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The default network dominates neural
responses to evolving movie stories

Enning Yang 1,2, Filip Milisav 1, Jakub Kopal 1,2, Avram J. Holmes 3,
Georgios D. Mitsis4, Bratislav Misic 1, Emily S. Finn 5 & Danilo Bzdok 1,2

Neuroscientific studies exploring real-world dynamic perception often over-
look the influence of continuous changes in narrative content. In our research,
we utilize machine learning tools for natural language processing to examine
the relationship between movie narratives and neural responses. By analyzing
over 50,000 brain images of participants watching Forrest Gump from the
studyforrest dataset, wefinddistinct brain states that capture unique semantic
aspects of the unfolding story. The default network, associated with semantic
information integration, is the most engaged during movie watching. Fur-
thermore, we identify two mechanisms that underlie how the default network
liaises with the amygdala and hippocampus. Our findings demonstrate effec-
tive approaches to understanding neural processes in everyday situations and
their relation to conscious awareness.

The imaging neuroscience community has recently embarked on a
new wave of experiments—naturalistic neuroscience. This “third wave
paradigm”1 endorses videos, spoken narratives, and other real-life
sensory presentations, aiming for fuller understanding of the brain
mechanisms that realize the processing of dynamic, ecologically valid
stimuli2. Such naturalistic studies promise to better emulate the
complex perception and behavior of everyday life. The more realistic
experimental outlets unlocked insights into some classes of neuro-
cognitive processes that may take us closer to real-world cognition3.

In fact, widely adopted content-free resting state experiments
have a critical drawback: self-generated random thoughts lie outsideof
the reach of experimental control. Instead, in the naturalistic settings,
the movie-induced brain dynamics are synchronized across different
subjects by virtue of watching the same full movie i.e., time-locked
stimulus4. Newmethods need to be deployed to take full advantage of
time-locked neural responses across subjects5, thus improving the
predictability of trait-like phenotypes6,7. In sum, studies benefitting
from naturalistic stimuli have paved the way for unprecedented find-
ings in various areas, such as the temporal characteristics across the
neural processing hierarchy8.

However, to be able to zoom in on the contextual richness that
evokes brain dynamics in human experience, we need to take on new
methodological challenges due to the amount, complexity, and con-
tinuous quality of naturalistic stimulation2. Many such previous studies
aimed to develop new approaches to extract different aspects of
stimulus-driven brain dynamics. In these studies, traditional cognitive
concepts or human-crafted naturalistic featureswere commonly used to
reveal and explain findings on brain dynamics9,10. An emerging line of
research started to adopt machine learning-based naturalistic stimulus
representations to explain the neural activity signals11,12. Such efforts
have typically focused on low-level visual representations or mid-level
categorical processing tasks. Hence, the analysis of high-level contextual
information and heteromodal information integration processes sub-
served by the higher association cortex remains under-investigated.
Natural language processing (NLP) tools respond especially well to this
need to distill high-level semantic features of the environment. As a core
motivation for the present endeavor, we argue that NLP is a promising
lever to explore higher-order functions in different networks along the
brain’s processing hierarchy, especially its deeper associative brain
network layers, far removed from sensory input processing.
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NLP has become an increasingly valuable tool for studying the
human language systems implemented in the human brain. Several
studies have used advanced NLP techniques to build associationmaps
between language features and brain activity. The diverse set of
experimental tasks include predicting movie scenes13, detecting
semantic selectivity14, and decoding semantic content15,16. In particular,
the usage of NLP techniques to access semantic features of human
language has been shown to be successfullymappable to brain activity
before17,18. The advent of large language models, such as enabled by
transformer architectures, has pointed to exciting features of the
human brain, such as the possibility of shared computational design
principles in form of next-word prediction mechanisms19–21. Addition-
ally, large open neuroscience datasets have emerged as a promising
way to accelerate research in this area22. These developments are likely
to continue to advance new insights into the relationship between
language processing and neural processing systems.

Over the last few years, themachine learning community has seen
progress in several areas as NLP technologies have rapidly matured23.
Some state-of-the-art NLP models contain billions of parameters,
whichmayoutnumber the >80million neurons of the humanbrain24,25.
Text generated from large NLP model architectures has been remi-
niscent of some aspects of human conscious awareness26–28. By
extracting and integrating the semantic structure drawn directly from
human language itself, NLP-based analyses have started to extend
interpretations of experimentally induced changes in conscious
awareness and their corresponding brain representations29. Such
usage of natural human language analyses for scientific discovery
encourages to rethink the reliability and measurability of some tradi-
tional cognitive concepts: Is the brain organized according to the
psychological definitions that neuroscientists have inherited from the
behavioral sciences?30. It is hard to scrutinize, to what extent, long-
standing cognitive notions, like “valence”, “fear”, or “arousal”, bear
clear-cut instantiations in human brain function. As an attractive
alternative strategy, our study will embrace the stature of human lan-
guage itself, which we humans use effectively to describe and under-
stand our daily reality, to contextualize complex neural activity
responses observed during movie engagement.

Narrow concepts and basic emotions, such as fear,may not afford
a sufficiently richdescription ofmany sophisticated neural processes—
especially those animated by the higher association cortex that are
particularly well developed in humans31. More nuanced semantic
descriptions are better posed to help decipher the neural computa-
tions of the deepest association layers of the human network hier-
archy. Many of today’s experimental paradigms used for studying
higher-order information processing tend to hinge on vague
definitions32–34. NLP here now offers the potential of disclosing com-
plex aspects of semantic structure in the movie material35. Therefore,
the strategy of porting tools from NLP to imaging neuroscience may
allow tomore cleanly disentangle semantically denotable higher-order
brain functions in humans against thebrain’s housekeeping signals and
background noise. In sum, the high-level brain processes, underlying
real-world cognition, may not be adequately describable by low-level
concepts, like fear. Hence, harnessing the power of emerging NLP
technologies can build a bridge that begins to brain dynamics and the
granular semantics of human natural language.

For these reasons, we brought to bear NLP techniques to mine
brain-imaging experiments administering a 2-h movie. We could thus
peel apart how brain network layers differentially tie into dynamic
context information in response to the movie narrative. Taking
advantage of the studyforrest resource’s >50,000 timepoints, we
could train separate hidden Markov models for each of 15 subjects to
chart limbic-neocortical region-network combinations. Using the
seven networks from the Schaefer-Yeo atlas36, we tried to cover the
brain networks spanning from lower,most sensory, unimodal layers to
the highest, most sensory-independent layers of neural processing. In

this way, we directly compared canonical brain network layers in
tracking salient movie events. We also explicitly linked the seven
neocortical networks with two key partners of the medial-temporal
sub-neocortical system—the amygdala and the hippocampus, given
recent updates in anatomical understanding37. Taken together, our
collection of derived brain states at subregion resolution offers
detailed views on subject-level differences, limbic-neocortical cou-
pling regimes, and specific roles for different brain network layers
during naturalistic stimulation. We integrate external information
fromcurated humanannotations and derived elements of the evolving
movie narrative. In so doing, our discovered brain dynamic signatures
are interpreted by traditional concepts and our (timepoint-level)
semantic underpinnings.

To foreshadow our key contributions, we have developed an
analytical framework enabling hidden Markov models (HMMs) at the
single-subject level to analyze the dynamic functional connectivity in
the brain during naturalisticmoviewatching. This approach allowedus
to understand the idiosyncrasies of each individual’s responses to the
movie material and provides a comprehensive and faithful picture of
the individual’s functional coupling dynamics evoked by naturalistic
stimulation. Furthermore, we have used unprecedented anatomical
granularity at the subregion-level to chart movie responses, mapping
out neural responses in 18 amygdala subregions, and in 38 hippo-
campal subregions. The proposed approach allowed us to build on
evidence frombiological pathways that have been previously reported
in invasive animal experiments. Additionally, we have compared the
value of human-made semantic labels and data-driven semantic labels
in providing insight into neural responses during movie watching,
showing the relevance of data-driven labels to specific movie events
and highlighting the broader role of the default network (DN) in
pooling and binding brain-wide information.

Results
Inferring brain state probabilities of 14 different
limbic–neocortical combinations
Leveraging the wealth of >50,000 brain scanning timepoints, 3543 for
each of the 15 subjects, we could train HMM solutions on a single-
subject basis. We aimed to identify cliques of functional coupling
partners between agivenneocortical network andeither hippocampus
(HC) or amygdala (AM) subregions. In this way, we jointly analyzed
data on neural activity responses from both neocortical and limbic
subregions. First, we extracted subregion-wise averages of voxel brain
activity responses to naturalistic movie stimulation based on the
Schaefer-Yeo anatomical reference atlas at 100 subregion resolution38.
We then performed a microanatomical segmentation (using Free-
Surfer) on the structural brain anatomy (T1 brain scans) to delineate
the 3D shapes of 38 HC and 18 AM subregions specific to each subject
(two corresponding ones for each hemisphere, such as left and right
CA1). Based on segmentation of the HC and AM at subregion granu-
larity,weextractedneural activity time courses to supplement thoseof
the neocortical networks. Henceforth, we refer to the amygdala and
hippocampus as limbic, non-neocortical or subcortical structures, as
they are not included in our cortical Schaefer-Yeo atlas. However, it
should be noted that the hippocampus is part of the allocortex and
therefore sometimes considered as subcortical and sometimes as a
cortical region.

We estimated several HMM solutions in parallel, each fitting one
specific combination of one neocortical network and one limbic
region. As such, in each of the 15 subjects, we trained 14 HMMs (7
neocortical networks x 2 limbic subregion sets) from both limbic and
neocortical neural activity, that is, 14 “region-network combinations”
in total. Each dynamic model estimated subject-specific brain states
along with their state probabilities along the movie (continuous state
presence probabilities). Estimating four brain states per HMM was
found to be a useful choice based on four distinct criteria of optimality
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(Supplementary Fig. 1). Additionally,wedemonstrate thepreferenceof
seven cortical networks to the correlation criteria separately to elim-
inate potential biases (Supplementary Fig. 12). Therefore, our analy-
tical framework was carefully tailored to capture rich information in
the full-length 2-hmovie. Together, thedynamic structured time-series
modeling approach directly quantified subject- and subregion-level
properties.

