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In-degree centrality in a social network is linked to
coordinated neural activity
Elisa C. Baek 1✉, Ryan Hyon1, Karina López 1, Emily S. Finn 2, Mason A. Porter 3,4 &
Carolyn Parkinson 1,5✉

Convergent processing of the world may be a factor that contributes to social connectedness.

We use neuroimaging and network analysis to investigate the association between the social-

network position (as measured by in-degree centrality) of first-year university students and

their neural similarity while watching naturalistic audio-visual stimuli (specifically, videos).

There were 119 students in the social-network study; 63 of them participated in the neu-

roimaging study. We show that more central individuals had similar neural responses to their

peers and to each other in brain regions that are associated with high-level interpretations

and social cognition (e.g., in the default mode network), whereas less-central individuals

exhibited more variable responses. Self-reported enjoyment of and interest in stimuli followed

a similar pattern, but accounting for these data did not change our main results. These

findings show that neural processing of external stimuli is similar in highly-central individuals

but is idiosyncratic in less-central individuals.
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Humans are incredibly social, and difficulties with social
connection have been linked to myriad negative con-
sequences, including increased likelihood of morbidity

and mortality1–4. Having many social ties is one factor that can
protect against the detrimental consequences of social isolation
and disconnection5–9. Differences in the extent of social con-
nectedness occur in many human social networks10–12, and it has
been established that such differences are critical determinants for
the well-being of individuals5. They can also have far-reaching
consequences for the social networks in which individuals are
embedded. For example, central individuals often have significant
influence in shaping the opinions and attitudes of social
groups13–16.

Despite robust evidence for the benefits to one’s health and
well-being of being well-connected and the fact that well-
connected individuals are well-positioned to exert influence on
others in their social networks, there are significant gaps in our
understanding of which factors distinguish well-connected indi-
viduals (such as those with many friends) from other individuals.
For instance, although some personality traits (such as extraver-
sion and emotional stability) have been associated with being
well-connected in some social networks17,18, such links have not
been found in other contexts19–21. It is possible that approaches
that focus on personality do not capture features that distinguish
central individuals across various social contexts. For example,
one possibility is that individuals who occupy central positions in
a social network process the world around them in a way that
allows them to relate to, understand, and connect with a larger
number of people in their communities. Recognizing and
adhering to social norms is critical to being successful in forming
and maintaining social ties22, so well-connected individuals may
be more attuned to their peers’ norms either as a cause or as a
consequence (or as a combination of both) of their central
position in a network. Accordingly, well-connected individuals
may process the world around them in ways that are very similar
to their peers. Correspondingly, it is possible that individuals with
fewer social connections (specifically, those with lower degree
centrality, once one defines a social connection of interest) may
process the world around them in ways that are less similar to
their peers (including one another) than is the case for individuals
with many social connections (i.e., those with higher degree
centrality).

In the present paper, we test the hypothesis that individuals
who occupy central positions in their social networks have neural
responses to naturalistic stimuli (specifically, videos) that are
more similar to those of their peers than individuals who occupy
less-central positions. Specifically, we test whether individuals
who many others nominate as a frequent social partner (i.e., who
have a high in-degree centrality) have neural responses that are,
on average, more similar to their peers than individuals who few
people indicate as a frequent social partner and thus have a low
in-degree centrality. There are many ways of defining the
importance (i.e., centrality) of a node in a network23,24; as a
shorthand, we use the term “highly central” to refer to having a
high in-degree centrality. Measuring neural activity during a
naturalistic paradigm (in which people view complex audiovisual
stimuli, such as videos, that unfold over time) allows one to
obtain insight into individuals’ unconstrained thought processes
as they unfold25. Coordinated brain activity between individuals
(i.e., large inter-subject correlations (ISCs) of neural responses)
during the viewing of dynamic, naturalistic stimuli has been
associated both with friendship26 (where, as in previous work on
friendship networks18, the definition of “friendship” was based on
who nominated whom as a frequent social partner) and with
shared interpretations and understanding of events27–29. There-
fore, the extent to which an individual, on average, has similar

neural-response time series as their peers can provide insight into
the extent to which they process the world around them in a way
that reflects the shared values, beliefs, and experiences of their
communities.

We also test whether individuals who are highly central in their
social networks are very similar to other highly-central indivi-
duals in how they process external stimuli, whereas less-central
individuals process external stimuli in their own idiosyncratic
ways. To help explain this idea, we draw an analogy from the
famous opening line of the novel Anna Karenina30: “Happy
families are all alike; every unhappy family is unhappy in its own
way.” An Anna Karenina principle posits that endeavors with
particular outcomes share similar characteristics (so, in that sense,
they “are all alike”) and that a lack of any one of the character-
istics results in the absence of the outcome in question31. The
concept of an Anna Karenina principle has been applied to study
various phenomena32. For example, it was used recently to link
neural similarity with behavioral outcomes, such as trait
paranoia33. In the present work, we test the hypothesis that
“Highly-central individuals are all alike, but each less-central
individual is dissimilar in their own way.”

We first test whether highly-central individuals in a commu-
nity process external stimuli in a way that is more similar to other
community members than is the case for less-central individuals.
We assess this idea by calculating the mean neural similarity
between individuals and their peers. (See our participant-level ISC
analysis in the Methods section for more details.) We also test the
hypotheses that highly-central individuals have very similar
neural responses to one another and that each less-central indi-
vidual responds in their own unique way (i.e., idiosyncratically).
Our results provide support for both hypotheses. We found that,
on average, highly-central individuals had very similar neural
responses to other members of their communities and especially
to other highly-central individuals in brain regions that are
associated with shared high-level interpretations and social cog-
nition (e.g., regions of the default mode network). By contrast, we
found that less-central individuals had comparatively idiosyn-
cratic neural responses. We obtained similar results when we
controlled for demographic similarities and social distances
between individuals. Additionally, although participants’ self-
reported enjoyment of and interest in the stimuli followed a
similar pattern as in the brain data, accounting for their self-
reported preferences did not change our main results. Taken
together, our findings suggest that individuals who are central in a
social network tend to be more similar to one another in the ways
that they process external stimuli than individuals who are less
central and that each less-central individual is dissimilar in their
own idiosyncratic way.

Results
Social-network characterization. We characterized the social
networks of individuals who live in two different residential
communities of first-year students at a large state university
(University of California, Los Angeles) in the United States. A
total of 119 participants completed an online survey in which
they indicated individuals with whom they socialized most fre-
quently within their community (consistent with prior work on
friendship networks18). (See the Methods section for further
details.) Some of these participants also completed the functional
magnetic resonance imaging (fMRI) part of the study. (The fMRI
part of the study included N= 63 people after exclusions; see the
Methods section.) Using the responses of the participants, we
constructed a directed network for each of the two communities
(see Fig. 1). In each of these networks, a node represents an
individual and a directed edge represents one individual
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nominating another as a frequent social partner. For each indi-
vidual, we calculated in-degree centrality, which counts the
number of times that the individual was nominated as a regular
social partner by someone else in the network. We chose to
quantify an individual’s centrality within their community in
terms of in-degree centrality because it captures the extent to
which others in the community consider the individual to be a
regular social partner. Another advantage of in-degree centrality
is that an individual’s in-degree centrality (unlike some other
measures of centrality, such as out-degree centrality) does not rely
at all on one’s own self-reported answers about the relationships
that one has with others. Therefore, in-degree centrality is not
susceptible to erroneous perceptions of one’s own social partners
and is less susceptible than other notions of centrality to mis-
characterization of social ties due, for example, to any given
participant’s inattention during a survey or atypical interpreta-
tions of survey questions (because an individual’s in-degree
centrality is based on data that is aggregated across the responses
of many participants). In-degree centrality is particularly suitable
for our study because it is not affected by the presence of multiple
components in a network, unlike most other measures of cen-
trality (e.g., eigenvector centrality)23.

