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Social information is some of the most ambiguous content we encounter in our daily lives, yet in experimental contexts, per-
cepts of social interactions—that is, whether an interaction is present and if so, the nature of that interaction—are often
dichotomized as correct or incorrect based on experimenter-assigned labels. Here, we investigated the behavioral and neural
correlates of subjective (or conscious) social perception using data from the Human Connectome Project in which partici-
pants (n = 1049; 486 men, 562 women) viewed animations of geometric shapes during fMRI and indicated whether they per-
ceived a social interaction or random motion. Critically, rather than experimenter-assigned labels, we used observers’ own
reports of “Social” or “Non-social” to classify percepts and characterize brain activity, including leveraging a particularly am-
biguous animation perceived as “Social” by some but “Non-social” by others to control for visual input. Behaviorally, observ-
ers were biased toward perceiving information as social (vs non-social); and neurally, observer reports (compared with
experimenter labels) explained more variance in activity across much of the brain. Using “Unsure” reports, we identified sev-
eral regions that responded parametrically to perceived socialness. Neural responses to social versus non-social content
diverged early in time and in the cortical hierarchy. Finally, individuals with higher internalizing trait scores showed both a
higher response bias toward “Social” and an inverse relationship with activity in default mode and visual association areas
while scanning for social information. Findings underscore the subjective nature of social perception and the importance of
using observer reports to study percepts of social interactions.
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Significance Statement

Simple animations involving two or more geometric shapes have been used as a gold standard to understand social cognition
and impairments therein. Yet, experimenter-assigned labels of what is social versus non-social are frequently used as a ground
truth, despite the fact that percepts of such ambiguous social stimuli are highly subjective. Here, we used behavioral and fMRI
data from a large sample of neurotypical individuals to show that participants’ responses reveal subtle behavioral biases, help
us study neural responses to social content more precisely, and covary with internalizing trait scores. Our findings underscore
the subjective nature of social perception and the importance of considering observer reports in studying behavioral and neu-
ral dynamics of social perception.

Introduction
A remarkable feature of human perception is how quickly and auto-
matically we identify social information in the environment.
Consider pareidolia (seeing illusory faces in everyday objects;
Palmer and Clifford, 2020) or the cocktail party effect (perceiving

self-relevant cues in otherwise unattended information streams;
Wood and Cowan, 1995).

In the brain, the superior temporal sulcus (STS) has been classi-
cally associated with social cognition. Posterior STS regions are
involved in perceiving animacy (Lee et al., 2014) and determining
the nature of interactions (Isik et al., 2017), whereas anterior regions
are involved in mentalizing, language, and gaze detection (Deen et
al., 2015). Social signal detection, however, may begin even earlier
in the lateral occipital and inferotemporal regions where recent
work has proposed Gestalt-like perceptual mechanisms for social
content (i.e., grouping social entities like facing dyads; Walbrin and
Koldewyn, 2019; Abassi and Papeo, 2020; Papeo, 2020; Landsiedel
et al., 2022). The recently proposed third visual stream (Pitcher and
Ungerleider, 2021) posits a specialized pathway for social informa-
tion that connects primary visual cortex (V1) to the motion-proc-
essing region V5/MT and culminates in the STS.
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Our tendency to spontaneously perceive social interactions in
simple animations of geometric shapes emphasizes the relevance
of motion to social perception (Heider and Simmel, 1944; Scholl
and Tremoulet, 2000). This phenomenon transcends age and
culture (Barrett et al., 2005; Mohammadzadeh et al., 2012) but
perhaps not species (Schafroth et al., 2021). Although robust,
percepts of these animations do vary across individuals. People
with autism are less likely to report social interactions (Abell et
al., 2000) and show commensurately lower brain activity in social
processing regions (Castelli et al., 2002; Kana et al., 2015). Even
neurotypical individuals differ in their socioperceptual tenden-
cies (Rasmussen and Jiang, 2019; Li et al., 2020) in ways that
covary with traits like loneliness, anxiety, and autism-like pheno-
types (Kanai et al., 2012; Powers et al., 2014; Lisøy et al., 2022).