As an illustration of discernable results from a representative
subject, we quantify the state presence of each of 14 region-network
combinations for subject 1 (Fig. 1B). We found that the duration of
continuous, uninterrupted occupation in each dynamic brain state
(i.e., dwell time) showed distributions that were specific to each of the
14 region-network combinations. This model-derived quantity
exposed the neural processing timescales of the event structures
detected by a dynamic HMM. We thus tested how timescales of
dynamic state events varied across different layers of the unimodal-to-
associative neural processing hierarchy (Mesulam39). The lower-level
canonical brain systems, such as the visual network (VIS), tended to be
subject to faster locking in and out of a dynamic brain state40, since
they showed shorter dwell times and lower variance (e.g., VIS&HC:
μ = 10.07 s, σ = 9.30 s). Conversely, in the higher-level processing net-
works, brain states showed dwell times of longer duration and larger
variance (e.g., DN&HC: μ = 25.58 s, σ = 33.20 s). These observations
suggested a divergence of naturalistic movie processing dynamics
happening between lower-level networks versus higher-order
networks.

We further examined the uncertainty of online activity of the
dynamic brain states across the 2-h movie. To this end, we examined

the variance of local average dwell times in the different segments of
the movie to test if different parts of movie differ in brain processing
timescales. The results on state volatility showed that dwell times
pertaining to the DN (DN&HC: σ = 6.30 s; DN&AM: σ = 5.23 s) were
much more volatile than in the other region-network combinations
(0.74 s < σ < 2.13 s). These processing timescales from DN-tuned
models were also more variable in subjects, while those of lower-
level networks were more stable. These findings suggest that the
unfolding movie narrative may be preferentially reflected in the state
switching characteristics of the higher-order brain networks. This
observation could be taken to suggest existing links between con-
textual movie information and particular brain states switching online
and offline. Yet, the principled exploration of this potential link
required the semantic dissection of the flow of the movie narrative.

Semantic contexts were linked with brain states
We, therefore, investigated whether the movie-induced changes in
functional coupling dynamics were associated with changes in the
lattice of semantic contexts that together compose the plot (in con-
tinuous degrees). To examine the flow in contextual information, we
carried out a quantitative dissection into 200 semantic context defi-
nitions that capture word usage trends with their shifts from moment
to moment (Fig. 1d). The 200 discovered semantic contexts were
extracted from the original subtitles of the movie by latent semantic
analysis (LSA; Fig.1c, d; cf. methods). The ensuing charting of semantic
embedding trajectories yielded compact low-dimensional repre-
sentations that track events along the continuous movie, which we
integrated with the timestamps in the movie when a given semantic

Fig. 1 | Quantitative analysis workflow. a As part of the brain-imaging data pro-
cessing pipeline, the Schaefer-Yeo reference atlas served to extract neural
responses during movie watching from 100 anatomical subregions from seven
established functional brain networks, spanning from lower sensory to highly
associative circuits. We supplemented the neocortical functional networks with
neural activity from hippocampal and amygdalar subregion sets (summarized here
as’limbic regions’) using rigorous microanatomical segmentation. Subsequently,
the time series of 14 limbic-neocortical combinations provided the basis for esti-
mating 14 separate hidden Markov models (HMM), for each subject. b The
extracted state presence (color coding is specific to each region-network combi-
nation [row])delineates the temporal dynamics of functional brain coupling cliques
both vertically (across region-network combinations) and horizontally (across

narrative shifts). c As part of the text data processing pipeline, movie subtitles and
narrator descriptions served as raw text information. Bymeans of natural language
processing (NLP) techniques, the text was re-expressed as word occurrences (i.e.,
vocabulary word occurrence matrix). d The per-timepoint expressions of
200 semantic contexts were obtained from latent semantic analysis (LSA; cf.
methods). Each color represents a unique semantic context, whose presence was
inferred as proxy trajectories for underlying movie events. Short names for
Schaefer-Yeo networks: VIS Visual network, SMN somatomotor network, DAN
dorsal attention network, DN default network, LIM limbic network, VAN salience
and ventral attention network, FPC Frontoparietal network. Source data are pro-
vided as a Source Data file.
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context occurred. As a convenient synopsis for visualization, we used
word clouds to summarize the most prominent word groups, as
identified by our NLP framework. Many of the extracted semantic
contexts showed expression peaks predominantly associated with a
unique timestamp and therefore singled out a specific event. Yet, a
variety of semantic contexts emerged to flag a theme that reoccurred
in different parts of themovie, representing related events throughout
the narrative. As one of many examples, the “Lieutenant Dan” com-
ponent (Fig. 2a) indexed relevant events about the supporting char-
acter Lieutenant Dan across the 2-h movie. This semantic dimension
showed high expressions with recurring peaks throughout the story
(Fig. 2a) every time the character appeared in the movie. In so doing,
we quantitatively dissected the semantic structure of the movie into
small, abstract, and context-dependent expressions such thatwe could
probe alignment of these features with the dynamic brain states.

To then interrogate associations of elements of the narrative with
the brain states (semantics-brain links), we computed Pearson’s cor-
relations between the trajectoryof state presenceprobabilities and the
trajectoryof semantic context expressions across thewholemovie.We
wished to describe how each unique brain state matches with the
collection of semantic contexts detected in the movie. We thus iden-
tified each brain state’s top 10 strongest semantics-brain links across
200 semantic contexts given a specific subject’s HMM solutions of
certain region-network combinations. We considered the top 10 links’
average Pearson’s correlation coefficients as an index for a state’s
general strength of linkage with the evolution of the movie plot. As an
example, we illustrate subject 1’s HMM results based on the DN&AM
model (Fig. 2b). The obtained coefficients r of association strengths
were 0.20, 0.17, 0.12, and 0.18 (as measured by the average Pearson’s
correlation coefficient for the top 10 contexts) for state 1 to state 4,

Fig. 2 | Shifts in semantic contexts of the movie are tied to shifts in brain state
dynamics.We used NLP tools from natural language processing to decompose the
movie subtitle corpus into 200 unique semantic contexts across thousands of
vocabulary entries. The timepoint-wise quantification of semantic context occur-
rences offered the basis to linkmeaning with brain states. The contexts’ associated
wordclouds help interpret the semantics-brain links. aMiddle left: The wordcloud
for exemplary semantic context No. 103. The captured movie events centered
around the character “Lieutenant Dan”. Rest: This representative semantic context
described recurring events for the same character (Lieutenant Dan), the associated

movie clips (top row)were linkedwith theprojected embeddingpeaks by an arrow,
on which the text illustrated the brief movie events. b Subject hidden Markov
model: each dynamic brain state (of subject 1’s DN&AMmodel) was correlated with
certain semantic contexts (colored according to brain state; see Supplementary
Fig. 1 for choice of four states). The collectionof remaining 160 contexts is shown in
gray. As such, we performed a semantic dissection (via latent semantic analysis) of
recurring movie themes into 200 unique semantic contexts, which related to
complementary contextual information and distinct brain states. Source data are
provided as a Source Data file.
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respectively. Further, the sets of top semantics-brain links across brain
states were shown to be mutually unrelated to each other. This
observation supported that different brain states are tracking different
facets of the narrative during the continuousmovie stimulation. Taken
together, our analyses delineated the strongest correspondences
between the network functional coupling states and extracted movie
story dimensions.

To complement the portfolio of automatically delineated
semantic contexts and their corresponding brain manifestations, we
analogously calculated Pearson’s correlation coefficients to index
possible associations between brain state expressions (presence
probabilities) and 52 human-curated annotations (annotation-brain
links) for each subject and region-network combination. This extensive
collection of annotations, from post-hoc ratings, offered by the
studyforrest resource covered a variety of concepts, commonly stu-
died in the cognitive sciences, including emotions, salience, and key
properties of the environment depicted in the movie (for full details
see Supplementary Fig. 6). For example, regarding the DN&AM HMM
solution, the top annotation-brain links were “Gump property” for
state 1 (Pearson’s correlation coefficient r =0.26); “gratitude” for state
2 (r = 0.08); “Washington D.C.” for state 3 (r =0.17); and “Vietnam” for
state 4 (r =0.29). Taken together, these annotation-brain links showed
the strongest associations with descriptions defined by humans in a
top-down fashion, which complemented the purely data-driven
semantics-brain links (cf. previous paragraph).

Dynamic brain states track fine-grained contextual changes
throughout the movie
The differentions between the semantic contexts and functional cou-
pling states showed that we can characterize brain dynamics explicitly
using rich movie information. Therefore, we next assessed the
exhaustive collection of results of the multiple links between brain
states and movie context features. Our analytical framework enabled
us to explain the subregion-level brain signatures and the functional
coupling dynamics with external descriptions of moment-to-moment
shifts in the plot.

We next took a closer look at the interplay between specific
semantic structure components of the movie and particular brain
states. As an illustrative example (Fig. 3), we display semantic context
No. 152 that is associated with state 1 of the DN&AM model (r =0.19).
By bringing in contact meaning facets and movie-dependent brain
responses, our analyses revealed that the concomitant part of the story
was about Jenny and Forrest’s wedding in front of their house (Fig. 3a,
f). Further, although this semantic context was modeled to be distinct
from semantic contexts at play at the beginning of the movie, these
themes were inherently consistent, as they can be viewed as centering
on “family bonds”. By inspecting the semantic contexts’ correlation
with the 52 annotations, we confirmed that the scene took place at
Gump’s property (r = 0.27), while the most flagged emotion was hap-
piness (r =0.17; Fig. 3b). The external descriptions thus enriched the
continuous narrative by consensus rater voting that indicated the
presence of various features in themovie. Our results indicate that the
links between the brain states and contextual movie information were
well explained by external descriptions, and that these annotation-
brain links were tied across extended time periods.