In our primary analyses, we used a median split to binarize our
sample into high-centrality and low-centrality groups. This choice
is consistent with recent studies that related neural similarity with
behavioral measures34,35. In our fMRI study, we classified
participants as part of the high-centrality group if they had an
in-degree that was larger than the median (specifically, if it was
more than 2; there were nhigh= 23 such people) and into the low-
centrality group if they had an in-degree that was less than or

equal to the median (specifically, if it was less than or equal to 2;
there were nlow= 40 such people). See Supplementary Fig. 1 for
plots of the in-degree distributions. Because the median-split
approach resulted in unevenly sized groups, we also conducted
additional analyses to examine the relationships between the
original non-binarized version of centrality and neural similarity
whenever possible, as we describe in more detail below. We also
conducted analogous exploratory analyses with approximately
equal-sized groups by contrasting individuals with in-degree
centralities in the top and bottom thirds of the distribution. This
yielded similar results to our main findings. See Participant-level
ISC analysis and Dyad-level ISC analysis for more details.

Neural similarity. During our fMRI study, participants watched
14 video clips that span a variety of topics (see Supplementary
Table 1). We calculated ISCs of time series of neural responses
that were measured with fMRI to capture shared neural responses
across participants during the processing of naturalistic stimuli36
(see Fig. 1). First, we extracted the mean-response time series
across the entire video-viewing task from both (1) each of the 200
cortical regions in the 200-parcel version of the Schaefer et al.37
parcellation scheme and (2) 14 subcortical regions38. (See the
Methods section for more details.) This resulted in a total of 214
brain regions across the whole brain. For each of the 1952 unique
pairs of participants (i.e., dyads) in our fMRI sample, we then
computed the Pearson correlation between the dyad members’
time series of neural responses for each cortical region. This yields
one correlation coefficient per unique dyad for each brain region.
See the Methods section for more details.

Fig. 1 Study paradigm and calculations. a Schematic of the fMRI study paradigm. In session 1 of the study, participants attended an in-lab session in which
their brain activity was measured using fMRI while they watched a series of naturalistic stimuli (i.e., videos). After the fMRI scan, the participants provided
ratings on how enjoyable and interesting they found each video. b Schematic of our social-network survey. In session 2 of the study, participants completed
an online social-network survey in which they indicated the individuals in their residential community with whom they were friends. c Schematic of neural
similarity. We extracted the time series of neural responses that were obtained as participants viewed the stimuli. We then calculated inter-subject
correlations (ISCs) of these time series for each of 214 brain regions. d Schematic of our network calculations. Based on the participants’ responses in (b),
we constructed two directed, unweighted networks—with one for each residential community—in which each node represents an individual and each
directed edge represents one individual nominating another as a friend. For each individual, we calculated in-degree centrality, which counts the number of
times that that individual was nominated as a friend by others in their own residential community.
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Participant-level ISC analysis. We tested whether individuals
who had higher in-degree centralities in their communities
exhibited more typical neural responses than individuals with
lower in-degree centralities. To do this, in each brain region, we
transformed our dyad-level neural similarity measure to a
participant-level measure by calculating the mean Fisher z-
transformed39 ISC value for each participant with each other
participant. This yields one ISC value for each individual for each
brain region; this value encodes a mean similarity of the neural
responses between the individual and all other individuals in the
corresponding brain region (see Fig. 2a). After calculating these
values, we fit one generalized linear model (GLM) for each brain
region with the ISC in the respective brain region as the depen-
dent variable (which we transformed into z-scores to produce
standardized coefficients) and the binarized in-degree centrality
as the independent variable (see Fig. 2b). Finally, we employed

false-discovery rate (FDR) correction to correct for multiple
comparisons across brain regions. We found that high in-degree
centrality was associated with larger mean neural similarity
with peers in the dorsomedial prefrontal cortex (DMPFC) bilat-
erally (left DMPFC: β= 0.964, SE= 0.233, pcorrected= 0.012,
puncorrected < 0.001; right DMPFC: β= 0.977, SE= 0.232,
pcorrected= 0.012, puncorrected < 0.001) and right precuneus
(β= 0.912, SE= 0.237, pcorrected= 0.020, puncorrected < 0.001). We
show these results in Fig. 2c. In Supplementary Fig. 2, we show
scatter plots to illustrate the relationships between the in-degree
centrality and mean neural similarity of participants in key brain
regions. We did not find any significant associations in sub-
cortical regions (see Supplementary Table 2). We also fit analo-
gous models to control for demographic variables that may be
associated with neural similarity26,40, models that only incorpo-
rated neural similarities between participants who were living in

Fig. 2 Participant-level analysis. a Our approach for participant-level analysis. First, we Fisher z-transformed the dyad-level ISCs, which are encoded by a
matrix of pairwise Pearson correlation coefficients (which we denote by r). We then computed the mean of each participant’s ISC with each other
participant. (In other words, we took the mean of each row of the matrix.) We performed the above calculations for each of the 214 brain regions. This
yields one ISC value for each participant for each brain region. The ISC value encodes the mean similarity of the neural responses between the participant
and each other participant in the corresponding brain region. b We tested for relationships between the participants’ in-degree centralities and these
participant-level ISC values in each brain region. c Our results that relate mean ISCs with the binarized in-degree centrality variable indicated that
individuals with high in-degree centralities had much larger mean neural similarities with their peers in the bilateral DMPFC and precuneus than individuals
with low in-degree centralities. d Our results that relate mean ISCs with the original (i.e., non-binarized) in-degree centrality values gave similar results as
the analysis in (c). We found that the mean ISCs in the bilateral DMPFC, precuneus, and the superior parietal lobule were positively correlated with in-
degree centrality. The quantity β denotes the standardized regression coefficient, and ρ denotes the Spearman rank correlation. All results are FDR-
corrected at p < 0.05, which corresponds to an uncorrected p-value of 0.009 in (c) and an uncorrected p-value of 0.001 in (d). All of the reported p-values
are two-tailed. Source data are provided as a Source Data file.
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the same residential community, models that controlled for social
distances between participants in the same community, and
models that used a subset of the data with approximately equal-
sized centrality groups. These other approaches yielded similar
results. See Supplementary Figs. 3–6.