Past work has largely used stimuli handcrafted to be perceived
as social or non-social and relied on these experimenter-assigned
labels to contrast behavior and/or brain activity. Consequently,
effects could reflect not only responses to social information but
also differences across animations in basic physical properties (e.g.,
speed), which are rarely systematically controlled. Further, this
approach ignores the fact that social perception is inherently subjec-
tive, even when labels are based on objective physical properties
(Tremoulet and Feldman, 2000; Blakemore et al., 2003; Walbrin et
al., 2018), and treats deviations from the intended percept as errors.
Observer-based labels have been used in behavioral studies of sin-
gle-agent biological motion (Davis and Gao, 2004; Johnson and
Tassinary, 2005) and fMRI studies with non-social (Hebart et al.,
2012) or social (Petrini et al., 2014; Nguyen et al., 2019) stimuli,
although observer labels are rarely used to probe what constitutes a
“Social” stimulus in the first place. Therefore, here we eschew the
assumption of experimenter labels as ground truth and use observer
reports to more decisively isolate brain activity associated with per-
ceiving social interactions.

We used a large dataset (n = 1049 healthy adults) from the
Human Connectome Project to investigate the behavioral and
neural correlates of subjective (or conscious) social perception.
We leveraged the following unique features of this dataset: (1) a
single animation that yielded high variability in reported per-
cepts, allowing us to isolate neural responses to conscious social
perception while holding visual input constant, and (2) a task
design that permitted participant reports of “Unsure” as an inter-
mediate between “Social” and “Non-social”, allowing us to iden-
tify brain regions whose activity scaled with the extent of
perceived social content. Results revealed that people show a
slight behavioral bias toward perceiving information as social
and that observer responses explain more variance in activity
than experimenter labels in many brain regions. Occipital, tem-
poral, and prefrontal regions showed higher responses to social
information, and these differences emerged early in time and in
the cortical hierarchy. Finally, internalizing traits influenced both
behavior and brain activity during social signal detection.

Materials and Methods
We primarily used data from the social cognition task of the Human
Connectome Project (hereafter referred to as the HCP study or HCP
dataset; Van Essen et al., 2013). The dataset is openly accessible and con-
sists of a large sample of neurotypical individuals, enabling us to study
both the dominant and nondominant percepts for specific animations.
The social task was one of seven cognitive tasks that were run as part of
the HCP task battery (Barch et al., 2013). In this task, participants
watched 10 animations, 20 s long, of which five were considered gener-
ally social and five were considered generally non-social (experimenter-
assigned labels of Mental and Random, respectively). At the end of each

animation, participants indicated whether they perceived a social inter-
action by pressing buttons (“Social”, “Non-social”, or “Unsure”). To dis-
tinguish experimenter-assigned labels from observer responses, here we
use the terms Mental and Random for the former, and “Social”, “Non-
social”, and “Unsure” for the latter. In the HCP dataset, participants also
completed trait-level questionnaires, which enable the study of indi-
vidual differences. Here, we focused on internalizing symptoms,
which include anxiety, loneliness, and social withdrawal (described
later in the section titled Correlations among traits, behavior, and
neural activity).

As participants had to wait until the end of each 20 s animation to
make a response, the behavioral data in the HCP does not reveal when
the perceptual decisions were made, and any differences in decision time
are likely to influence the trajectory of brain activity during each trial.
Hence, we additionally performed an online study on 100 neurotypical
individuals [hereafter referred to as the online response time (RT)
experiment] to gain insight into when decisions might have been made
while watching the animation, and how decision time varied across ani-
mations and individuals.