Based on the obtained semantic dissections, we used the con-
textual information of the story clips to explain brain activity from
brain states capturing DN&AM patterns. The DN subregion contribu-
tions in brain state 1 (i.e., μ parameter estimates of the formed HMM)
showed strong lateralization (Fig. 3c), while the precuneus/PCC made
no relevant contribution in the left hemisphere but strong contribu-
tions in the right hemisphere. The most prominent role was played by
themiddle temporal gyrus in the right hemisphere. As to the subregion
contributions of the AM (Fig. 3e), the right hemispheric anterior-
amygdaloid-area subregion played the most prominent role. These

subregion signatures were externally linked to the positive emotions
from the movie annotations. Overall, the DN and subcortical region
reveals group-wise lateralization effects (Supplementary Figs. 15 and
16). Moreover, the estimated covariance relationships among sub-
regions exposed the functional interplay between the DN and AM
subregions (Fig. 3d). Within the DN, we observed that the functional
coupling links among subregions of the right hemisphere were
stronger than in the left hemisphere. Additionally, the left and rightAM
were coupled with the DN in different ways. Specifically, the AM
included a group of subregions for which the coupling link directions
were opposite in the left and right hemispheres. Yet, anatomically
adjacent DN subregions showed neural activity effects in the same
direction. Therefore, when processing positive emotions, the coupling
links both between DN and AM subregions, and inside DN subregions
exhibited a notable extent of lateralization effects. Taken together,
these findings revealed that the links between the brain and movie
contextual information were explained by specific subcortical sub-
region contributions and functional couplings.

The deepest layers of the neural processing hierarchy pre-
ferentially track semantic movie contexts
Wenext turned from the subject level to the group level. By comparing
the strength of each HMM instance’s semantics-brain link, we corro-
borated the unique role of the DN in capturing semantic movie con-
texts (Fig. 4). Specifically, we trained a total of 210HMMsolutions (i.e.,
15 subjects x 14 region-network combinations). Themedian correlation
of the DN was the highest (r =0.163), compared to the other six
canonical networks under study (Cont: 0.144; DorsAttn: 0.141; Limbic:
0.133; SalVentAttn: 0.145; SomMot: 0.140; Vis: 0.126). Further, applying
pairwise two-sample t tests, all six pairs of group differences between
the DN and other networks achieved statistical significance at
p <0.0001. After performing empirical permutation tests for each of
14 region-network combinations, all link strength values were larger
than null model. This conclusion was also robust regardless of the
choice of limbic region in themodel and across different confirmatory
analyses, which were performed with different text extraction meth-
ods, different numbers of semantic contexts, and different sources of
movie text information (Supplementary Fig. 7). Considering the DN’s
stronger links with contextual information at the group-level, it may
play an important role with regards to semantic association during
naturalistic movie watching.

Temporal dynamics reflect variance across subjects but con-
sistency across neural processing layers
Wenextmeasuredbrain state dynamics at the group level basedon the
duration a given functional coupling state remains online. The average
dwell time for each separate model describes the temporal switching
properties or pattern volatility for each particular subject and for each
particular region-network combination. i) Across subjects (Fig. 5a), we
observed that the median dwell time for different region-network
combinations ranged from 2.28 s (subject 05) to 25.31 s (subject 09).
This divergenceof dwell timesmight reflect idiosyncrasies in cognitive
styles to approachmovie content processing across different subjects.
Additionally, we quantified the variance of dwell time profiles for each
subject. The lowest standard deviation was 0.02 s (subject 05), and the
largest one was 13.24 s (subject 15). ii) Across different region-network
combinations (Fig. 5b), we again found that DN-tuned models showed
the largest median durations of being continously online (DN&AM:
t = 16.62 s, DN&HC: t = 16.87 s). A two-sample t-test revealed that the
choice of limbic regions did not change the average dwell time sig-
nificantly (p >0.05). The dwell times were most stable across different
subjects in the Vis-tuned models (Vis&AM: σ = 3.54 s, Vis&HC:
σ = 3.59 s). The full table of median and standard deviation values is
shown in Supplementary Table 1. Significant differences were found
between the average dwell times of DN-tunedmodels and those of Vis-
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tuned models (p <0.01). These findings suggest that neural responses
as modeled based on different region-network combinations largely
depended on subject-specific dynamics. As a general trend, for lower-
level networks, the timescales were less volatile across subjects.
Importantly, the highly associative DN showed the longest dwell times
across subjects and across brain states.

DN showed different subregion signatures when paired with HC
and AM
We then characterized the across-subject commonalities of neural
activity in the DN and its limbic partners observed during moment-to-
moment changes in themovie at the group level. This was achieved by
partitioning the subjects’ brain activity timeseries into segments that
belong to each of the four previously identified HMM states. Then, for

each of the four dynamic brain states, we concatenated the state-
specific brain activity segments across subjects, which yielded four
separate group-level neural activity time courses. We then applied
partial least square regression (PLS-R) to extract the dominant sig-
nature that tracks how the 200 semantic context expressions and 52
external descriptions (i.e., 252 total input variables) explain subregion-
level neural responses in the DN and its limbic co-activation partners
(output variables). Throughout the cross validation tests (cf. methods;
Supplementary Fig. 8), different states of brain embeddings achieved
an average Pearson’s correlation of 0.374 with the external descrip-
tions embeddings. Following this approach, we directly associated, for
each identified brain state (cf. above), the neural activity responses of
the HC&DN subregions with hundreds of external descriptions at the
group level.

Fig. 3 | Raters’ and data-driven descriptions of story events show com-
plementary linkswithbrain state dynamics across 2-hmovie.Wesupplemented
our semantics-brain links (i.e., bottom-up approach) with external-rater-curated
annotations based on traditional neurocognitive concepts (i.e., top-down
approach). a The 10most correlated semantic contexts with brain state 1 of subject
1’s DN&AM model (HMM). We highlighted the projected embeddings of our
exemplary semantic context (No. 152) in pink. b Pearson’s correlation between
hand-made annotations and the semantic context No. 152. “Happiness”, “positive
valence”, and “Gump property”were linkedwith the context features (for the other
199 semantic contexts, see Supplementary Fig. 2). c Brain renderings showDN&AM
region-network contributions from dynamic brain state 1 (for the other states, see
Supplementary Fig. 3). The most prominent subregion was the right middle tem-
poral gyrus in the right hemisphere. d Functional coupling links among DN and AM
subregions of state 1. The DN’s subregion names are from Schaefer-Yeo 100 atlas
(Temp: temporal; Par: parietal; PFC: prefrontal cortex; pCunPCC: precuneus

posterior cingulate cortex; PFCv/d/m: ventral/dorsal/medial prefrontal cortex). The
bottom/rightmost six rows are principal components for the amygdala’s left and
right hemispheres. The left and right hemispheres (denoted as L and R in short
names) of the AM related to DN in different patterns (for the other brain states, see
Supplementary Fig. 4). e Model contributions of AM subregions differ in the left
and right hemispheres. The radius value ranges from 0 to 1.6. Based on the radar
plot, the right anterior-amygdaloid-area (AAA) was the most prominent subregion
(for rest states, see Supplementary Fig. 5). fContextual features of semantic context
No. 152. Top: the wordcloud map. Word size indicates importance. The keywords
include husband and wife. Bottom: the snapshot of a related part in the movie. LA
Lateral-nucleus, BA Basal-nucleus, CeA Central-nucleus, MeA Medial-nucleus, CoA
Cortical-nucleus, BM Accessory-Basal-nucleus, CxA Corticoamygdaloid-transition,
AAA Anterior-amygdaloid-area, PL Paralaminar-nucleus. Source data are provided
as a Source Data file.
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Using the derived PLS-R solutions (again, one for each HMMbrain
state), we explored functional coupling signatures obtained separately
for each of the two limbic partners (DN&HC: Fig. 6; DN&AM: Fig. 7). In
theDN&HCmodel,weobserved consistently large contributions of the
PFC in the right hemisphere (Fig. 6b). Specifically, for states 1 and 3, the
most prominent subregion was the ventral lateral PFC; for state 2, it
was the dorsal lateral part of the PFC (dlPFC); for state 4, it was the
dlPFC and medial PFC. The contributions of the left hemispheric
subregions were relatively smaller and more uniform. In the DN&AM
model, subregions in the precuneus and posterior cingulate cortex
(PCC) showed the largest and most consistent contributions (Fig. 7b).
For states 1 and 4, their directionwas positive. For state 2, the direction
was negative, and the ventral part of precuneus/PCC had larger con-
tributions. In contrast, for state 3, the dorsal part showed large and
negative contributions. Concluding on an overarching trend, in nat-
uralistic movie watching, the PFC appeared to play an active role
together with the HC, while the precuneus/PCC were more active in
conjunction with the AM.

To further detail theDN signatures across the four brain states,we
next attended to the coupling relationships with their limbic partner
regions. For the DN&HCmodel (Fig. 6a), in states 1 and 2, the CA1 and
CA3 played prominent roles. Additionally, we observed that the con-
tributions of the anterior subregions of the HC mostly dwarfted those
of its posterior parts. States 1 and 2 were mostly linked with places in
external descriptions (Fig. 6d). For state 3, the prominent subregions
included subiculumhead, presubiculumhead, and parasubiculum. For
state 4, the most important subregions were CA1-4, granule cell layer
of the dentate gyrus,molecular layer, parasubiculum,fimbriae, andHC
tail. The tapped semantic contexts (Fig. 6c) mainly reflect events
involvingdifferentmovie characters. The top semantic contexts across
four signatures covered all main characters, including Forrest Gump,
Lieutenant Dan, Gump’s Mom, and Jenny. We also automatically iso-
lated music contexts by the keyword “gesang” (bottom row, meaning
singing in German). Further, in states 3 and 4, we flagged two cate-
gories of annotations describing the surrounding environment in the

Fig. 5 | Temporal profiles of dynamic brain states are characteristic for indi-
vidual subjects and region-network combinations. To carve out the time scales
of how distinct brain states click in and detach during movie watching, we quan-
tified the dwell times of the states from each hidden Markov model (HMM) solu-
tion: we computed the average time of occupancy, between locking in and
abandoning a given state, across the four states within an HMM solution at hand.
We examined the 210 total trainedHMMmodels in twoways: aAcross subjects, the
median value (the center bar in each box) ranges from 2.28 s to 25.31 s (x-axis was
ordered from lowest to highest basedon themedian value, the same for (b)). The 15
subjects (assigned with random color) demonstrated distinct neural processing
mechanisms tracking movie content. b Across region-network combinations
(amygdala[AM]-network models in hash marked, hippocampus[HC]-network

models in plane, the color is according to Schaefer-Yeo atlas38), DN-tuned models
with AM or HC coactivation partners showed the longest dwell time, while analo-
gous VIS-tuned and LIM-tuned models showed the most consistently low dwell
times with the smallest standard deviation. Again, the collective results witness the
higher-order integration function of the DN to play a dominant role in movie
watching. Boxplot: upper (lower) edge of the box is 25th (75th) percentile (inter-
quartile distance); themiddle line is the median value; the whiskers summarize the
extreme data points of the distribution of median semantics-brain associations.
Short names for Schaefer-Yeo networks: VIS Visual network, SMN somatomotor
network, DAN dorsal attention network, DN default network, LIM limbic network,
VAN salience and ventral attention network, FPC Frontoparietal network. Source
data are provided as a Source Data file.