To confirm that our results from analyzing binarized-centrality
groups also hold when we treat in-degree centrality in its original
(i.e., non-binarized) form, we also conducted an analogous analysis
to relate participants’ mean ISCs with each other in each brain
region with the non-binarized in-degree centrality values. For each
brain region, we calculated the Spearman rank correlation ρ to
examine the relationship between the mean ISCs in each brain
region and in-degree centrality. We again employed FDR
correction to correct for multiple comparisons across brain
regions. Using these computations, we identified similar regions
as when we used binarized in-degree centrality (i.e., as low versus
high values). We found that neural similarities in the bilateral
DMPFC (left DMPFC: ρ= 0.420, pcorrected= 0.048, puncorrected <
0.001; right DMPFC: ρ= 0.415, pcorrected= 0.048, puncorrected <
0.001), precuneus (ρ= 0.408, pcorrected= 0.048, puncorrected < 0.001),
and left superior parietal lobule (ρ= 0.424, pcorrected= 0.048,
puncorrected= 0.002) were significantly correlated with in-degree
centrality (see Fig. 2d). In other words, we found that there was a
positive association between an individual’s in-degree centrality
and their mean neural similarity with their peers in the DMPFC,
precuneus, and superior parietal lobule. See Fig. 3 for a
visualization of the ISC in the right DMPFC and its association
with in-degree centrality. We did not find any significant
associations in subcortical regions (see Supplementary Table 3).

Notably, for both sets of analyses, we found a positive
relationship in all cases in which participants’ ISCs with their
peers were related significantly to their in-degree centrality. That
is, in both analyses, we found that higher in-degree centralities
were associated with more typical neural responses. Additionally,
in these analyses and in all of our other analyses, we did not find
any regions in the brain in which low in-degree centrality was
associated with more similar neural responses to one’s peers.

Preference similarity. After the neuroimaging portion of the
fMRI study, participants rated the extent to which they felt that
each video that they saw in the scanner was enjoyable and

interesting. For each participant, we took the following steps to
calculate their mean similarity with their peers in enjoyment and
interest ratings. For each of the 1952 unique dyads (i.e., pairs of
individuals), we calculated the Euclidean distance between the two
participants’ enjoyment ratings across the 14 different videos and
transformed the distance measure into a normalized similarity
measure (where the similarity is given by s= 1− [distance/
max(distance)]). Larger similarity values, which range from 0 to 1,
indicate greater similarity in how much two individuals in a dyad
enjoyed the content. We repeated the same process for interest
ratings. This yields two preference similarity measures per dyad.

Analysis of participant-level preferences. We were interested in
(1) whether individuals who were highly central in their resi-
dential community had preferences that were more similar to
others in their community than less-central individuals and (2) if
such self-reported differences in preferences could account for the
neural results that we reported above. To investigate this, we
transformed the dyad-level preference similarity measures to
participant-level variables. First, we calculated each participant’s
mean similarity in enjoyment ratings with each other participant.
This estimates the extent to which each participant, on average,
had similar preferences to other participants in how enjoyable
they found the videos. We repeated the same process for the
interest ratings. This approach yields one number for each par-
ticipant to represent their mean similarity with their peers in
enjoyment ratings and one number to represent their mean
similarity with their peers in interest ratings. We then related the
mean enjoyment and interest similarity measures with the
binarized in-degree centrality variable by fitting a GLM for each
similarity measure with z-scores of the similarity measures as the
dependent variables and the binarized in-degree centrality vari-
able as the independent variable. Our results indicate that indi-
viduals who had higher centralities in their social networks were
more similar, on average, than less-central individuals with their
peers in the content that they found to be enjoyable (β= 0.578,
SE= 0.253, p= 0.026) and interesting (β= 0.491, SE= 0.256,
p= 0.061). The association between in-degree centrality and
mean interest similarity is only marginally statistically significant
(i.e., trend-level).

Residential 
Community 1(a) (b)

rDMPFC

IS
C 

 in
  rD

M
PF

C

0.122

0.034

non-fMRI participants
Node sizes indicate in-degree centralities

Residential 
Community 2

Fig. 3 Visualization of participant-level ISC results in the social networks. Visualizations of the social networks of (a) residential community 1 and (b)
residential community 2 of a first-year dorm. Each participant was a resident of one of two distinct residential communities, where one “community”
consists of the set of people who live in the same wing and floor of a residence hall. Each node (which we show as a disc) represents one resident who was
living in one of the communities, and each line segment represents one directed edge between two nodes if it is unidirectional and represents two directed
edges if it is bidirectional. For example, an arrow from node A to node B conveys that node A nominated node B as a friend. An edge with two arrowheads
indicates a mutually nominated friendship. The size of a node represents its in-degree centrality, with larger nodes indicating individuals with higher in-
degree centralities. The color of the nodes represents a node’s mean neural similarity in the rDMPFC to other members of its residential community, with
darker colors indicating greater neural similarities. As this figure indicates, individuals with higher in-degree centralities (i.e., individuals who many other
individuals nominated as a friend) tended to have the largest mean ISCs with their peers in the rDMPFC. Source data are provided as a Source Data file.
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Given our finding that individuals with a high in-degree
centrality were more similar to their peers in self-reported
content preferences than those with a low in-degree centrality, we
tested whether our findings that link ISC to in-degree centrality
could arise from inter-subject similarities in self-reported
preferences. To investigate this possibility, we fit GLMs to test
the relationship between the ISC in each brain region and in-
degree centrality while controlling for similarity in enjoyment and
interest ratings. Our results indicate that the relationships
between ISC and in-degree centrality remain significant after
controlling for similarity in enjoyment and interest ratings (see
Supplementary Fig. 7), suggesting that neural similarity in these
regions captures similarities beyond what one can attribute purely
to self-reported preference ratings.

Dyad-level ISC analysis. Our participant-level ISC results indicate
that individuals with high in-degree centralities (i.e., those who were
nominated as a regular social partner by many individuals) had, on
average, greater neural similarity with their peers than individuals
with low in-degree centralities. We also took a finer-grained
approach to test if individuals with similar in-degree centralities
were most similar to one another, irrespective of whether they had a
high or a low in-degree centrality, or if individuals who were highly
central in their residential community were most similar to other
highly-central individuals and less-central individuals were com-
paratively idiosyncratic (i.e., dissimilar to others, including other
individuals with low in-degree centralities). To relate our dyad-level
neural similarity measure with individuals’ in-degree centralities, we
transformed the participant-level binarized in-degree centrality
measure into a dyad-level variable. We categorized the dyads into
(1) {high, high} if both participants in the dyad had a high in-degree
centrality, (2) {low, low} if both participants in the dyad had a low
in-degree centrality, and (3) {low, high} if one participant in the
dyad had a low in-degree centrality and the other participant had a
high in-degree centrality. For each of our 214 brain regions, we fit a
linear mixed-effects model with crossed random effects to account
for the dependency structure of the data41 (see the Methods section)
with ISC in the corresponding brain region as the dependent vari-
able and the dyad-level centrality variable as the independent
variable. We then performed a planned-contrast analysis42 to
compare the different in-degree centrality groups and thereby
identify brain regions for which including one or more low-
centrality individuals in a dyad was associated with less-coordinated
neural responses (i.e., ISC{high,high} > ISC{low,low}, ISC{high,high} >
ISC{low,high}, and ISC{low,high} > ISC{low,low}) (see Fig. 4a).