Participants
Data from the HCP social cognition task are publicly available in the online
HCP repository (https://db.humanconnectome.org/; data for each partici-
pant, fMRI data are in the subfolders tfMRI_SOCIAL_RL and tfMRI_
SOCIAL_LR; behavioral data files of the format subID_3T_SOCIAL_
runNumber_TAB.txt, where subID was a six-digit number and runNumber
was either ‘run1’ or ‘run2’). Trait scores used to study individual differences
were from the restricted data category. In the demographic data reported
below, the age was obtained from the restricted category and gender from
the unrestricted category. We obtained complete fMRI data from 1049
individuals for the HCP social cognition task (age 22–37 years, 562
female and 486 male). Of these, 823 participants responded on all trials
in a reasonable response time (RT . 100 ms) and were included in the
behavioral data analyses. For the various fMRI analyses, depending on
the comparison, participants with incomplete data were excluded.
Thus, we had n = 777, 870, and 814 for the fMRI data analyses labelled
the various fMRI analyses, namely, RANDOM MECH, COAXING-
BILLIARD, and the ALL animations, respectively (explained in detail
below under fMRI data analysis, “Social” versus “Non-social”). Finally,
for the trait-behavior analysis, we included all participants who had
complete behavior and trait data (n = 817), and for the trait-fMRI and
trait-behavior-fMRI analyses, we included participants with behavior,
fMRI, and trait data (n = 812).

For the online RT experiment that we conducted in July 2021, we
recruited 100 neurotypical individuals (age 18–48 years, mean = 23.2,
SE = 0.64) from the United States and United Kingdom via the online
platform Prolific (https://www.prolific.co; Palan and Schitter, 2018).
Before the experiment, all participants read and acknowledged the vir-
tual consent forms in accordance with the Institutional Review Board
of Dartmouth College. Participants with good-quality data (n = 90)
were used in preliminary analyses, and of these, n = 83 were used to
guide the COAXING–BILLIARD fMRI time course analyses (see
below, fMRI data analysis, fMRI time course analysis).

Stimuli
Stimuli in the HCP study were 10 animations, each 20 s long, chosen
from previous studies (Castelli et al., 2000; Wheatley et al., 2007). Longer
animations had been trimmed to 20 s by the HCP researchers (Barch et
al., 2013). The animations were presented in two runs with five anima-
tions each (run duration 3min 27 s) interleaved with fixation blocks of
15 s without jitter. The order of presentation was maintained across all
participants (Table 1). The number of Mental (M) and Random (R) ani-
mations were pseudo balanced within and between runs (run 1, 2M, 3R;
sequence M–R–R–M–R; run 2, 3M, 2R; sequence M–M–R–M–R). Table
1 contains a list of the animations provided by the HCP and their visual
properties. (Note that in this article, we drop the suffixes in the filenames
-A and -B for brevity).

Each animation consisted of two or more shapes in motion (agents)
with or without stationary elements (props). Seven animations (3M, 4R)
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had a large red and a smaller blue triangle as agents, and the remaining
three (FISHING, RANDOMMECH, and SCARING) were more diverse
in the number, color, and/or form of agents and props.

For the online RT experiment, we presented the same animations
used in the HCP study and in the same presentation sequence with a
self-timed break after the fifth stimulus in lieu of the break between the
two runs in the HCP study. In the practice phase, we randomly showed
either a generally social or non-social animation (which was not one of
the 10 animations used in the main task) to each participant. For a social
practice example, we used MOCKING–B from the HCP repository, and
for a non-social practice example, we created a two-agent anima-
tion comparable in appearance to MOCKING–B using the custom
application Psyanim (https://github.com/rvarrier/HCP_socialtask_
analysis/tree/main/stimuli).