Fig. 4 | Functional coupling dynamics in the deepest brain network layers track
themovie narrative. To compare the strength of semantics-brain links from lower
(visual network, Vis) to higher network (default network, DN) layers in the brain, we
computed the average Pearson’s correlation strength between the presence of
semantic context expressions and each of 15 subjects. Each color denotes one of
the seven canonical functional networks (according to Schaefer-Yeo atlas defini-
tion, cf. methods). The collective amygdala (left) or hippocampus (right) sub-
regions of the sub-neocortical system were jointly analyzed with these functional
networks (cf. methods). TheDN showed themost prominentmedian value, relative
to the six other brain networks, which indicated this highly associative neural
processing layer asmost dominant in consistently tracking the semantic richness in
the evolving movie narrative. Top right: an exemplary permutation test of the
model. The red dash lines show the mean semantics-brain link strengths of
15 subjects, and the blue bars shows the null distribution by shuffling the state
presence timeseries 1000 times (theDN&AMandDN&HCmodelswere additionally
depicted in Supplementary Fig. 11A, B, respectively). Boxplot: upper (lower) edgeof
the box is 25th (75th) percentile (interquartile distance); the middle line is the
median value; the green triangle shows themeanvalue; thewhiskers summarize the
tail data points of the distribution of median semantics-brain associations. Short
names for Schaefer-Yeo networks: VIS Visual network, SMN somatomotor network,
DAN dorsal attention network, DN default network, LIM limbic network, VAN sal-
ience and ventral attention network, FPC Frontoparietal network. Source data are
provided as a Source Data file.
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movie: the placement of the camera (exterior/interior, cf. methods)
and the time of the day (day/night). These findings suggest that,
functionally interlocked with the highly associative DN, HC responses
were mainly associated with places, characters, and environmental
features during uninterrupted naturalistic stimulation.

For the DN&AM model (Fig. 7a), the AM subregion signatures
corresponding to brain states 1 and 4 showed concurrent effects in the
left and right brain hemispheres. In state 2, several cortical-nucleus-
related subregions contributed most and bilaterally; and in state 3, it
was the anterior-amygdaloid-area subregion bilaterally. Regarding

Fig. 7 | Default network (DN) andamygdala (AM)coupling signatures are linked
to narrative events and external descriptions. Using partial least squares
regression (PLS-R) modeling, we identified coherent cross-associations of neural
responses with both data-led semantic contexts and hand-selected annotations.
Each row presents results for one PLS-R solution corresponding to one of the four
brain states (cf. methods). a Contributions of the 9 left and 9 right subregions of
the AM. The radius ranges from 0 (center) to 1.6 (outer circle). Generally, left and
right hemispheres play different roles in the neural signatures. b The DN subregion
contributions, covarying with AM. Precuneus and posterior cingulate cortex (PCC)

played an important role. c The semantic context elements that are best explained
by each DN&AM coupling signature. Contexts that were related to emotions were
associated with AM: 1. Vietnamwar; 2. Gump’s mom; 3 Gumpwas treated; 4. Gump
ran away from a dog. d The emotional entry “fear” appeared to be larger with AM.
AM-tuned DN activity focused more on emotions, especially “fear”. LA Lateral-
nucleus, BABasal-nucleus, CeACentral-nucleus,MeAMedial-nucleus, CoACortical-
nucleus, BM Accessory-Basal-nucleus, CxA Corticoamygdaloid-transition, AAA
Anterior-amygdaloid-area, PL Paralaminar-nucleus. Source data are provided as a
Source Data file.

Fig. 6 | Default network (DN) and hippocampus (HC) coupling signatures are
linked to narrative events and external descriptions.Using partial least squares
regression (PLS-R) modeling, we identified coherent cross-associations of neural
responses with both data-led semantic contexts and hand-selected annotations.
Each row presents results for one derived PLS-R solution corresponding to one of
the four brain states (cf. methods). a Contributions of the 19 left and 19 right sub-
regions of theHC. The radius ranges from0 (center) to 1.6 (outer circle). Generally,
left and right hemispheres play different roles in the neural signatures. b The DN
subregion contributions, covarying with the HC, highlight the prefrontal cortex
(PFC). c The semantic context elements that are best explained by each DN&HC

coupling signature. Theunderlying contextual eventswere related tovariousmovie
characters: 1. Amanwhomademoney fromT-shirts thatGumpusedwhen running;
2. Lieutenant Dan; 3. Gump’s Mom; 4. Jenny sang songs nakedly. d Among the 52
external descriptions, the three strongest annotation entries related to the three
categories: “emotion”, “place”, and “others”. The contributions of places were the
largest. H head, B body, T tail, CA dentate gyrus and Cornu Ammonis, Para para-
subiculum, HATA hippocampal amygdala transition area, HP hippocampus, PrS
presubiculum, Sub subiculum, ML molecular layer; DG granule cell layer of the
dentate gyrus (GC-DG-ML). Source data are provided as a Source Data file.
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associations with external descriptions, fear was highlighted in states 1
and 3, this emotion tag was the strongest emotional description in
state 3 (Fig. 7d). The emotional concepts flagged for states 2 and 4
instead were love and sadness. Complementing the single word
descriptions of classically studied emotions, our derived semantic
contexts also reflected emotion-related story clips (Fig. 7c), including
war scenes, family bonds, hospital treatment, and dog-chasing scenes.
Taken together, functionally liaised with the highly associative DN, we
linked several classes of emotional processes to specific AM subregion
signatures, which also tracked emotionally-laden scenes along the
movie story.

Discussion
In our everyday lives, conscious awareness and episodic narratives
animate important classes of human cognition41. To step closer to
uncovering the neurocognitive basis of our daily experiences3, natur-
alistic neuroscience using movie watching has started to reveal
untapped aspects of brain processes in a more ecologically valid out-
let, compared to classical experimental paradigms6,42,43. For the pur-
pose of the present investigation, we propose an analytical framework
that translates natural language processing algorithms from machine
learning (cf.29) to isolate and integrate the constituent structural ele-
ments of the semantics that scaffold the movie. The derived semantic
descriptions of the narrative then directly informed fine mapping of
the neural responses to the unfolding story line. Capitalizing on 2-h
length brain-scanning during which participants watched the movie
Forrest Gump (>50,000 individual maps of whole-brain activity
responses), we were able to quantify moment-to-moment shifts in
brain coupling dynamics by a head-to-headcomparisonof sevenmajor
canonical networks at a single-subject level. Through the careful
exploration of >200,000 HMM solutions, we here demonstrate that
engagement of the highly associative DN, rather than the six other
probed neocortical networks, was intimately coupled with events of
the evolving movie narrative.

Semantic processing has beenproposed tobe essential for human
higher-order functions44. Due to the brain’s specific energy and wiring
constraints45, efficient high-level information integration and retrieval
functions are needed to realize many types of advanced neural pro-
cesses. To clarify the definition of semantics, the word “semantic” has
been used incongruently in different fields, including semantic mem-
ory, semantic processing, and linguistics46–50. Here, the use of the term
is closely linked to the notion of “structured knowledge of the external
world”, as proposed by Binder and colleagues47. We thus executed a
survey of seven functional brain networks regarding the strengths of
their semantic context-brain links. In so doing, we established that the
DN’s neural responses were most intimately linked with momentary
shifts in the semantic contexts throughout the whole movie. In addi-
tion, DN activity has previously been reported to reflect the people’s
own interpretation of narratives51,52 and to linkwith social perception53.
Based on this previous progress, we argue here that it is important to
obtain single subject-level resolution on such brain dynamics and offer
a dedicated analytical toolkit and interpretation framework.

Our results also extended descriptions of the chronoarchitecture
that undergirds the neural processing dynamics in previous natur-
alistic neuroscience studies54,55. The timescales describing how often
and how long a dynamic brain state flips online have been termed
“temporal receptive windows” (TRW8). Early hints suggested that
TRWsmay differ across separate circuit layers of the neural processing
hierarchy8,56,57. In our systematic assay of brain network involvements
during movie appraisal, spanning the neural processing hierarchy
across seven spatiotemporally coherent functional systems36, the DN
exhibited the longest-lasting TRWs. In contrast, lower sensory net-
works typically showed shorter TRWs. The observed divergences in
TRWs between the potentially deepest (highly associative DN) and
some of the shallowest (early sensory) network layers were believed to

be a precondition of successful deep processing of complex semantic
information whose presentation itself often takes a few seconds in a
movie5,54. Long and rich sequences of nested events occurring inmovie
plots were also shown in a previous fMRI experiment to trigger reliable
responses in the DN, especially its parts of the PMC, rather than any
parts of lower-level network systems8. The observed TRW of the DN in
this earlier study was comparable to the DN’s TRW that we observed
here (~12 s on average). In sum, our derived temporal and spatial
configurations of functional couplings hardened and added nuances
to previous hints at the DN in evaluation of environmental semantics.