The ISC{high,high} > ISC{low,low} contrast is our most direct test of
the hypotheses that highly-central individuals have very similar
neural responses to one another, whereas less-central individuals
have neural responses that are comparatively idiosyncratic. This
is the case because it tests whether neural similarity is greater in
dyads in which both individuals have high in-degree centralities
than in dyads in which both individuals have low in-degree
centralities. By contrast, ISC{high,high} > ISC{low,high} would also
hold for a nearest-neighbor model33, which reflects the assump-
tion that individuals who are more similar in a behavioral trait
also exhibit greater neural similarity. (We use the term “nearest-
neighbor model” to refer to the assumption that the neural
responses of individuals are most similar to those of their
immediate neighbors, regardless of their absolute position on
some scale [31], such as whether they have a high or low in-
degree centrality.) Additionally, ISC{low,high} > ISC{low,low} does not
necessarily have to hold to support the hypotheses that highly-
central individuals have more similar neural responses to one
another but that less-central individuals have neural responses
that are comparatively idiosyncratic. For example, if each low-

centrality participant responded in a completely unique way, then
they would have similarly low ISCs with other low-centrality
individuals and with high-centrality individuals. Nevertheless, we
reasoned that ISC{low,high} > ISC{low,low} was likely to arise in our
data set because of underlying stimulus-driven responses that are
shared across all participants; each low-centrality individual will
partially reflect these shared stimulus-driven responses (and they
may each deviate from the typical responses in an idiosyncratic
way). Accordingly, we report the results of three contrasts: (1)
ISC{high,high} > ISC{low,low}, which is the most direct test of our
hypotheses; (2) ISC{high,high} > ISC{high,low}, which is a test of our
hypotheses but also holds for a nearest-neighbor model; and (3)
ISC{low,high} > ISC{low,low}, which does not have to hold to support
our hypotheses, but which we expect to hold.

We illustrate the results of the three contrasts (ISC{high,high} >
ISC{low,low}, ISC{high,high} > ISC{low,high}, and ISC{low,high} >
ISC{low,low}) in Fig. 4. As in our participant-level results, our
dyad-level results reveal that there were larger ISCs in the
DMPFC, precuneus, and portions of the superior parietal lobule
in dyads of individuals who both had high in-degree centralities
(i.e., {high, high}) than in dyads of individuals who both had low
in-degree centralities (i.e., {low, low}) (see Fig. 4b). Additionally,
ISCs in the ventrolateral prefrontal cortex (VLPFC) and
temporal pole were larger in {high, high} dyads than in {low,
low} dyads. ISCs in subcortical regions (including the amygdala,
hippocampus, left pallidum, and right thalamus) were larger in
{high, high} dyads than in {low, low} dyads (see Supplementary
Table 4). We found similar patterns when we contrasted high-
centrality dyads with mixed-centrality dyads (ISC{high,high} >
ISC{low,high}) and mixed-centrality dyads with low-centrality
dyads (ISC{low,high} >ISC{low,low}), although the effect sizes were
smaller. See Fig. 4b, c and Supplementary Tables 5 and 6. In the
Supplementary Information, we report results of analogous
models that control for demographic variables and friendship
(see Supplementary Fig. 8) and that examine neural similarities
only in participants who live in the same residential commu-
nity (see Supplementary Fig. 9). The latter analysis allowed us
to control for both demographic similarities and social
distances between individuals (see Supplementary Fig. 10).
We also report the results of models that use a subset of the
data with approximately equal-sized centrality groups (see
Supplementary Fig. 11). The results of these additional analyses
are similar to those in Fig. 4. Across all of our analyses, we did
not find any regions in the brain in which there were larger
ISCs in {low, low} dyads than in {high, high} dyads. We also
did not find any regions in the brain in which there were larger
ISCs in {low, high} dyads than in {high, high} dyads, nor any
in which there were larger ISCs in {low, low} dyads than in
{low, high} dyads. Our findings suggest that highly-central
individuals were very similar in their neural responses, whereas
less-central individuals had neural responses that were
dissimilar both to highly-central individuals and to other
less-central individuals. In other words, less-central individuals
had neural responses that were idiosyncratic, with each less-
central individual differing from the typical response of other
individuals in their own way.

We also conducted an analogous analysis to relate mean ISCs
with the original non-binarized values of the dyad-level in-degree
centralities. To do this, we related the minimum in-degree
centrality of each dyad to neural similarity in each of our 214
brain regions. Taking the minimum in-degree centrality value of
each dyad allowed us to test the hypothesis that only dyads with
two highly-central individuals had very similar neural responses
to one another. If a low in-degree centrality is associated with an
idiosyncratic neural response, then the inclusion of even just one
low-centrality individual in a dyad should be associated with a
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small ISC. For each brain region, we fit a linear mixed-effects
model with crossed random effects to account for the dependency
structure of the data41 (see the Methods section) with the ISC in
the corresponding brain region as the dependent variable and the
log-transformed minimum in-degree centrality value [specifically,
we used ln(1+minimum in-degree centrality)] of each dyad as
the independent variable.

As with our dyad-level results using the binarized centrality
variable, we found a positive association between the minimum
in-degree centrality of the dyads and neural similarity in the left
DMPFC, precuneus, posterior cingulate cortex, superior parietal
lobule, and middle temporal gyrus. That is, there was greater
neural similarity in these brain regions in dyads with a higher
minimum in-degree centrality. Mirroring our results with a
binarized in-degree centrality variable, dyads in which both
individuals were highly central in their residential community (as
encoded by a high minimum in-degree centrality) had greater

neural similarity than dyads in which both individuals were less
central (as encoded by a low minimum in-degree centrality)
(see Fig. 5).

Analysis of dyad-level preferences. We tested whether the self-
reported preferences of individuals were consistent with the
hypotheses that more-central individuals have preferences that
are very similar to one another and that less-central individuals
have preferences that are idiosyncratic, with each low-centrality
individual’s preferences differing from those of other individuals
in their own way. We also tested if such self-reported differences
in preferences could account for our neural results. We first fit
two mixed-effects models, with crossed random effects to account
for the dependency structure of the data41. (See the Methods
section.) We employed one such model for each type of pre-
ference (i.e., similarities in enjoyment and interest ratings). We
used dyad-level similarities in enjoyment and interest ratings
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Fig. 4 Dyad-level analysis and results. a Dyad-level ISCs in a brain region are encoded in a matrix whose entries consist of pairwise Pearson correlation
coefficients. The rows and columns of the matrix are ordered according to the in-degree centralities of the participants. We performed planned contrasts of
the different centrality groups to test whether dyads in which both individuals were highly central (i.e., ISC{high,high}), had larger ISCs than dyads in which
both individuals were less central (i.e., ISC{low,low}) and than dyads with mixed centralities (i.e., ISC{low,high}), for which one individual of the dyad had a low
centrality and the other had a high centrality. [The figure in (a) is adapted from prior work34.] b There were larger ISCs in the DMPFC, VMPFC,VLPFC,
precuneus, temporal pole, and portions of the superior parietal lobule in {high, high} dyads than in {low, low} dyads. c We found similar patterns when we
compared {high, high} dyads to {low, high} dyads and d when we compared {low, high} dyads to {low, low} dyads. The ISC{high,high} > ISC{low,low} contrast
in (b) provides the most direct test of our main hypotheses that highly-central individuals have similar neural responses to one another and that less-
central individuals have neural responses that are idiosyncratic. The quantity β is the standardized regression coefficient. Regions with significant
differences for each contrast are outlined in black. We used an FDR-corrected significance threshold of p < 0.001, which corresponds to an uncorrected
p-value threshold of p < 6.386 × 10−5. All of the reported p-values are two-tailed. Source data are provided as a Source Data file.