The differences in physical properties that we noted above among
the HCP animations could have influenced both behavior and brain
activity. Hence, we factored these into our analyses either by comparing
the brain activity for “Social” and “Non-social” responses within the
same animation (i.e., same visual input) or by regressing out certain
physical properties (i.e., the optic flow and mean brightness) before com-
paring individual pairs of animations in the analysis comparing time
courses (see below, fMRI time course analysis). The presence of these vis-
ual differences also motivated our decision to perform the online RT
experiment to estimate decision times and select a pair of animations
with similar decision times (see below, fMRI data analysis). Finally, we
also included animation as a grouping variable (random effect) in certain
behavioral and fMRI data analyses when pooling data from multiple
animations.

Experimental design
In the HCP study, participants were given the following instructions
about the task: “You will now watch short clips and decide if the shapes
are having a mental interaction or not. For a mental interaction, press
the button under your index finger. If you are not sure, press the button
under your middle finger. For a random interaction, press the button
under your ring finger. After each clip, there will be a response slide.
Please respond while that slide is on the screen.” They had 3 s to
respond. In our online RT experiment, participants were given similar
instructions but were asked to respond twice to each animation, once
during the animation as soon as they made a decision (left/right arrows
for “Social”/“Non-social”; referred to henceforth as the “during” phase)
and a second time immediately after each animation within 3 s (left/
right/down arrows for “Social”/“Non-social”/“Unsure”, similar to the HCP
study; referred to henceforth as the ‘after’ phase).

Data acquisition and preprocessing
HCP social cognition task dataset

Behavioral data. In analyzing the behavioral data, we included only
participants who responded to all 10 animations and in whom the
response times (RT) were not unrealistically short (i.e., RTs , 100 ms
were excluded), resulting in n = 823. Note that even if participants had
arrived at a decision before the end of the video, we still need to account
for the time taken to perceive the appearance of the response screen
before responding (Gottsdanker, 1982).

fMRI data. The fMRI data were acquired using a 3T Skyra scan-
ner with 2 mm isotropic voxels and a TR of 0.72 s (Barch et al.,
2013, for more acquisition details). Each run comprised 274 scan
volumes, and there were two runs per participant. We used mini-
mally preprocessed voxelwise fMRI data (Glasser et al., 2013), par-
cellated into 268 parcels spanning the whole brain as per the Shen
et al. (2013) atlas and discarded the first five scan volumes (TRs)
within each run to reduce initial artifacts. Next, to make BOLD
response magnitudes comparable across participants, we z-scored
parcelwise time courses in each run. Further, because our analyses
were to be performed at the trial level, we split the run time series
into trialwise time courses of 40 s each, that is, 20 s animations (28
TRs) flanked by 10 s fixation periods (14 TRs) on either side
(except for the first animation within each run, which included
only six prestimulus TRs). Data preprocessed in this manner were
used for all fMRI analyses except one (the time course analysis,
explained later) which required comparing two individual anima-
tions, COAXING and BILLIARD. For the time course analysis, the
z-normalization was done at the individual trial level to remove
differences in mean activity, which were because of the order of
presentation (as order was not randomized among participants).
Finally, in both cases, we baseline corrected each trial time course
by subtracting the signal magnitude at the trial onset (i.e., the TR
immediately before stimulus onset).

Online RT experiment
In the online RT experiment, we excluded trials in which either of
the two responses (during phase and after phase) were missing or
when the two responses were not congruent (i.e., participants
changed their response on watching the full animation). The latter
was done to ensure that the response time from the during phase
corresponded to the percept reported in the end to match the HCP
task; however, note that the two are not perfectly comparable, since
in the during phase participants did not have a choice to respond
“Unsure”. Finally, as a quality check, participants with fewer than 8
of 10 good-quality (i.e., congruent) responses were also excluded,
giving us 90 participants (n = 34, 33, and 23 with 10/10, 9/10, and 8/
10 congruent responses, respectively). Based on decision times, the
animation pair COAXING and BILLIARD were used in fMRI anal-
yses to contrast “Social” and “Non-social” perception (see below,
“Social” versus “Non-social” and fMRI time course analysis). To
estimate the decision time here, we used data from 83 of the 90
participants who responded “Social” to COAXING and “Non-
social” to BILLIARD congruently. The remaining seven partici-
pants either missed a response, did not give a congruent response
to both animations, or did not respond to COAXING (BILLIARD)
as “Social” (“Non-social”).

