue these additional validation steps
in our future work.

4.2. Limitations of ROI-based BML and future directions

The performance of BML requires more testing to assess and validate
its consistency and replicability under different scenarios and when
applied to multiple datasets. For example, would the inference be
consistent when the number of regions varies in real data analysis? The
linearity of effect decomposition under BML is a strong assumption, and,
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as in all linear models, it is an approximation. In addition, other limita-
tions of the ROI-based BML exist as follows.

1) ROI data extraction involves averaging among voxels within the re-
gion. As a spatial smoothing or low-pass filtering process, averaging
condenses, reduces or dilutes the information among the voxels
within the region to one number, and loses any finer spatial structure
within the ROI. In addition, the variability of extracted values across
subjects and across ROIs could be different from the variability at the
voxel level. The issue might be alleviated through approaches such as
the principal component of each region, hyperalignment algorithm
(Haxby et al., 2011) or shared response modeling (Chen et al., 2015).

2) ROI-based analysis is conditional on the availability and quality of the
ROI definition. One challenge facing ROI definition is the inconsis-
tency in the literature due to the inaccuracies across different coor-
dinate/template systems and publication bias. In addition, some
extent of arbitrariness is embedded in ROI definition; for example, a
uniform adoption of a fixed radius may not work well due to the
heterogeneity of brain region sizes. When not all regions or sub-
regions currently can be accurately defined, or when no prior infor-
mation is available to choose a region in the first place, the ROI-based
approach may miss any potential regions if they are not included in
the model.

3) The exchangeability requirement of BML assumes that no differential
information is available across the ROIs in the model. Under some
circumstances ROIs can be expected to share differential information
among some subgroups, especially when they are anatomically
contiguous or more functionally related than the other ROIs (e.g.,
homologous regions in opposite hemisphere); more exploration is
needed to incorporate such a hierarchical structure. On the other
hand, exchangeability, as an epistemological – neither physical nor
ontological – assumption, provides a convenient approximation of a
prior distribution by a mixture iid distributions (de Finetti’s theorem)
(Gelman et al., 2014). Such an approximation, similar to suboptimal
assumptions such as linearity and Gaussianity in most models, does
leave room for further improvement. Ignoring such hierarchical
structure in the data, if substantially present, may lead to under-
estimated variability and inflated inferences. Nevertheless, Bayesian
inferences build on posterior distributions without invoking the de-
grees of freedom, and the violation of exchangeability usually leads to
negligible effect on the final shape of posterior distributions except
for the precise sequence in which the posterior draws occur (McEl-
reath, 2016). Furthermore, the performance of BML can be effectively
examined against the conventional approaches through posterior
predictive checks and cross validations (Chen et al., 2019a). In the
future we will continue to explore the possibility of accounting for
such a hierarchical correlation structure.

4) BML computation can be time-consuming or even prohibitive in
cases. For example, the number of parameters grows quadratically
with the number of subjects. In addition, the number of regions and
explanatory variables increases linearly the number of parameters.
Due to model complexity and limited experience, no simple depen-
dence of computational cost has been established on the number of
subjects or regions. Currently parallelization can only be performed
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across chains; however, the improvement in numerical schemes are
under fast development, and the use of graphical processing units and
within-chain parallelization may be implemented in the near future
(Stan Development Team, 2019), substantially improving the us-
ability of BML for ISC analysis.

5) The BML performance requires more validation and assessment for its
consistency and replicability from various perspectives and when
applied to different data. For example, partial pooling under BMLmay
not always be effective. On one hand, partial pooling acts as a
compromise between the two forces: one force drags all regions to-
ward the center, and the other toward each individual region. Pooling
through a weighted average of these two extremes is particularly
effective when the across-region variance is at roughly the same order
of magnitude as the within-region variance (sum of cross-subject
variance and residual variance). However, when one variance is
substantially overwhelmed by the other (e.g., by an order of magni-
tude), then there is no compromising and information sharing is
essentially reduced to one of the two degenerative cases: either “no
pooling” (relatively huge within-region variability) or “complete
pooling” (relatively negligible within-region variability). Under these
scenarios, partial pooling is ineffective, and larger sample sizes would
be most likely required.

5. Conclusion

Inter-subject correlation (ISC) captures the extent of the simultaneous
synchronization at a brain region among a group of subjects who expe-
rience the same naturalistic setting such as movie watching or music
listening. Extending our previous work of linear mixed-effects (LME)
modeling, we adopt here an ROI-based Bayesian multilevel (BML)
approach to decomposing each ISC effect into multiple additive effects. In
addition to dissolving the multiplicity issue and achieving higher infer-
ence efficiency, the BML approach allows for full results reporting that
pales in comparison with the prevalent adoption of dichotomous decision
making under NHST, increasing transparency and reproducibility.
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Fig. 5. Comparisons of the leave-one-out (LOO) approach with other nonparametric methods explored in Chen et al. (2016). The subfigures shown here are copied
from Figs. 2 and 3 in Chen et al. (2016) with the LOO results added. (A) The simulations were performed in the same fashion with one group of 10, 20, 40 and 80
subjects as in our previous work with nonparametric methods (Chen et al., 2016). The LOO approach (dark green) showed unsatisfactory controllability on false
positive rate at the nominal level of 0.05 (horizontal gray line) compared to subject-wise bootstrapping (dot-dashed blue line). (B) When applied to the same
experiment dataset in Chen et al. (2016), poor false positive control was also evident for the LOO approach; in addition, the ISC estimates based on LOO were
substantially inflated. The acronyms are inherited from Chen et al. (2016): SW (subject-wise), EW (element-wise), EWB (element-wise bootstrapping), SWB (sub-
ject-wise bootstrapping), EWP (element-wise permutations) and SWP (subject-wise permutations).
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