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-022-28432-3 ARTICLE

NATURE COMMUNICATIONS | ��������(2022)�13:1118� | https://doi.org/10.1038/s41467-022-28432-3 | www.nature.com/naturecommunications 7

www.nature.com/naturecommunications
www.nature.com/naturecommunications


(see the above discussion of preference similarity) as the depen-
dent variables—one in each of the two models—and the dyad-
level minimum-centrality variable as the independent variable.
We then performed planned contrasts of the three different dyad-
level centrality groups (i.e., {high, high}, {low, low}, and {low,
high}) to test if the inclusion of one or more low-centrality
individuals in a dyad was associated with lower levels of inter-
personal similarities in preferences (i.e., s{high,high} > s{low,low},
s{high,high} > s{low,high}, and s{low,high} > s{low,low}, where s corre-
sponds to dyad-level preference similarity, as defined in the above
discussion of preference similarity). We employed FDR correc-
tion to correct for multiple comparisons from the multiple
planned contrasts. Our results indicate that dyads that consisted
of two highly-central individuals (i.e., {high, high}) were more
similar to one another in what they found enjoyable and inter-
esting than dyads that consisted of two less-central individuals
(i.e., {low, low}) (see Supplementary Tables 7 and 8). We found
similar patterns when we compared high-centrality dyads to
mixed-centrality dyads and when we compared mixed-centrality
dyads to low-centrality dyads (see Supplementary Tables 7 and 8).

We then tested whether the above behavioral findings, which
(like our neural findings) support the hypotheses that highly-
central individuals are similar in their preferences and that less-
central individuals have idiosyncratic preferences, could account
for our neural results. Specifically, we examined whether inter-
subject similarities in self-reported preferences could explain our
observation that individuals who were highly central in their
residential community were similar in their neural responses to
other highly-central individuals and that less-central individuals
were comparatively idiosyncratic. To examine this possibility, we
fit additional linear mixed-effects models to test the relationship
between ISCs in each brain region and dyad-level in-degree
centrality (i.e., whether a given dyad was composed of two high-
centrality individuals, two low-centrality individuals, or one high-
centrality individual and one low-centrality individual) while
controlling for similarity in enjoyment and interest ratings.

Although similarities in enjoyment and interest ratings were also
associated with neural similarity in regions of the default mode
network (see Supplementary Figs. 11 and 12), our results indicate
that the Anna Karenina pattern of results that links ISCs and
dyad-level in-degree centralities remains significant after control-
ling for similarity in enjoyment and interest ratings (see
Supplementary Fig. 14). Therefore, we conclude that our findings
that greater neural similarity tended to occur between highly-
central individuals and that comparatively low neural similarity
tended to occur between less-central individuals arose from
differences beyond those that were captured by self-reported
preference ratings.

Discussion
What factors distinguish highly-central individuals in social
networks? Our results are consistent with the notion that indi-
viduals who are central in their social networks process external
stimuli in typical ways, whereas less-central individuals process
external stimuli idiosyncratically. In our study, we found that
highly-central individuals exhibited greater mean neural simi-
larity with their peers than less-central individuals in several
regions of the brain, including regions in which similar neural
responding has been associated with shared high-level inter-
pretations of events and social cognition (e.g., regions of the
default mode network) while viewing dynamic, naturalistic
stimuli43. We observed a distinct pattern in the relationship
between centrality and neural similarity: highly-central indivi-
duals were very similar to one another in their neural responses,
whereas less-central individuals were dissimilar both to one
another and to their peers’ typical ways of processing external
stimuli. Our findings are consistent with the possibility that
highly-central people process and respond to external stimuli in a
manner that allows them to relate to and connect with many of
their peers and with the possibility that less-central people have
idiosyncrasies that may result in greater difficulty in relating to
others. However, longitudinal research is needed to determine if
social-network centrality causes or results from processing
external stimuli in a way that is similar to one’s peers.

Brain areas in which highly-central individuals exhibited, on
average, greater neural similarity with their peers than was the
case for less-central individuals included the bilateral DMPFC
and precuneus, which are both regions of the default mode net-
work. Mirroring our findings that link in-degree centrality and
mean neural similarity with community members, brain areas in
which highly-central individuals responded similarly to one
another and less-central individuals responded idiosyncratically
include the DMPFC, precuneus, and other regions of the default
mode network (such as the posterior cingulate cortex and the
inferior parietal lobule). These regions have been implicated in
social cognitive processes such as mentalizing and perspective-
taking44–46. Neural similarity in these regions has also been
associated with similarities in the understanding and interpreta-
tion of narratives, presumably because people who share similar
viewpoints and perspectives have greater similarity in these
higher-order brain regions during the viewing of naturalistic
stimuli than those who do not29,34,47. Additionally, neural simi-
larity in these regions has been associated with friendship26;
friends (i.e., people who report regularly socializing with each
other) appear to have greater similarity in these regions than
people who are not friends. In particular, it was suggested
recently43 that the default mode network helps promote a critical
sense-making function by combining external information about
one’s surroundings with internal experiences and schemas to
create models of situations as they unfold over time and that ISCs
in regions of the default mode network support the creation of

Dyad-level results: Associating neural similarity 
with the minimum in-degree centrality in dyads

p < 0.001 after FDR correction

−1.00 1.00 β

Fig. 5 Dyad-level associations of neural similarity with the minimum in-
degree centrality of dyads. We found a positive association between ISC
and minimum in-degree centrality. Larger ISCs in brain regions (including
the DMPFC, the VLPFC, the precuneus, the temporal pole, and portions of
the superior parietal lobule) were associated with a higher minimum in-
degree centrality. The quantity β is the standardized regression coefficient.
Regions where we observed significant associations between in-degree
centrality and ISC are outlined in black. We used an FDR-corrected
significance threshold of p < 0.001, which corresponds to an uncorrected p-
value threshold of p < 8.879 × 10−5. All of the reported p-values are two-
tailed. Source data are provided as a Source Data file.
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shared meaning across individuals. Our results suggest that
highly-central individuals process external stimuli in a way that
closely reflects their peers’ typical ways of understanding and
responding to external stimuli. Such similarity may help them
relate and connect to many people (although further work is
needed to elucidate the causal mechanisms that underlie our
results). Our findings also suggest that highly-central individuals
are similar to one another and that less-central individuals are
dissimilar from a group’s typical ways of processing and under-
standing external stimuli (such that they each process and
respond to external stimuli in their own idiosyncratic way). Our
results were significant even when we controlled for (1) demo-
graphic variables that may be associated with neural similarity
and (2) social distances between individuals. Therefore, our
findings suggest that the association of neural similarity in regions
of the default mode network (and in other regions) with in-degree
centrality is not merely a result of the most-central individuals
being more likely to be friends with one another. Instead, we
observed that highly-central individuals had very similar neural
responses to many of their peers, including those with whom they
were not friends.