After showing in our analyses that the DN emerged to be inti-
mately related to tracking semantic structure in real-world stories, we
aimed todetail theDN’s neural activity responses as they liaisewith key
partners from the limbic system58. Our study uncovered and quanti-
tatively characterized two coremechanisms of collaboration with sub-
neocortical brain systems: oneDNpattern highlighting the partnership
with dedicated AM subregions and another one active in concert with
dedicated HC subregions (Figs. 6, 7). For each functional pattern of
dynamic couplings, we modeled four separate neural signatures with
their flanking semantic descriptions to be able to capture com-
plementary aspects of network dynamics sensitive to the story. We
found that the DN subregions and semantic label contributions have
significant differences when paired with different subcortical partners
(Supplementary Fig. 14). In the following paragraphs,wewill delve into
the subtle functional and anatomical differences between the DN and
amygdala as well as the DN and hippocampus.

We found that the functional coupling interactions between DN
and AM (DN&AM signatures) were associated with emotional annota-
tions and key semantic elements of the movie narrative. In particular,
designated parts of the DN’s PMC contributed disproportionately to
the overall constellation of neural activity responses to the vivid
depiction of movie scenes. Previous brain-imaging studies claimed
that PMC activity changes track the fantasy content in movies such as
Alice in Wonderland59,60 as well as the surprising content such as in
sportsmatches or TV shows48,61. Our analyses invigorated a central role
for the PMC in processing naturalistic narratives. We laid out these
functional implications across several unique signatures of DN&AM
interaction, which emerged especially in the context of emotional
movie events. We argue that previous reports on such PMC implica-
tionswere limitedby linkingmovie content tomostly a single cognitive
concept (e.g., fantasy or surprise). However, such earlier reports may
be re-interpreted as pointing to a broader role of the DN in pooling,
elaborating, and binding brain-wide information62,63. Collectively, to
reconcile present and previous findings, the DN makes critical con-
tributions to tracking and integrating amygdala-preprocessed, emo-
tionally evocative turning points of the movie narrative. Especially for
real-world-like naturalistic stimuli, this mechanism of adjusting to
emotionally amplified information in the environment may have
evolved in humans for coping with upcoming challenges and changes
in the external world64.

Further, our results of cortical functional interplay with limbic
partners speak towhy and how emotional semantics were tracked by
our detected DN&AM signatures. First, the AM has long been treated
as the heart of emotion processing in the brain65,66. Extending such
earlier findings to subregion granularity, we now brought to the
surface the complementary lateralization effects from AM activity.
The subregions with stronger contributions in the left-hemispheric
amygdala usually showed weaker functional contributions in the
right hemispheric amygdala. Conversely, the amygdala subregions
with weaker contributions in the left hemisphere tended to play
stronger roles in their counterparts in the right hemisphere. Similar
asymmetric effects of neural responses were also discovered in a
previous emotion and word linkage experiment from electro-
physiological recordings in humans67. Therefore, our lateralization
findings in the AM further confirmed and explained how emotionally
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evocative semantic contexts are tied to the subregion-specific
lateralization effects in the AM.

Second, in line with recent reasonings64,68, our discovered movie-
induced coupling interactions between the PMC and specific AM
subregions dovetail with their putative implications in external envir-
onment monitoring, especially significance detection and self-
relevance evaluation. Moreover, the derived external descriptions
offered rich contextualization for neuroscientific interpretation of the
extracted limbic–neocortical interaction patterns that appear to
directly speak to the attention deployment theory of emotion
control69–71. That is, our findings may reflect attention reallocation
mechanisms that came to bearwhen subjects were viewing unpleasant
movie scenes43. For example, “valence” became apparent as one of the
leading annotations in three out of four DN&AM signatures: Indeed,
the functional coupling signatures associated with negative valence
annotations related to more unpleasant semantic scenes of the movie
plot (e.g., war). In the face of complex affective semantics in a real-
world simulation experiment, we thus linked adaptive emotion reg-
ulation with flanking functional coupling changes between the highly
associative PMC and dedicated AM circuits.

More broadly, our collective findingsmotivate anextension to the
traditional AM survival theory by means of higher semantic reflection.
According to the classical view72, humans show intuitive responses to
sudden changes in the ambient environment. For example, if a person
sawabear chasing, their adrenaline level would surge automatically, as
an instance of a fight-or-flight reaction mediated by the sympathetic
nervous system. Revising this classic notion, the AM survival theory
may benefit from integration with neural processes subserved by the
recently evolved deepest neural processing layers: based on con-
tinuous conscious awareness of consistency or discrepancies of
environmental features, the DN may potentially liaise with dedicated
AM subregions to calibrate the scanning of the external world for self-
relevant information and otherwise emotionally evocative cues. In this
way, emotionally edited sensory information can be instrumental to
the higher association circuits by giving color to a vast number of
candidate semantic interpretations and by effectively directing the
allocation of attentional resources based on an evaluation system of
significance for the organism73–75. After detecting behaviorally relevant
information in the environment, the human brain also needs to inte-
grate semantic knowledge into the memory system to store informa-
tion and compare it against past experiences to help with upcoming
decisions on how to act on the world.

Across the delineated DN&HC signatures, medial and lateral parts
of the PFC showed functional couplingwithdesignatedHCsubregions,
as another core limbic partner of the higher association cortex. HC-
PFC pathways have been discussed before to be involved in episodic
scene construction and memory76. According to previous reflections,
the PFC is implicated in the suppression of content-independent sti-
muli to boost information retrieval from the environment. Instead, the
HC probably subserves retrieval and organization of content-related
memory76. Our HC subregion-level delineation showed that neural
responses ofCA1-4 and subiculum (especially theheadsegments)were
functionally interlocked with PFC activity responses. This observation
confirms and details previous reports on the HC-PFC pathway: it is
well-established that the PFC receives direct axonal projections from
the hippocampal subiculum and CA1 in both animals77–79 and
humans80,81. In these studies, the medial PFC, as opposed to its lateral
parts, was typically more emphasized for its dense fiber bundle con-
nections to the HC subregions that our quantitative analyses here
spotlight during movie engagement82.

In our analyses, subiculumactivity, among theHC subregions, was
prominent in the signature associated with the type of locations in
which movie scenes took place. Functional engagements of the
CA1 subregions, in turn, dominated the signatures that were linked
with the time of the day of movie scenes. The subiculum is believed to

assist in identifying and binding spatial boundaries in the environment
according to previous hypotheses and experiments in animals83,84. The
annotations pertaining to open-space vs closed-space of movie events
can be viewed as a defining feature of the encountered spatial scenes.
Indeed, neurons in theCA1 havebeen reported tobe sensitive to bright
vs dark environments during experiments on light condition transition
in rodents85. The same sensitivity to ambient light conditions was also
revealed by our time of the day annotation. Therefore, by linking it
with previous invasive single cell recordings in animals, our functional
analysis in humans extended abstract aspects of environmental
information processingmechanism (boundary and light conditions) to
the naturalistic setting. In sum, our analyses disclosed DN&HC cou-
pling constellations thatmay assistmoreabstract formsof information
processing in the naturalistic setting.

More generally, our findings provide valuable clues to explaining
the higher-order functional capacities that underlie hippocampally-
assisted semantic reasoning. The stronger functional contributions for
the anterior parts of the HC may relate to previous results on the
anterior HC subregions’ involvement in semantic memory processing
over and above its posterior subregions86–88. In recent reasoning
around functional roles of semantic memory, Strange et al.89 sug-
gested that it provides the flexibility needed for conscious planning by
encoding abstract features and forming higher-order memory repre-
sentation. Previous experiments on semantic memory in humans
confirmed thatHC activity increases during transitions betweenmovie
events in both traditional experiment events90,91 and naturalisticmovie
stimuli54,92,93. Here, by quantitatively dissecting the meaningful ele-
ments of the story, our findings complement the temporal alignment
between HC activity changes and movie event offsets.

It is important to acknowledge some limitations when interpret-
ing our results and conclusions. First, appreciation of findings from the
studyforrest dataset need to take into account the fact that the
majority of the subjects had previously watched themovie and are not
English native speakers. This circumstance could potentially color
some of the obtained results. For example, the familiarity of the sub-
jects with the movie could lead to a diminished surprise level. Second,
another limitation of the studyforrest dataset is that it does not allow
for cues on individual-level semantic processing itself, which is how-
ever a crucial aspect in understanding and interpreting language. The
lack of individual feedback restricts our ability to explore further the
subjects’ response to themovie. This shortcoming could be addressed
by extending the studyforrest repository to include the participant’s
own interpretation of the events in the movie material in a timepoint-
by-timepoint fashion. Indeed, Saalasti et al.94 recorded subjects’
thoughts as a reflection of “what comes into your mind.” Additionally,
Baldassano et al.54 asked subjects to recall the movie content to assess
“what do you remember”.

Painting a broader canvas to summarize, our analytical framework
opened a window to identify two distinct mechanisms of how the DN
dynamically partners with microanatomical subregions of the AM and
HC to trace semantic salience and their changes in the environment, by
sifting through a compilation of >20,000 HMM estimations across
seven large-scale networks. In this way, we offer explanations of how
some of the deepest brain network layers of the human brain support
the active search for meaning and valuable information in the external
world—a precondition for judicious choice of candidate actions from
the behavioral repertoire25,64.

Methods
Rationale and workflow summary
Previous naturalistic stimulation studies have largely focused on
modeling the neural responses which are elicited by a movie. In such
earlier approaches, the fine-grained information contained in the
movie material itself was typically neglected or not fully analyzed.
Directly capitalizing on the continuous visual-auditory stimulation
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may be better achieved by bringing to bear untapped analysis frame-
works that pool across distributed brain activity responses and the
movie eventswhich invoke it, by invoking comprehensive descriptions
of salient movie events. To achieve this goal, we proposed two key
steps. First, we brought to bear state-of-the-art ML tools in their home
territory, that is, multimedia information analysis. Second, the con-
tribution of limbic areas was rarely linked with neocortical activities in
explicit quantitative modeling on naturalistic stimulation, despite
recent progress in anatomy37. As pointed out before95, the cortico-
centric interpretational focus (which treated the cortical activity as an
isolated process) of brain-imaging discoveries might not explain the
full picture of the brain dynamics. To delineate and annotate the
functional coupling dynamics of both subcortical-limbic and neocor-
tical circuits, our elected analytical framework extracted embedding
representations of the movie plot itself.