Data analysis
Behavioral data analysis
Using the behavioral data from the HCP, we performed four analyses
to measure whether there was a general bias toward social percepts,
or in other words, a shift toward “Social” responses. Our dependent
variables for these analyses are described in the following paragraphs.

Table 1. Detailed information about the experimental stimuli used in the HCP social cognition task

Run number Presentation sequence Animation file names (.AVI extension) Experimenter-assigned category Description of agents

1. tfMRI_SOCIAL_RL 1 COAXING-B Mental Bigger red triangle, smaller blue triangle
2 BILLIARDS-A Random Bigger red triangle, smaller blue triangle
3 DRIFTING-A Random Bigger red triangle, smaller blue triangle
4 FISHING Mental One circle with a fishing pole, one oblong-shaped fish
5 RANDOM MECHANICAL Random Four circles, one triangle, one long rectangle of multiple colors

2. tfMRI_SOCIAL_LR 1 SCARING Mental Four circles, three small pink, one large blue
2 SEDUCING-B Mental Bigger red triangle, smaller blue triangle
3 STAR-A Random Bigger red triangle, smaller blue triangle
4 SURPRISING-B Mental Bigger red triangle, smaller blue triangle
5 TENNIS-A Random Bigger red triangle, smaller blue triangle
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The first dependent variable was the percentage of “Social” and
“Non-social” responses, which was estimated within participants and
compared using a paired t test.

The second dependent variable was the decision criterion
(c), the signal detection theory metric quantified as
�ðZðHitRateÞ1ZðFalseAlarmRateÞÞ

2
(Stanislaw and Todorov, 1999),

whereHitRate and FalseAlarmRate were computed for each participant
as fractions of “Social” responses for animations labeled by the experi-
menters as Mental and Random, respectively. Note that we do not
compute other signal detection theory metrics like d9 and bias. In this
case, d9 would be a measure of conformity to the experimenter labels
(which is not of interest given our theoretical framework), and bias
would be largely redundant with c, which already quantifies the relative
magnitude of “Social” compared to “Non-social” responses. Further, c is
preferable to bias because it is more independent of d9 (Banks, 1970).

Third, we compared the response time (RT) differences between
“Social” and “Non-social” trials. We compared RTs using both a non-
parametric paired (Wilcoxon signed rank) test and a more controlled
linear mixed effects (LME) analysis to further account for the differences
between individual animations. The LME model (LMEM) had the form:
logðRTÞ ¼ f ðresponse; random intercepts : participant; animationÞ: The fac-
tor response was categorical with two levels, “Non-social” (coded as the base
level) and “Social”, and analysis was performed using the Python package
pymer4 (Jolly, 2018). We used the logarithm of the RT in seconds to bring
the residuals of the LMEM closer to a normal distribution (which is an
assumption for LMEMs).

Finally, we compared the percentage of “Unsure” responses for the
two animation labels (Mental, Random) using a logistic regression as fol-
lows: uncertainty ¼ f ðstimLabel; random intercepts : participant; animationÞ;
where the factor stimLabel was categorical [Mental, Random], and
the dependent variable uncertainty had a value of one for “Unsure”
response trials and zero otherwise. Keeping Random (0) as the base-
line in the analysis, positive (negative) regression coefficients for
stimLabel would indicate a lower (higher) uncertainty in categoriz-
ing Random trials.