In our study, highly-central individuals also self-reported
preferences for the stimuli that were more reflective of their peers’
preferences. Specifically, highly-central individuals had greater
mean similarity with their peers in the extent to which they found
stimuli to be enjoyable and interesting. Furthermore, highly-
central individuals had similar preferences for the stimuli as one
another, but each less-central individual had idiosyncratic pre-
ferences for the stimuli (i.e., preferences that were different both
from the preferences of their peers on average and from those of
other less-central individuals). In concert, the observed behavioral
patterns suggest that highly-central individuals self-report pre-
ferences that are more aligned with their peers’ preferences and
thus may be more in tune with what others find enjoyable or
interesting; this may help them connect with their peers through
mutually shared interests. Notably, controlling for similarities in
the enjoyment and interest ratings did not change our results that
link neural similarity with in-degree centrality in social networks.
That is, we found that neural similarity in brain regions that have
been implicated in high-level interpretation and social cognition
was associated with network centrality above and beyond what we
were able to capture using self-reported preferences. This suggests
that measuring neural responses to naturalistic stimuli as they
unfold over time can capture consequential aspects of mental
processing beyond what one can obtain using a few targeted self-
report questions. The strong link between in-degree centrality
and ISCs (even when controlling for similarities in participants’
self-reported preferences), relative to links between in-degree
centrality and similarities in self-reported preferences, may arise
from several factors, including the finer temporal granularity of
ISCs than our self-report measures (because ISCs capture simi-
larities in how responses evolve with time), the limits of self-
report (because people are often unaware of and/or unwilling to
report features of their attitudes and other aspects of their mental
processing48), and the possibility that the similarities in proces-
sing that are linked to centrality reflect similarities in the creation
of internal models of situations as they evolve with time (rather
than reflecting similarities in what participants found interesting
or enjoyable)43. A notable benefit of calculating ISCs is that one
can use them to characterize similarities in many different aspects
of mental processing in parallel. One can thereby obtain insight
into diverse emotional and cognitive processes that unfold in
response to various situations and that may be shaped by indi-
viduals’ pre-existing beliefs, values, attitudes, and experiences.
Our neural findings also provide insights that can inform which
self-report measures are likely to capture the types of processing

that may be particularly similar between highly-central indivi-
duals and their peers. It may be particularly fruitful to test for
associations between in-degree centrality and the typicality of (1)
responses to self-report scales that capture individuals’ social and
cognitive tendencies and/or (2) individuals’ interpretations of
stimuli (e.g., as captured by semantic analyses of free-response
measures).

In the present study, we obtained data from two different
residential communities and characterized the neural similarity of
each participant in our study with each other participant,
including individuals from the other community. Furthermore,
we successfully replicated all of our main effects that link ISCs
and in-degree centrality when we fit models using only intra-
community dyads. (See Supplementary Figs. 4 and 9.) The two
residential communities each consisted of first-year students who
were attending the same university. Although each residential
community is relatively bounded and interactions between
community members were likely to be uncommon—both because
of restrictions that arose from the building structure and because
of programming that focused on intra-community social activities
—it is likely that the two residential communities had similar
shared values, beliefs, and experiences. Therefore, the types of
similarities in processing external stimuli that are associated with
in-degree centrality in one residential community are likely to be
similar to those that are associated with in-degree centrality in the
other community. However, in some contexts, looking specifically
at only intra-community similarities in neural activity may be
important when relating ISCs with social-network centralities,
particularly when drawing on participants from communities
with norms that are markedly different from each other. Future
work can further elucidate the extent to which ISCs within and
between communities are associated with individual differences
in the centralities of individuals in social networks.

Because our study has only one wave of fMRI data, an
important limitation of our work is that we are not able to
ascertain the causal mechanisms that drive our effects. Additional
research is necessary to disentangle various possible causes. We
hope that such research will help discern whether (1) processing
external stimuli in similar ways to their peers causes certain
individuals to become highly central in their social networks, (2)
being highly central in a social network causes certain individuals
to process external stimuli in ways that are more similar to those
of their peers, or (3) some combination of these two possibilities is
at play. Moreover, if being highly central causes people to process
stimuli similarly to their peers, future research can also help
uncover whether (1) highly-central individuals (as a result of their
central positions in a network) exert influence on others in their
social network, so that many individuals in the network become
more similar to the highly-central individuals, (2) highly-central
individuals change the way that they process external stimuli to fit
the norms of a social network, or (3) some combination of these
two possibilities is at play. Research that uses longitudinal designs
will be important for arbitrating between these possibilities.

Prior research suggests that individuals with high weighted in-
degree centralities have more behavioral and neural sensitivity to
interpersonal cues than individuals with low weighted in-degree
centralities49 and that such highly-central individuals are more
likely than less-central individuals to adapt their brain activity to
match that of other individuals in their social group50. Therefore,
one possibility is that people who are highly central may adapt
their views to meet their social network’s typical ways of pro-
cessing the world, perhaps due to a greater need to belong socially
or a desire to connect with a large number of people. Future
studies that employ longitudinal data can help elucidate the
direction(s) of these effects and further clarify the mechanisms
that may be at play. For instance, pairing in-lab measures of social
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conformity with longitudinal studies that examine neural simi-
larity may provide insight into the extent to which individual
differences in in-lab measures of conformity are predictive of
changes in individuals’ unconstrained processing of external sti-
muli. Another possibility is that highly-central individuals may
show similarly high levels of social abilities and functioning,
which may in turn lead to greater neural similarity with others.
For instance, it is possible that individuals with high in-degree
centrality may have distinctively high levels of empathic concern,
mentalizing abilities, and/or emotion-regulation abilities that help
them form and maintain a large number of social ties and also
impact how they respond to naturalistic stimuli. Therefore,
potential differences in social functioning between individuals
with high in-degree centralities and other individuals may be a
key reason for the links between in-degree centrality and neural
similarity that we found in the present study. We did not collect
measures that can capture individual differences in social func-
tioning, so we are not able to test these theories using our data.
Future studies that investigate associations between individual
differences in social functioning, centrality, and neural processing
of naturalistic stimuli can further elucidate these relationships.

In summary, our results suggest that highly-central individuals
in social networks are very similar to their peers in how they
process external stimuli, as indicated by neural responses that are
associated with social cognition and building shared internal
models of situations. We also found support for the idea that
highly-central individuals are similar to one another in their
neural processing but that less-central individuals are each dis-
similar from their peers and from one another in their own
idiosyncratic ways. Overall, our results suggest that a similar
understanding of the world, as reflected in similar brain responses
across people, may help humans achieve and maintain social
connections.

Methods
Characterization of the social networks in the two residential communities. A total
of 119 participants completed our social-network survey, with nresidential community 1= 70
and nresidential community 2= 49 people in the two residential communities. All partici-
pants were living in one of these two communities of a first-year dormitory in a large
state university (University of California, Los Angeles) in the United States. All parti-
cipants provided informed consent for the social-network survey in accordance with
the Institutional Review Board of the University of California, Los Angeles. The survey
was administered during December and January of the students’ first year in the
university, which began in the last week of September. Therefore, the participants had
been living together in their communities for 3–4 months prior to completing the
social-network survey. The participants were compensated with $15 for completing the
survey. In the survey, the participants were first asked to indicate their full names and
any nicknames by which they were known. This allowed us to match individuals’
names with the number of nominations that they received from other residents of their
community. The participants were then asked to type the names of other people in
their residential community with whom they interacted regularly. They answered the
following prompt: “Consider the people you like to spend your free time with. Since
you arrived at [institution name], who are the people you’ve socialized with most often?
(Examples: eat meals with, hang out with, study with, spend time with).” The parti-
cipants in the study could name as many people as they wished who fit that description
without any restrictions, and no time limit was imposed on the survey. We adapted
this question from prior research that investigated social networks of university
students13,26,51.

