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they faithfully drive reward prediction error 
(RPE)-related activity in DA neurons.

Although many neurons in ZI were 
modulated by novelty and novelty 
prediction, these neurons did not encode 
RPEs. Strikingly, the responses of putative 
DA neurons in SNc were fully dissociable 
from the responses of ZI neurons: DA 
neurons were strongly activated by 
unpredicted reward and suppressed 
by the unpredicted no-reward cues, as 
expected, but they were not activated in 
the novelty-seeking and novelty-inspecting 
trials. The authors also recorded from 
neurons in lateral habenula (LHb), as these 
can be activated by negative events and 
suppress DA neurons8. They found that most 
LHb neurons were inhibited by unpredicted 
reward and excited by no-reward cues, 
but they were not activated in the 
novelty-seeking or novelty-inspecting trials.

At this point in the study the evidence 
showed that, in primates, novelty-prediction 
signals in ZI do not originate from 
RPE-coding DA neurons in the SNc or from 
LHb neurons. It is worth noting that DA 
neurons are diverse; they distribute over 
multiple regions, integrate distinct inputs, 
project to different targets, and can be 
classified into multiple functional types6,9–11. 
Further work is needed to define whether 
other subpopulations of DA neurons 
respond to novelty-seeking behavior.

Ogasawara et al. continued to search for 
the source of the novelty-seeking signal, by 
recording from 17 cortical and subcortical 
brain areas (including temporal cortex, 
amygdala, hippocampus and prefrontal 
cortex) that are known to project to ZI, 
and screened for areas in which neurons 
encoded the prediction or detection of 
novelty. Anterior ventral medial temporal 
cortex (AVMTC) (Fig. 1) appeared to 
largely include perirhinal cortex (PRh) 

and rostral medial area TE. TE/PRh, 
which is thought to have a critical role in 
visual novelty processing and visual object 
memory in primates12,13, was rich in neurons 
encoding both novelty detection and novelty 
prediction. The responses in TE/PRh and 
ZI differed in that TE/PRh neurons were 
sensitive to the visual stimulus, whereas 
activity in ZI neurons was more closely 
related to gaze shifts. This suggests that 
there is a fascinating functional network 
for novelty-seeking behavior: TE/PRh 
processes the sensory component of novelty 
predictions, and this information is used 
by ZI to guide novelty-seeking gaze shifts. 
This idea of a sensorimotor transformation 
between regions was supported by the 
shorter response latency for both novelty 
detection and novelty prediction in the TE/
PRh population than in the ZI population.

Ogasawara et al. present a detailed 
study, defining two of the nodes in a neural 
circuit (TE/PRh to ZI) that underlies 
novelty-seeking behavior. They also 
demonstrated that DA signals from SNc 
are orthogonal to the presentation of 
novelty-predicting cues. This study enhances 
our understanding of the neural substrates 
of novelty-seeking behavior, and raises some 
interesting questions. Do other populations 
of DA neurons respond to value-free novelty 
and novelty prediction? If novelty-seeking 
is independent from the canonical circuit of 
motivation, what is the neural circuit that 
drives us to seek novelty? Novelty can be 
classified into different types — for example, 
object, spatial, or contextual novelty, and 
common or absolute novelty10. Novelty 
can be detected using various sensory 
modalities (visual, olfactory, gustatory, 
auditory, tactile), alone or in combination. 
Do different types of novelty-seeking occupy 
distinct or overlapping neural circuits? Does 
the choice of modality affect which nodes of 

the circuit are recruited? From the questions 
raised here, it is clear that Ogasawara et al. 
have opened a new door in the field of 
novelty research. ❐

Wenliang Wang! !, Mark A. G. Eldridge! ! 
and Barry J. Richmond! ! ✉
Laboratory of Neuropsychology, NIMH, NIH, DHHS, 
Bethesda, Maryland, USA.  
✉e-mail: barryrichmond@mail.nih.gov

Published online: 13 December 2021 
https://doi.org/10.1038/s41593-021-00965-8

References
 1. Jaegle, A., Mehrpour, V. & Rust, N. Curr. Opin. Neurobiol. 58, 

167–174 (2019).
 2. Ogasawara, T. et al. Nat. Neurosci. https://doi.org/10.1038/s41593-

021-00950-1 (2021).
 3. Ghazizadeh, A., Griggs, W. & Hikosaka, O. Front. Neurosci. 10, 

378 (2016).
 4. Jutras, M. J. & Bu!alo, E. A. Proc. Natl. Acad. Sci. USA 107, 

401–406 (2010).
 5. Lak, A., Stau!er, W. R. & Schultz, W. eLife 5, e18044 (2016).
 6. Menegas, W., Babayan, B. M., Uchida, N. & Watabe-Uchida, M. 

eLife 6, e21886 (2017).
 7. Morrens, J., Aydin, Ç., Janse van Rensburg, A., Esquivelzeta 

Rabell, J. & Haesler, S. Neuron 106, 142–153.e7 (2020).
 8. Matsumoto, M. & Hikosaka, O. Nature 447, 1111–1115 (2007).
 9. Bromberg-Martin, E. S., Matsumoto, M. & Hikosaka, O. Neuron 

68, 815–834 (2010).
 10. Tapper, A. R. & Molas, S. Neurobiol. Learn. Mem. 176,  

107323 (2020).
 11. Watabe-Uchida, M., Zhu, L., Ogawa, S. K., Vamanrao, A. & 

Uchida, N. Neuron 74, 858–873 (2012).
 12. Murray, E. A. & Richmond, B. J. Curr. Opin. Neurobiol. 11, 

188–193 (2001).
 13. Xiang, J. Z. & Brown, M. W. Neuropharmacology 37,  

657–676 (1998).