In recent years, the conceptualization of the subcortical limbic
system as a component closer to the higher association cortex than
previously thought has led to increased interest in studying the rela-
tionships between the cortex and the limbic key nodes amygdala and
hippocampus. These sub-neocortical regions, through their coordi-
nation, play a crucial role in the elaboration of emotions, memories,
and stimulus-value associations. The anatomy of the default network
closely resembles the unitary model of the limbic system37, making it
an essential component to consider when studying the underlying
mechanisms of emotion, memory, and behavior during naturalistic
movie appraisal in humans. The interactions among these regions
should shed new light on the mechanisms underlying competition for
limited computational resources and how the brain captures distinct
elements of semantic information.

Specifically, we ported NLP techniques from machine learning to
imaging neuroscience for explicit movie narrative modeling. Put dif-
ferently, we aimed to leverage the most immediately human inter-
pretable feature of the rich multimedia movie data—the language
information. To carefully track the evolving movie plot, the trends of
word usage in movie subtitles and verbalized descriptions provided
the basis for enrichment of the concurrent neural activity responses.
We extracted a rich portfolio of 200 unique semantic contexts whose
occurrence across the 2-h length movie Forrest Gump served as a
proxy formovie events. The unusual wealth of time series data offered
by the studyforrest dataset (54,145 total timepoints, combined from
15 subjects) enabled us to quantitatively profile nuanced region-
network functional coupling dynamics. Explicit modeling of network
dynamics, delineated via our HMMs, was performed at the single-
subject level (where each subject’s brain recordings were analyzed
separately) and specific to a particular canonical network (where
neural signatures of subregions in each canonical network were
examined in an individual model). After isolating functional coupling
regimes of canonical networks and limbic subregions, we were able to
characterize the subregions’ neurocognitive roles by association with
200 semantic contexts and 52 human-curated annotations, spanning
from properties of movie scenes (e.g., places, time of the day) to
descriptions of movie characters (e.g., character identity, their emo-
tion expressions, the valence of these). Across conducted analyses, we
charted >20,000 HMM solutions under the movie appraisal. With this
extended space ofHMMsolutions,we delineated subregion-subregion
interactions of a total of 14 limbic-neocortex views, including their
functional coupling patterns, specific subregion contributions, and
timepoint-specific presence across the evolving movie narrative.

Data resources
Functional brain images. 15 subjects were recruited (mean age: 29.4
years of age, ranging from 21 to 39, 6 females) for both i) audio-visual
and ii) audio-only movie-watching during fMRI scanning as part of the
studyforrest protocol. All participants were right-handed German
native speakers. This study was performed under the Ethical approval

from the Ethics Committee of the Otto-von-Guericke University, Ger-
many, and the informed consent of all participants.

In the audio-visual naturalistic stimulation of the studyforrest
project96, the movie “Forrest Gump”97 was segmented into eight cuts
(~15min) using the same method that was previously applied to the
audio-only version of the movie98. Accordingly, the identical approach
as in the original study was adopted regarding the transition between
segments and their synchronization with the acquisition signal of the
fMRI scanner. The boundary between segments was determined to
ensure that fMRI volumeacquisitionwas alignedwith themovie across
all eight cuts (for details, see ref. 99; in particular, Table 1 and Fig. 3a).
Briefly, except for the first cut, each of the eight segments began by
fading in an excerpt of ~6 s (three fMRI volume acquisitions) from the
end of the preceding segment. Similarly, except for the last cut, each
segment ended by fading out an excerpt of ~10 s (five fMRI volume
acquisitions) from the beginning of the following segment. The start of
each segment was synchronizedwith the acquisition signal of the fMRI
scanner. Here, to ensure the alignment in time between the fMRI
activity time series and the movie, we discarded the fMRI timepoints
corresponding to the repeating start and end excerpts for each
individual cut.

In the experiment, all subjects watched the movie in the 3T
Achieva scanner (PhilipsMedical Systems) with a 32-channel head coil.
14 subjects had previously watched the movie, and the additional
subject had previously been exposed to the audio-only descriptions.
The dataset also provides high-resolution T1-weighted structural
images98 that were acquired using a 3D turbo field echo sequence. The
voxel size of the acquisition was 0.7mm along with a 384 in-plane
reconstruction matrix (0.67mm isotropic resolution). The other
parameters were as follows: TR = 2500ms, TE = 5.7ms, TI = 900ms,
flip angle = 8°, FOV= 191.8 × 256× 256mm, bandwidth = 144.4Hz/px,
sense reduction AP = 1.2, RL = 2.0. On the other hand, the functional
images96 were acquired with a gradient-echo, T2*-weighted EPI
sequence (TR= 2000ms, TE = 30ms, flip angle = 90°, axial slices = 35,
thickness = 3.0mm, gap = 10%, FOV = 240 × 240mm, voxel size = 3
33mm). To put the topmost sliceon the superior edge of the brain, the
slices were ordered in AC–PC orientation with the SmartExam system
(Philips).

Human-curated annotations
To generate consensus descriptions of the emotions portrayed in the
movie Forrest Gump99, nine observers (all female) from the same
student population have annotated the audio-visual version of the
movie100 with a total of 52 indicators.Noneof the raters tookpart in the
previous brain-imaging study. Themovie hasbeen segmented into 205
cinematographic scenes, which were annotated by each observer in
randomized order to mitigate carryover effects. For each instance of
expressed emotion, observers indicated the start and end time in
seconds, as well as the associated emotion. The independent raters
also indicated the way in which the particular emotion is expressed,
the values of three forced-choice variables: valence (positive vs nega-
tive), arousal (high vs low), and direction (whether the emotion is
oriented towards oneself—character expressing it—or someone else).
To-be-distinguished sources of the emotional cues included facial
expressions, body language, abstract contextual information, verbal,
andnon-verbal audio cues.Offset cues included a changeof emotion, a
neutral state, the character leaving the scene, and the end of a scene.
Valence, arousal, and direction were used to coarsely characterize the
emotion in line with dimensional models of emotion101.

In contrast to the indicators of arousal, valence (positive and
negative) and direction (self and other) were deemed non-exclusive.
That is, a movie character could be reported as portraying both posi-
tive and negative emotions simultaneously. Similarly, the acting
character’s emotion could be both self-directed and oriented towards
others. As to discrete emotional labels, 22 categories were derived
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from a model developed by Ortony, Clore102, including anger/rage,
fear, happiness, love, and sadness—the top set of emotions assigned in
the majority of emotional events in the movie (for an exhaustive list,
see Table 3 in Labs et al.100). The posthoc raters were instructed to
assign an emotional tag to a movie event only if it perfectly matched
one of the categories. An automated quality control procedure was
used to check for errors and potential issues in the curated
annotations.

The studyforrest dataset also provides annotation of the physical
location in which each scene takes place103, its type (interior or exter-
ior), as well as the time of day (day or night). The movie scenes were
annotated by two individuals, including a rather with an academic
background infilmmaking. For the time of day annotation, a scenewas
labeled as “day” whenever it was illuminated by sunlight, including
twilight, and labeled as “night” when there was no sunlight.

Inter-observer agreement (IOA) time series were then com-
puted for each character and each emotional attribute. To this end,
we indicated the proportion of total observers who identified the
presence of a given attribute at each point in time. Therefore, IOA
time series generally range from 0 to 1. However, IOA time series for
the arousal, valence and direction indicators were obtained by
subtracting from each other the IOA time series corresponding to
the presence of both extremes, for example, IOA for low-arousal was
subtracted from the IOA for high-arousal, resulting in an interval of
−1 to +1, with two extremes indicating perfect agreement for low and
high arousal, respectively. All IOA time series were then binarized
using an absolute threshold of 0.5 to segment the movie into emo-
tional episodes for each character. An emotional episode was
defined as a period during which at least one emotional attribute
exceeded the IOA threshold. Arousal and positive and negative
valence values were attributed to each episode by computing their
median IOA values across the length of the emotional episode. Here,
to ensure a high level of consistency across observers in the anno-
tations under consideration, we used these emotional episodes
detected by the majority of observers to generate time series
reflecting the presence of specific emotional expression features.
For arousal and positive and negative valence, aggregate IOA time
series were generated by assigning the maximal IOA value to each
timepoint (2-s windows between the fMRI acquisitions) across all
emotional episodes and characters. For all other emotional attri-
butes, binary time series were produced to reflect their presence (0:
absent, 1: present) at a given time step across all emotional episodes
and characters. Analogously, binary time series were produced to
reflect the presence (0: absent, 1: present) of each of the four loca-
tion annotations (interior, exterior, day, and night) at a given time
step in the movie.

Audio text material from the movie
Two complementary sources of verbalized content provided the basis
for our natural language processing approaches (cf. below) for inte-
gration with the functional coupling dynamics detected during movie
watching. Notably, the volume of the original soundtrack is auto-
matically scaled so that the narrations are easily perceptible. First,
time-alignedmovie subtitles in were also provided by the studyforrest
resource. The subtitles from the original movie reflect the speech of
the characters, as well as the narration of the movie plot by an off-
screen voice from the main character Forrest Gump. Second, the
analyzedmaterial also includes themovie description104 usedbyHanke
and colleagues98 for audio-only experiments. This audio-only content
is largely like the dubbed soundtrack of the movie. The audio
description also includes interweaved narrations by a male speaker,
mainly describing the visual components of the movie. These fill in
verbal explanations in the movie scenes that do not otherwise contain
any dialog, off-screen speech, or other related audio information,
complementing the subtitles.

Brain-imaging data preprocessing. All of the template brain images
and precomputed transformations contained in the studyforrest
dataset (https://github.com/psychoinformatics-de/studyforrest-data-
templatetransforms) were generated using the fMRIB Software
Library FSL 105; fsl.fmrib.ox.ac.uk. Regarding brain structure, non-brain
tissue was removed from the T1-weighted structural image using the
Brain Extraction Tool BET106 with a robust iterative brain center esti-
mation. Then, an affine transformation was computed each subject’s
native structural space to standard MNI space using the MNI152 tem-
plate image with FMRIB’s Linear Image Registration Tool FLIRT107,108.
The inverse transformation matrix was also computed, which maps
from standard MNI space to each subject’s individual anatomical
space. Finally, the subject’s structural template was bias-field-
corrected using FAST109.