We used the IGRAPH package 1.2.452 in R 3.6.153 to analyze the social-network
data. We constructed two networks (i.e., one for each residential community) and
encoded the participants’ answers with unweighted and directed edges. We then
calculated the in-degree centrality of each individual. This quantity gives the
number of the individual’s community members (who participated in the social-
network survey) who named them as someone with whom they interacted
regularly. The distributions of the in-degree centralities were similar across the
subsets of the fMRI sample from each community (see Supplementary Fig. 1).

Combining data across residential communities. As we noted in the prior
subsection, each participant in our study was living in one of two residential
communities and we calculated in-degree centrality as the number of nominations
that each participant received from peers who were living in the same residential
community. Each residential community was relatively bounded, and residents

were encouraged (e.g., via intra-community social activities) to form social con-
nections within their community. To maximize statistical power, we compared the
neural responses across all possible pairs of participants (i.e., dyads) in both resi-
dential communities and then related the ISCs to in-degree centrality values across
all possible pairs of individuals, including ones who were living in different resi-
dential communities. It is possible that this approach may have diminished our
capacity to detect relationships between neural similarity and in-degree centrality,
depending on how much the link between in-degree centrality within communities
and neural similarity is based on community-specific norms. However, both
communities consisted of first-year students who were attending the same uni-
versity, so we reasoned that the two communities were likely to have similar shared
values, beliefs, and experiences and that it would thus be reasonable for our neural
analysis to include ISCs between individuals from different residential commu-
nities. We later complemented these main analyses with analyses that were based
on only intra-community neural similarities. The results of these subsequent
analyses (see Supplementary Figs. 4, 5, 9, and 10) yield similar results as our main
analyses.

fMRI study participants. A total of 70 participants from the aforementioned two
residential communities participated in the neuroimaging portion of our study. We
excluded two individuals due to excessive movement in more than half of the scan
and excluded one individual who fell asleep during half of the scan. We also
excluded one individual who did not complete either the scan or the social-network
survey. Three additional fMRI participants did not complete the social-network
survey. (See Supplementary Table 9 for a table of excluded participants.) This
resulted in a total of 63 participants (40 female) between the ages of 18 and 21
(with a mean age of M= 18.19 and a standard deviation of SD= 0.59) that we
included for all analyses. The distributions of in-degree centralities were similar
across the fMRI participants and the full set of participants (see Supplementary
Fig. 1). We included partial data from two fMRI participants. One participant had
excessive head movement in one of the four runs, and one participant reported
falling asleep in one of the four runs. In analyses that involved brain data, we
excluded the associated runs for these participants and only included the remaining
three runs. All participants provided informed consent in accordance with the
procedures of the Institutional Review Board of the University of California, Los
Angeles.

fMRI procedure. Participants attended an in-person study session that included
self-report surveys and a 90-minute neuroimaging session in which we mea-
sured their brain activity using blood-oxygen-level-dependent (BOLD) fMRI.
The fMRI data collection occurred between September and early November
during the participants’ first year at the university, and it was thus completed
before the start of data collection for the social-network part of our study. Prior
to entering the scanner, participants completed self-report surveys in which
they provided demographic information, including their age, gender, and eth-
nicity. During the fMRI portion of the study, the participants watched 14 video
clips with sound. The stimuli consisted of 14 different videos that varied in both
duration (from 91 to 734 seconds) and content. (See Supplementary Table 1 for
descriptions of the content.) Prior to scanning, we informed the participants
that they would be watching video clips of heterogeneous content and that their
experience would be like watching television while someone else “channel-
surfed”. (The term “channel-surfing” is an idiom that refers to scanning
through different television channels to find something to watch.) The video
clips were presented across four runs (as described in Supplementary Table 1)
without breaks between clips within each run. The participants were paid $50
for completing the fMRI study.

Some of the video clips have been used previously (10 of the videos were used in
prior studies, so 4 of them are new), and we used similar criteria to those in prior
work to select new stimuli26,40. First, we selected stimuli that were unlikely to have
been seen previously by the participants in an effort to avoid inducing inter-subject
differences that could arise from familiarity with the content. Second, we selected
stimuli that were likely to be engaging to minimize the likelihood that participants
would mind-wander during viewing, as this could potentially introduce undesirable
noise into our data. Third, we selected stimuli that were likely to elicit substantial
variability in the interpretations and meaning that different individuals can draw
from the content. The participants were asked to watch the videos naturally (i.e., as
they would watch them in a normal situation in life). All participants saw the
videos in the same order to avoid any potential variability in neural responses from
differences in the way that the stimuli were presented (rather than from
endogenous individual-level differences). One can think of our consistently ordered
series of stimuli as a single continuous stream of content (analogous to different
scenes in a movie). It is possible that different relative orderings of the stimuli
could generate different results, similar to how reordering scenes in a movie might
generate different results (e.g., due to differences in how tone, narratives, and
themes evolve over the span of a movie). In our study, we presented the videos in
the same order to all participants to keep the context surrounding each video
consistent across participants because our main priority was to maximize
sensitivity to individual-level differences. The video task was divided into four runs,
and the task lasted approximately 60 minutes in total. Structural images of the
brain were also collected. (We describe the image collection in more detail in the
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subsection on fMRI data acquisition.) After the fMRI scan, the participants
provided ratings (in the form of integers between 1 and 5) both on how much they
enjoyed each video (“How much did you enjoy this video?”; response options
ranged from 1 to 5, with the anchors “1= not at all” and “5= very much”) and on
how interesting they found each video (“How interesting did you find this video?”;
response options ranged from 1 to 5, with the anchors “1= very boring” and
“5= very interesting”). We obtained these preference ratings after the fMRI scan in
an effort to minimize potential biases or disruptions in processing that could occur
if participants were asked to reflect on content immediately after each stimulus was
presented during scanning.

fMRI data acquisition. The participants were scanned using a 3 T Siemens Prisma
scanner with a 32-channel coil. Functional images were recorded using an echo-
planar sequence (with echo time= 37 ms, repetition time= 800 ms, voxel size=
2.0 mm × 2.0 mm × 2.0 mm, matrix size= 104 × 104 mm, field of view= 208 mm,
slice thickness= 2.0 mm, multi-band acceleration factor= 8, and 72 interleaved
slices with no gap). A black screen was included at the beginning (with dura-
tion= 8 s) and the end (duration= 20 s) of each run to allow the BOLD signal to
stabilize. We also acquired high-resolution T1-weighted (T1w) images (with echo
time= 2.48 ms, repetition time= 1900 ms, voxel size= 1.0 mm × 1.0 mm × 1.00
mm, matrix size= 256 × 256 mm, field of view= 256 mm, slice thickness= 1.0
mm, and 208 interleaved slices with a 0.5 mm gap) for coregistration and nor-
malization. We attached adhesive tape to the head coil in the MRI scanner and
applied it across the participants’ foreheads; it is known that this significantly
reduces head motion54.

fMRI data analysis. We used fMRIPrep version 1.4.0 for the data processing of
our fMRI data55. We have taken the descriptions of anatomical and functional data
preprocessing that begins in the next paragraph from the recommended boilerplate
text that is generated by fMRIPrep and released under a CC0 license, with the
intention that researchers reuse the text to facilitate clear and consistent descrip-
tions of preprocessing steps, thereby enhancing the reproducibility of studies.