Acknowledgements
The authors are supported by The Intramural Research 
Program, National Institute of Mental Health, National 
Institutes of Health, and Department of Health and Human 
Services under report ZIAMH 002619. The opinions 
expressed in this article are the authors’ own and do not 
necessarily reflect the view of the US National Institutes of 
Health, the Department of Health and Human Services, or 
the US Government.

Competing interests
The authors declare no competing interests.

COGNITIVE NEUROSCIENCE

A deeper look at vision and memory
Allen et al. introduce the Natural Scenes Dataset — high-resolution fMRI data from eight individuals scanned as 
they collectively viewed more than 70,000 natural images and performed a continuous recognition task. This 
resource promises to yield insights into visual perception and memory and to help bridge cognitive neuroscience 
and artificial intelligence.
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Human neuroscience is now solidly 
in the age of ‘big data’. Over the past 
decade, researchers have recognized 

that understanding the brain will require 
sampling it at extraordinary scales, and  
have gone to great lengths to collect and 

share large datasets. In doing so, they 
must make critical decisions about which 
dimension(s) of a dataset should be ‘big’. 
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Some endeavors have collected limited 
amounts of data from large numbers of 
subjects1–3, whereas others have sampled 
deeply from a small number of subjects4,5. 
While each approach is best suited to certain 
scientific questions, one commonality 
across both types of existing dataset is that 
functional scan paradigms are typically 
limited to the resting state and/or a short 
battery of traditional tasks designed to 
broadly sample across multiple domains of 
cognition (for example, working memory, 
language, emotion).

This feature makes such previous datasets 
useful for investigating functional brain 
organization within and across individuals 
and cognitive states, but less useful for 
informing computational theories of neural 
processes within a single cognitive system. 
For this, one would need dense sampling of 
a single cognitive system, with an extensive 
stimulus set and a carefully crafted task 
paradigm to drive the underlying neural 
system in all its richness and complexity. 
This new approach would effectively flip 
the axes of breadth and depth: whereas 
previous datasets have gone deep on 
subjects (either high-N-sparsely-sampled or 
low-N-densely-sampled), sometimes with 
a breadth of paradigms to tap into different 
cognitive systems, a dataset in this new vein 
would go deep on a single system, with a 
breadth of stimuli and a targeted paradigm 
to more completely probe that particular 
system (Fig. 1a).

Vision presents an optimal system 
of choice given its long-standing role 
as a testbed for computational theories 

of cognition. In this issue of Nature 
Neuroscience, Allen et al. describe the 
curation and release of the Natural Scenes 
Dataset (NSD): a neuroimaging dataset 
of remarkable scale collected during the 
presentation of richly annotated natural 
scenes6. Over the course of a year, the 
authors used high-resolution 7T fMRI 
to sample the brain responses of eight 
individuals to more than 70,000 images, 
resulting in more than 30 h of data per 
individual. In addition, by designing novel 
analysis techniques and benchmarking data 
quality, they remove burdens of quality 
assurance from other research groups and 
enable them to focus on developing insights 
from future analyses. This uniquely rich 
catalog of neural responses to complex, 
real-world images represents a key resource 
for understanding the computational 
principles and fine-grained functional 
organization of the human visual cortex.

The vast and diverse set of natural 
scene stimuli used in the NSD affords an 
unprecedented opportunity to deepen 
our understanding of the functional 
organization of visually responsive cortex. 
Previous studies have typically used 
hundreds to thousands of images7, an 
order of magnitude fewer than used in the 
NSD. Such studies have revealed numerous 
organizing principles of the ventral temporal 
cortex, including multiple granularities 
of category-level organization, gradients 
of animacy and eccentricity, and shared 
representational spaces across participants8. 
Yet even with stimulus sets of this size, the 
inherent complexity of natural scenes is such 

that the number of visual features is still 
disproportionately larger than the number 
of stimuli, meaning that vast portions of 
natural image space remain uncharacterized. 
The sheer expanse of the NSD stimulus set, 
along with the computer-vision annotations 
given for each image, supplies the amount of 
data needed to accelerate our understanding 
of how the visual system dissects  
and represents the full richness of  
the visual world.