Regarding brain function, the BOLD images were motion-
corrected using MCFLIRT108 in two iterative stages using the mean
BOLD volume, followed by the skull-stripped mean motion-corrected
volumeas reference. Each imagewas aligned separately in a single step
using a combination of the two transformations. The aligned fMRI
images, as well as the code used to obtain them have been made
openly available (https://github.com/psychoinformatics-de/
studyforrest-data-aligned). The same reference brain template was
then used to compute a rigid-body transformation fromeach subject’s
structural space, using the bias field-corrected template, to its BOLD
space, once again by means of FLIRT107,108.

Workflow for subregion neural signal extraction. Using FLIRT and
the available native-space-to-common-space transformation matrices
(cf. above), wemapped the Schaefer 2018 parcellation (https://github.
com/ThomasYeoLab/CBIG/tree/master/stable_projects/brain_
parcellation/Schaefer2018_LocalGlobal/Parcellations38); to each sub-
ject’s brain space, with a resolution of 100 regions of interest (ROI). To
extract voxel averaged functional signals, ROIs served as topological
masks, were used to average the signals from all the voxels that
belonged to one spatial definition. As a result, we obtained as many
functional BOLD signal variables as there are target subregions in the
ROI set.

Regarding the limbic partner regions, we performed the segmen-
tation ofmicroanatomically definedHCandAMsubregions basedonT1
data in the studyforrest dataset via the segementHA function of free-
surfer v7.1.1 (https://surfer.nmr.mgh.harvard.edu/fswiki/Hippocampal
SubfieldsAndNucleiOfAmygdala110). The exemplary mask figures are
shown in Supplementary Fig. 9. In this way, we obtained the micro-
anatomically defined labels for 38 hippocampal (19 per hemisphere)
and 18 amygdalar subregions (9 per hemisphere) unique for each sub-
ject’s brain anatomy. For the hippocampus subregions’ segmentation,
weadopted thehead, body, and tail parcellation111. For the amygdala,we
selected the nuclei labels proposed by Saygin and colleagues112. As a
result, the functional signals of HC and AM for both the left and right
hemispheres were extracted based on the ROIs defined by subject-
specific brain anatomy.

We then detrended and z-scored the fMRI signal separately across
timepoints belonging to each of the eight imaging segments (cf.
above). All these data slicing and dicing steps were realized using
functions from the nilearn package (https://nilearn.github.io/stable/
index.html).

Natural language pipeline to mine movie semantic dimensions
To enable quantitative modeling of underlying constituent movie
events, we constructed a bag-of-words encoding of both the subtitles
and the audio-only descriptions of the movie. The two kinds of text
information naturally captured two complementary abstraction levels
of the ongoing narrative: the movie subtitles cover the dialogs
between characters, whereas context descriptions cover the detailed
explanations of what is happening on the screen. To this end, we
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initially removed all the punctuation marks and turned all letters into
lower case. We next removed stop words, which is a typical workflow
step for NLP preprocessing that aims to increase the performance of
the downstream analysis methods. The stop words are a collection of
commonly used words without much contribution to text under-
standing (e.g., prepositions, pronouns), which we drew from the Nat-
ural Language Toolkit Python package (NLTK; https://www.nltk.org/).
We obtained a bag-of-words representation: a working dictionary of
1558 unique words for subtitles and another dictionary of 1503 words
for descriptions. Pooling the resulting text information across the 3543
timepoints (indexing 2-s movie chunks), the word count matrix Msub

for subtitles carried 3543 timepoints × 1558 vocabulary entries, and the
word countmatrix for descriptionMdes carried 3543 timepoints x 1503
vocabulary entries.

To obtain the continuous semantic features of the movie, despite
a 2-s temporal resolution, we smoothed the text information in a
sliding window approach. In other words, we created a smoothing
window of 4min by calculating the averaged bag-of-words vector
corresponding to the center timepoint based on the sumof the bag-of-
words vector of timepoints within the surrounding 4min (2min before
and 2min after a given point in time). The window size of 4min was
selected by a systematic grid search procedure (Supplementary
Fig. 10). Indeed, we found that the 4-min window length canmaximize
both the average and maximum correlation between brain states’
presenceandextracted semantic contexts.Additionally,we conducted
a quantitative comparison of the average link strength between theDN
group and the whole group (Supplementary Fig. 13). Four minutes was
determined to be the optimal choice. Based on these two pieces of
evidence, we decided to use a window length of 4min.

Subsequently, we benefited from a trusted NLP technique29, term-
frequency inverse-document-frequency (tf-idf), to re-represent the
two text word count matricesMsub andMdes tracking events of the 2-h
movie. Tf-idf is a metric to transform the bag-of-words counts into
word frequencies so that the word’s global prevalence in our entire
movie was appropriately considered. Tf-idf consists of two parts, term
frequency (tf) and inverse document frequency (idf). The tf compo-
nent reflects the similarity of a word’s effect in the corpus. The idf
component is defined as the logarithmic formof the inverse fraction of
the size of the corpus.

tfidf w,tð Þ= tf w,tð Þ× idf w,tð Þ= f w,t

Σw02tfw0 ,t
× log

T
1 +nw,t

� �
, ð1Þ

where w is the word corpus entry, t is the timepoint, T is the total
numberof timepoints andnw,t is thenumberof timespointswhosebag-
of-words vector contains thewordw.Consequently, a higher tf-idf value
directly represented a higher salience of the word at one timepoint. At
the same time, the salienceof thewordwas calibratedby the abundance
of that word in the general movie text corpus. As a result, the
transformed word count vector derived, using sliding-window expan-
sion, at each timepoint encapsulated the rich structure of the movie.

To automatically search through the space of candidate semantic
representations which point to a similar contextual meaning, latent
semantic analysis (LSA) was a natural choice of NLP technique29. LSA
naturally assumes that words with similar meaning co-occur in the text
i.e., the so-called distributional hypothesis35. Therefore, by applying LSA
to our corpus of preprocessed movie subtitles and descriptions sepa-
rately, we extracted two unique sets of semantic contexts that proxy
underlying movie events. We extracted the s = 200 semantic contexts
from the word count matrices Msub and Mdes. The full-length movie’s
text content was thus decomposed into a k dimensional vector.

In the traditional formulation, LSA performs a singular value
decomposition (SVD) of the sparse rectangular word count matrix M.
The resulting semantic contexts are ordered based on the explained
variance. This implicit property of ordered importance is only suitable

for a smaller s. While the value of the s increases, the first several
components account for the bulk of the semantic variation about the
movie events, while the other components are more nuanced and
contribute less to explaining parts of the movie narrative. As the level
of content information carried by semantic components decreases,
empirically, their Pearson’s correlation with brain states also become
weaker. To maintain evenly distributed semantic contexts which
decompose the full-length movie, we added a non-negativity con-
straint to the traditional SVD, which takes the form of non-negative
matrix factorization (NMF):

M =W ×H, withW ≥0,H ≥0, ð2Þ

where thematrixW ×H is an s-rank approximation of the original word
count matrix M. The matrix H contains orthonormal columns repre-
senting word weights, by which we interpreted the events embedded
in the semantic context. In doing so, NMF-LSA detects and extracts
evenly distributed collections of semantic themes. The non-negative
estimated parameter values of each column in the low dimensional
projectionmatrixW indexed the importanceandpresenceof the given
semantic context shifts across the movie timeline. On the other hand,
our NMF-LSA can be viewed as modeling the underlying movie events
(indicating a solitary plot or character) of the evolvingmovie narrative.

In fact, the choice of an optimal number of semantic contexts s
affects the downstreaming results only weakly. In the following cor-
relation analysis with brain states, we selected the top n correlation
links out of s candidate semantic contexts as the indicator of strength
of semantics-brain associations. Therefore, the screened dimension-
ality of s is intrinsic to the scope of our analyzed movie and was
empirically determined from the data themselves. In the present
investigation, a larger s will generate repetitive and trivial semantic
contexts (since the total number of underlying movie events is fixed)
instead of complete semantic contexts, and a lower s cannot offer
extensive sets of movie events covering the whole movie content. In
this way, we identified 200 as a sweet spot for the total number of
approximated movie events to balance the integrity and expressivity
of the generated semantic contexts.

Hidden brain state patterns via hidden Markov modeling. To pair
the movie narratives with delineated coupling patterns of brain
dynamics at subregion resolution, we have turned to hidden Markov
models to derive a sequence of underlying functional coupling brain
states, separately in each subject. The core assumption behindHMM is
that the data distribution of the observed timepoints is emitted from a
sequence of to-be-uncovered hidden states, where this sequence of
hidden states would switch and recur based on time-invariant transi-
tion probabilities. The complex dependencies between hidden states
are simplified by amodel specification, whereby the current timepoint
is conditioned on the previous timepoint (i.e., the first-order Markov
assumption). More formally, the probability of state j being active in
the current timepoint t is determined by which state was active at the
previous timepoint t–1:

PrðSt = kÞ=
X
l

Θl,k PrðSt�1 = lÞ, ð3Þ

wherePr . . .ð Þ represents the probability of a hidden state to bepresent,
St is the hidden state at timepoint t, St�1 is the hidden state at time-
point t � 1,Θl,k gives the transition probability from previous state l to
current state k.