For each participant, the T1-weighted (T1w) image was corrected for intensity
non-uniformity (INU) with N4BiasFieldCorrection, distributed with ANTs 2.1.056,
and used as T1w-reference throughout the workflow. Brain tissue segmentation of
cerebrospinal fluid (CSF), white matter (WM), and gray matter (GM) was
performed on the brain-extracted T1w using FSL fast57. Volume-based spatial
normalization to the ICBM 152 Nonlinear Asymmetrical template version 2009c
(MNI152NLin2009cAsym) was performed through nonlinear registration with
antsRegistration (ANTs 2.1.056).

For each of the four BOLD runs per participant, the following preprocessing
was performed. First, a reference volume and its skull-stripped version were
generated using a custom methodology of fMRIPrep. The BOLD reference was
then coregistered to the T1w reference using FSL flirt57 with the boundary-based
registration cost function. The coregistration was configured with nine degrees of
freedom to account for distortions remaining in the BOLD reference. Head-motion
parameters with respect to the BOLD reference (transformation matrices, and six
corresponding rotation and translation parameters) were estimated before any
spatiotemporal filtering using FSL mcflirt57. Automatic removal of motion artifacts
using independent component analysis (ICA–AROMA) was performed on the
preprocessed BOLD on MNI-space time series after removal of non-steady-state
volumes and spatial smoothing with an isotropic, Gaussian kernel of 6 mm FWHM
(full-width half-maximum). The BOLD time series were then resampled to the
MNI152Nlin2009cAsym standard space.

The following 10 confounding variables generated by fMRIPrep were included
as nuisance regressors: global signals extracted from within the CBF, white matter,
and whole-brain masks, framewise displacement, three translational motion
parameters, and three rotational motion parameters.

Cortical parcellation into brain regions. We extracted neural responses across the
whole brain using the 200-parcel cortical parcellation scheme of Schaefer et al.37
and 14 subcortical regions using the Harvard–Oxford subcortical atlas38. Together,
this resulted in 214 regions.

Inter-subject correlations. We used the SCIPY 1.5.3 library in PYTHON 3.7.0 to
calculate ISCs. We extracted and concatenated preprocessed time-series data across
all four runs for each participant, except for the two participants for whom we used
only partial data. For these two participants, we concatenated their three usable
runs into a single time series and then calculated ISCs for these participants by
comparing their data to the corresponding three runs in the other participants. We
extracted the mean time series in each of the 214 brain regions for each participant
at each time point [i.e., at each repetition time (TR)]. Our analyses included 63
participants after the various exclusions, so there were 1952 unique dyads. For each
unique dyad, we calculated the Pearson correlation between the mean time series of
the neural response in each of the 214 brain regions. We then Fisher z-transformed
the Pearson correlations and normalized the subsequent values (i.e., using z-scores)
within each brain region.

Participant-level analysis. As we explained in the Results section, we were
interested in whether an individual’s in-degree centrality is associated with their
mean neural similarity with their peers. To test this relationship, we transformed
the dyad-level neural similarity measures into individual-level measures to obtain a
single number that encoded an individual’s mean neural similarity with other
individuals for each brain region. For each individual, we calculated the mean
Fisher z-transformed ISC value for them with each other individual in each brain
region. We then fit a separate GLM for each brain region to test the association
between individual differences in in-degree centrality and the mean neural simi-
larity in the respective brain region. We FDR-corrected all results because of the
multiple comparisons.

Dyad-level ISC analysis. For our dyad-level analysis, we took the following steps
to test for associations between in-degree centrality and neural similarity in each of
the 214 brain regions. First, we transformed the participant-level in-degree cen-
trality measure into a dyad-level measure by creating a binarized variable that
indicated whether the two members of the dyad had high, low, or mixed in-degree
centralities (i.e., {high, high}, {low, low}, or {low, high}). See the Results section for
details. Of the 1952 unique dyads, 253 of them were {high, high}, 779 of them were
{low, low}, and 920 of them were {low, high}. To relate this dyad-level in-degree
centrality measure and neural similarity, we used the method in Chen et al.41 and
fit linear mixed-effects models with crossed random effects using LME4 1.1-2358 and
LMERTEST 3.1.058 in R. This approach allowed us to account for non-independence
in the data from repeated observations for each participant (i.e., because each
participant is in multiple dyads). Following the method that was suggested by Chen
et al.41, we doubled the data (adding redundancy) to allow fully crossed random
effects. In other words, we accounted for the symmetric nature of the ISC matrix
and the fact that one participant contributes twice in a dyad (i.e., (i, j) = (j, i) for
participants i and j). See Chen et al.41 for more details. Following Chen et al.41, we
manually corrected the degrees of freedom to N – k, where N is the number of
unique observations (in our case, N= 1952 because there are 1952 unique dyads)
and k is the number of fixed effects in the model, before performing statistical
inference. All findings that we report in the present paper use the corrected number
of degrees of freedom. For each brain region, we first fit a mixed-effects model to
infer neural similarity in that brain region from the binarized dyad-level in-degree
variable, with random intercepts for each member of the dyad (i.e., participant 1
and participant 2). We then conducted planned-contrast analyses using EMMEANS59

in R to compare which brain regions had larger ISCs for the different values of the
dyadic in-degree centrality variable: ISC{high,high} > ISC{low,low}, ISC{high,high} >
ISC{low,high}, and ISC{low,high} > ISC{low,low}. We transformed all variables into
z-scores prior to our subsequent computations to obtain standardized coefficients
(β) as outputs. We FDR-corrected all p-values at p < 0.001 because of multiple
comparisons.

Dyad-level behavioral analysis. We took an analogous approach as in our dyad-
level ISC analysis to test the relationships between dyadic in-degree centrality and
preference similarity. (See our discussion of preference similarity in the Results
section.) To do this, we followed the same procedure as the one that we described
above in our discussion of dyad-level ISC analysis and fit two mixed-effects models
that take into account the dependency structure of the data. We constructed
one such model for each type of rating (i.e., enjoyment and interest) to infer a
similarity from the dyad-level in-degree variable, with random intercepts for
each member of the dyad. We then conducted planned-contrast analyses using
EMMEANS 1.4.3.0159 in R to examine whether or not there was an association between
preference similarity and different levels of the dyadic in-degree centrality variable:
s{high,high} > s{low,low}, s{high,high} > s{low,high}, and s{low,high} > s{low,low}, where s is the
dyad-level preference similarity that we defined in our discussion of preference
similarity. We transformed all variables into z-scores prior to our subsequent cal-
culations to obtain standardized coefficients (β) as outputs. We used an FDR-
corrected significance threshold of p < 0.001 because of the multiple comparisons
from the planned contrasts.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary that is linked to this article.

Data availability
Source data for the figures (specifically, the inter-subject correlation and in-degree
centrality data that we generated in this study) are provided with the paper and also at
Zenodo at https://doi.org/10.5281/zenodo.5965852.

Code availability
The code that we used for our analyses is available at Zenodo at https://doi.org/10.5281/
zenodo.5711372.
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