Two key methodological advances 
accompany the dataset. First, the authors 
develop a novel approach to maximize the 
signal-to-noise ratio of fMRI data. Classic 
fMRI studies present stimuli in rapid 
succession and derive neural responses by 
fitting a model time-locked to the onset 
of each displayed stimulus. However, with 
such rapid stimulus presentations, neural 
responses can overlap, affecting the quality 
of the extracted signal and limiting the 
number of stimuli that can be presented. 
To address this, the authors introduce 
additional steps which more accurately 
extract and model the neural signal and 
demonstrate impressive performance gains 
over existing methods. In and of itself,  
this innovative method will bolster the 
quality of event-related fMRI analyses, 
including re-analysis and interpretation  
of existing datasets.

A second methodological advance 
relates to applications in machine learning. 
In one of the first demonstrations in the 
fMRI field9, the authors trained a deep 
convolutional neural network (CNN) 
exclusively with brain responses to a set  
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Fig. 1 | The Natural Scenes Dataset. a, The Natural Scenes Dataset (NSD) uses high-resolution fMRI of a single cognitive task to deeply sample neural 
responses to an unprecedented breadth of stimuli (more than 70,000 natural scene images). Previous big fMRI datasets broadly, but shallowly, sampled 
across a larger number of cognitive tasks and/or participants (HCP, Human Connectome Project; ABCD, Adolescent Brain Cognitive Development; MSC, 
Midnight Scan Club). b, The massive size of the NSD enabled Allen et al. to create an end-to-end model of neural responses. The authors trained a deep 
convolutional neural network (CNN) exclusively with fMRI-based neural activity to predict brain responses to unseen stimuli. By contrast, previous studies 
have relied on pre-trained CNNs to predict brain responses.
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of training stimuli to predict brain responses 
to held-out stimuli (an end-to-end  
model; Fig. 1b). Previous fMRI and 
neurophysiology research has revealed 
striking correspondences between the 
processing stages of CNNs and the 
hierarchical organization of the ventral 
visual cortex10. However, owing to the 
amount of data required to train CNNs from 
scratch, prior fMRI studies have used CNNs 
trained to perform tasks such as object 
recognition and then transferred learning 
of the pre-trained image features to predict 
neural responses, rather than training the 
CNN directly on brain activity related to 
those tasks. Here, Allen et al. report that 
a brain-optimized CNN modestly but 
consistently outperforms a pre-trained, 
task-optimized CNN (AlexNet) in 
predicting early and middle visual pathway 
responses. This finding opens exciting 
possibilities for testing computational 
hypotheses of visual processing using 
models trained directly on fMRI data.

This valuable resource promises many 
future empirical insights. First and foremost, 
because the NSD involves dense sampling 
of high-resolution neural activity in a small 
group of carefully selected individuals, 
it offers a unique lens on the functional 
organization of visually responsive cortex. 
Fine-grained functional topography can 
be highly idiosyncratic, even when local 
neuroanatomical features are shared 
across brains11. As a result, the organizing 
principles of cortex, including boundaries 
between discrete functional areas or 
networks and gradients of distributed 
representations, can often be recovered only 
through careful single-subject analyses5,11,12. 
Recent single-subject work has begun to 
probe cortical organization with targeted 

task manipulations, uncovering separable, 
interdigitated networks that subserve 
distinct cognitive processes13,14. The massive 
amount of high-quality, within-subject data 
contained within the NSD raises the exciting 
possibility of discovering new organizing 
principles of vision and memory. The 
detailed auxiliary scans collected for each 
subject — population receptive field maps, 
functional localizers, resting state, diffusion, 
and several structural contrasts — enable 
future studies using the NSD to precisely 
situate each subject’s neural responses in 
the context of their own, idiosyncratic 
functional organization.

The NSD is also poised to provide key 
insights into the neural mechanisms of 
visual memory. Participants performed a 
continuous image recognition task across 
the 30–40 scan sessions, representing 
the longest visual memory fMRI study 
to date and an exciting opportunity to 
study the transformation from novel 
(perceptual) to familiar (mnemonic) 
representations in the brain. Earlier 
research has reported a posterior–anterior 
gradient of perceptual-to-mnemonic 
representations in the ventral temporal 
cortex15, specialized category-selective 
memory areas14, and representational 
transformations between perceptual and 
remembered stimuli16. However, little is 
known about how these gradients, areas, or 
representational transformations emerge 
over time as novel stimuli become familiar, 
an exciting potential offering of the NSD. 
In future versions of NSD-related data, the 
authors will release an fMRI visual imagery 
dataset along with a behavioral dataset 
containing representational similarity 
judgments for the natural scene stimuli. 
These current and future resources will 

catalyze a detailed understanding of how 
perceptual–mnemonic representations 
change over time in the brain.

Overall, the NSD is a valuable 
contribution to multiple fields and subfields 
of cognitive neuroscience and artificial 
intelligence. With the curation and 
dissemination of this exceptional dataset, the 
authors continue the admirable data-sharing 
tradition in the human neuroimaging 
community and create an exciting platform 
for new discoveries. ❐
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