Previous brain-imaging investigations endorsing HMMs usually
concatenated all subjects’ time series to form a group-level set of
hidden states. In our analysis, given the unusual abundance of >3000
timepoints per subject, compared to previous naturalistic movie
modeling studies, we were able to model the individualized network

Article https://doi.org/10.1038/s41467-023-39862-y

Nature Communications |         (2023) 14:4197 13

https://www.nltk.org/


dynamics. Hence, a separate collection of HMMs was estimated for
each subject. Moreover, we wanted to identify the direct linkage
between limbic subregions and neocortical networks. Therefore, for
each subject, we examined 14 designated region-network combina-
tions, with a total number of features

R= rnetwork + 2 rlimbic, ð4Þ

where rnetwork carries the number of regions from the Schaefer-Yeo
networks entry and rlimbic carries the number of principal component
(PC) embedding expressions of either HC or AM for one hemisphere.
First, the dimension of voxels averaged regions rnetwork ranged from 5
to 24 across seven Schaefer-Yeo networks. Second, we extracted PCs
for a given limbic target region: HC or AM. For each limbic target
region,we used one PCAmodel instance to estimate rlimbic =3 identical
PCs (i.e., the two hemispheres shared the same set of PCA-derived
singular vectors). Specifically, we concatenated the functional activity
signals of 19 (HC) or 9 (AM) subregions for each hemisphere along the
time axis so that we could train one uniform PCA model per limbic
target region. In thisway,weallowed for thepossibility of lateralization
effects of the limbic regions. After PCA, both HC and AM subregions
were embedded into 2 rlimbic = 6 PCs. For each timeseries data matrix
XI,c T x rð Þ of a certain subject i and one region network combination c,
we used the multivariate Gaussian as the observational model. More
specifically, we modeled the dependency of observed data with the
hidden state as:

xt ∣St = k ∼Multivariate Gaussian μk ,Σk

� �
, ð5Þ

where we denoted observation data vector xt as one timepoint slice in
timeseries datamatrixXI,c, St as the the hidden state at the timepoint t,
the active state index as k, μk as the mean vector of the multivariate
Gaussian distribution, representing mean voxel-averaged BOLD
signals corresponding to the constituent ROIs of each input region-
network combination, Σk as the covariance matrix of subregion-
subregion effects of the region-network combination. Our observation
model encapsulated the assumed data distribution of each hidden
state k based on the parameters μk and Σk .

The Python package hmmlearn (https://hmmlearn.readthedocs.io/
en/latest/) was used to perform the model parameter estimation based
on an expectation–maximization algorithm. The number of training
steps was set to 500 iterations. Notably, solving the HMM problem
using the solver algorithm poses a non-convex optimization problem.
This means that in one model estimation the converged HMM solution
could fall in a local minimum. So for each unique model training itera-
tion, with the identical input data (i.e., given a region-network combi-
nation), we performed 100 model estimation instances based on
distinct randomized starting parameter values to obtain 100 different
HMM instances for one specific training setting, fromwhichwe selected
the one with the largest average Pearson’s correlation strength with the
semantic components. In particular, to obtain the subregion contribu-
tions of the two limbic regions, we projected the PCs back to the
ambient anatomical space of the subregions. An HMM mode also con-
tains the temporal characteristic for one state (cf. the section entitled
Temporal analysis across different HMM solutions). Four patterns of
one HMM training setting forms a coherent description of functional
couplings, explaining the multi-modal neural activity for one specific
region-network combination of one subject (Supplementary Figs. 3–5).

Typically, inmany data analysis scenarios, the training of anHMM
instance cannot afford high-dimensional input data for the total
number of model parameters to be estimated increase with the num-
ber of features at a rate of O n2

� �
. Because of our uncommon training

approach (i.e., train an HMM solution corresponding to each region-
network combination separately), we addressed themodel complexity
concern of the HMM modeling. This modeling agenda also carefully

aligned our estimated dynamic patterns with the biological questions
of comparing different levels of the neural processing hierarchy.

Finally, for the purpose of model selection, we carried out a
principled procedure to choose a useful number of HMM states. We
rigorously evaluated four complementary metrics for selecting the
optimal number of hidden states, which nominated n =4 as the opti-
mal solution. First, we calculated the strength of semantic context-
brain associationpatterns (SupplemetaryFig. 1A). Specifically, charting
the HMMsolutions across choices of 2–8 hidden dynamic brain states,
we compared the mean value of the top 10 Pearson’s correlation
coefficients between HMM models’ state presence and 200 extracted
semantic contexts. At the number of four states, thismetric reached its
peak value which represents the strongest brain activity and movie
narrative correlation. Second, we modeled subject level variance by
summarizing themean Pearson’s correlations across 15 subjects’HMM
state presence probabilities (Supplementary Fig. 1B). Basedon the goal
of reflecting idiosyncrasies, we selected a lower value such that more
discovered dynamics could be extracted. After four states, this value
stabilized. For the third and fourth criterion, we evaluated theBayesian
information criterion (BIC) under the conditionwith limbic subregions
and without limbic subregions (Supplementary Fig. 1C, D). BIC mea-
sured the likelihood of the model. We prefer a lower value. Whether
limbic subregions are present or not, BIC reached its global minimum
at four states. Overall, four brain states better reconcile brain-movie
associations, subject level dynamics, and quality of model fit.

Subject-level associations between movie events and dynamic
brain states
Our primary analysis sought to find which layer of the neural proces-
sing hierarchy best tracks semantic contexts across the evolvingmovie
narrative. Therefore, we performed a comparison of association
strengths between brain states and semantic contexts, where each
model directly reflects the semantics-brain correspondences of the
isolated region-network combinations. As per the hidden Markov
model, the presence vectors (T total timepoints × 1) represents the
probability of each state along the time axis. The contained probability
values of four states at one given timepoint adds up to one. On the
other hand, matrix W (T x s) generated from NMF-LSA (cf. natural
language pipeline section) provided s different semantic components
with the projected embedding expression of the word count matrix of
the movie. Subsequently, we computed the pairwise Pearson’s corre-
lation strengths between s = 200 semantic contexts embeddings and
n=4 brain states. A Pearson’s correlation matrix Psemantic (s x n) for
semantic contexts thus reflected how brain states correlated with a
large collection of semantic contexts. The same procedure was also
performed for human curated annotations, where another Pearson’s
correlation matrix Pannotation (52×n) for annotations depicts how brain
states are linked with hand selected descriptions of the narrative.

For each state, we computed the average value of the top 10
association values as the aggregation method for one state’s unique
semantics-brain link strength. Then, we summarized each of the seven
Schafer-Yeo networks’ parcel-wise average neural activity responses
across two different limbic partners (Fig. 4). Finally, p values were
estimated to assess the significance of group differences between the
DN’s value and the other six networks’ average value under a two-
sample t-test.

Temporal analysis across different region-network
combinations
To analyze the temporal characteristics of our derived brain states in
greater detail, we calculated the dwell times of each HMMstate, which
refers to the duration of time that a given state is visited. To compute
the dwell times, we adopted the same method used in previous
studies113. Specifically, we assigned each timepoint to the state with the
highest probability and calculated the duration of time that each state
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was visited. We then aggregated the dwell times at the single subject
level by comparing the average and volatility across four states for the
same HMM model. This allowed us to compare the processing time-
scale differences across 14 region-network combinations. Following
this, we averaged the temporal characteristics across 210 estimated
HMM instances (15 subjects × 14 region-network combinations). In
doing so, we were able to directly characterize how the temporal
processing characteristics varied across subjects and functional net-
work level dynamics.

Group-level association analysis of brain signatures with exter-
nal descriptions
To elevate the subject-level patterns to the group level, we designed an
analysis framework combining HMM state presence information and
PLS-R. We used the probabilistic state presence information to seg-
ment the whole movie timeline into four partitions, each one asso-
ciated with one of the four dominant brain states. To align the state
indices across different subjects, we adopted the Hungarian
algorithm114 to reorder the four brain states across 15 subjects. We
selected subject 1 as the template to be matched against. We aimed to
minimize the distance between the four brain states’ observation
model parameters for subject 1 and each of the other 14 subjects. In so
doing, the brain states were reordered, which means, for example,
brain state 1 points to a similar representation across the 15 subjects.
We then concatenated the partitioned neural activity responses for
each of the four states and generated four group-level segmented
neural responses matrices Gk where k 2 1, 2, 3,4f g

We then inferred the dominant PLS-R direction for each of the
fourGk to provide insights into how external descriptions in themovie
can explain functional variability in four different brain states. We
concatenated the semantic context embeddings W and human cura-
ted annotations A into a combined external descriptions matrix E with
the dimension of T total timepoints x (s semantic contexts + 52
annotations). We then used the same state-specific partition of across-
subject concatenated external descriptions matrix E into four group-
level external descriptions matrices Ek wherek 2 1, 2, 3,4f g. PLS-R was
a natural choice of method to find the single most explanatory sig-
nature connecting neural responses and external descriptions. For
each state j, we trained an independent PLS-R model by implementing
the method from the Python package sklearn. The input variable set
comprised a state’s external descriptions matrix Ek , while the target
variable set comprised the partitioned neural responses Gk . In our
study, the one-dimensional embedding of both Ek and Gk represented
the most explanatory projection that maximized the covariance
between contextual information of the ongoing movie narrative and
the sets of brain subregion activities. Concretely, the component
parameter values corresponding to each of the two sets reflected
relative contributions to maximize the semantics-brain relationship.
For the PCs of limbic subregions (AM and HC), the PCA inverse
transformationwasused tomap the parameter values of the PCs to the
original limbic subregion level, where we identified the functional
interconnection of neocortical subregions. On the descriptions’ side,
we identified the most prominently contributing semantic contexts
and annotations among three categories (place, emotion, and rest)
from parameter values corresponding to Ek loading to nominate
properties of the tracked movie semantics and the neurocognitive
categories at play. Collectively, the four cross-associations of corre-
sponding brain subregions and top contributing descriptions formed
four coherent signatures that may speak to the multi-mode mechan-
ism of DN circuits paired with both HC and AM.

To test the generalization ability of PLS-R model, we performed a
20-fold cross validation. Instead of splitting the subject-wise con-
catenated data matrix, it is more rational to divide each subject’s state
specific time sequence into20 folds. Then,weconcatenated the 19 folds
across subjects to offer the training set to for PLS-R. The left out onefold

datawere also concatenated across subjects to offer the testing set. The
PLS-R model was trained on the training set with the same procedure.
Subsequently, the Pearson’s correlations were calculated between the
two one-dimensional embeddings on the testing set. Then, this process
was repeated twenty times so that all 20 folds data were covered. The
summarized results were shown in Supplementary Fig. 8.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The intermediate data generated in this study have been deposited in
https://osf.io/6s2xh/. The raw fMRI data, structural MRI and annota-
tions are available at studyforrest’s official website https://www.
studyforrest.org/. Source data are provided with this paper.

Code availability
Code is available here: https://github.com/dblabs-mcgill-mila/hmm_
forrest_nlp.
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