fMRI data analysis
GLM-based regression. Our primary approach to fMRI data analysis

was a general linear model (GLM) based on animation onset and offset.
We computed the regression coefficients for each animation separately
for the majority of analyses. For each animation, we fitted the activity
time course of each parcel to a slope regressor [line steadily increasing
from zero to one from stimulus onset to offset (duration = 20 s), padded
by zeros before and after] that was convolved by the Glover hemody-
namic response function (HRF; Glover, 1999). (Preliminary analyses indi-
cated that a steadily increasing slope regressor captured more variance in
the BOLD data than a traditional boxcar regressor.) This renders one
slope regression coefficient (b ) per parcel, participant, and trial (anima-
tion). We also performed a separate GLM analysis across all animations (see
below). For this analysis, we used a run-level regressor and estimated coeffi-
cients for each parcel, participant, and run. Similar to the slope regressors
used at the trial level, regressor values increased (decreased) steadily
during an animation labeled “Social” (“Non-social”), and were zero

at all other time points (including “Unsure” responses); thus, the run-
level regression coefficient here summarizes a contrast between “Social”
and “Non-social”. For each participant, we then averaged these coeffi-
cients across the two runs.

“Social” versus “Non-social”. To identify brain regions showing a
consistent and generalizable difference between “Social” and “Non-
social” responses, we compared the regression coefficients between
“Social” and “Non-social” percepts in the following three analyses: (1)
controlled for visual input, (2) controlled for decision times, and (3)
across all animations (Table 2). For analyses with individual animations,
we included all participants who gave a valid response to the anima-
tion(s) in that analysis, resulting in slightly different numbers of
participants in each analysis (see above, Participants). Each analy-
sis is described in detail below in the following paragraphs.

In the first analysis controlled for visual input, we selected the
most ambiguous animation, namely RANDOM MECH, as it had the
relatively most balanced “Social” and “Non-social” response groups.
We excluded participants who gave an “Unsure” response to this
stimulus (leaving n = 777) and then split regression coefficients
based on observer responses (“Social”, n = 107; “Non-social”, n = 670;
Fig. 1a), and compared them with two-sample t tests, assuming
unequal variances. Although the individual groups of responders are
not balanced, the actual number of individuals who responded “Social”
to RANDOM MECH is still higher than in traditional fMRI studies on
social perception with animations.

In the second analysis controlled for difficulty/ambiguity
(COAXING vs BILLIARD), we chose two animations that were most
comparable in their difficulty or ambiguity, as proxied by two measures,
(1) the relative proportions of dominant and nondominant responses
and (2) the time taken to arrive at a response. We used McNemar’s
(1947) statistic to compare the relative proportions of dominant
(“Social” and “Non-social” for COAXING and BILLIARD, respectively)
and nondominant responses (“Non-social” and “Social” for COAXING
and BILLIARD, respectively) in the HCP dataset (dominant, COAXING
n = 886, BILLIARD n = 876; nondominant, COAXING n = 6,
BILLIARD n = 16; continuity correction performed) as well as the online
RT experiment (dominant, COAXING n = 84, BILLIARD n = 83; non-
dominant, COAXING n = 0, BILLIARD n = 1; exact binomial distribu-
tion used because of the extremely small sample sizes in the
nondominant group) and found that the proportions were not signifi-
cantly different in either case (see below, Results, Decision time on
whether an animation is social varies widely between individuals and
animations decision time). Response times were based on the data we
obtained from the online RT experiment, where the decision time to
report “Social” to COAXING (median = 3.45 s, SE = 0.27 s) and “Non-
social” to BILLIARD (median = 3.7 s, SE = 0.25 s) were the closest and
did not significantly differ (Fig. 2c; see below, Results, Decision time on
whether an animation is social varies widely between individuals and
animations). Hence, we compared regression coefficients for each of
these two animations within participants using a paired t test. Note
that we excluded participants who gave an uncertain or nondominant
response for one or both animations (i.e., who responded to COAXING as
“Non-social” or “Unsure” or BILLIARD as “Social” or “Unsure”), giving us
n = 870 for this analysis.

Table 2. Details of the three “Social” versus “Non-social” comparisons (based on observer reports) performed as part of the GLM analysis

Analysis
Number

“Social” responder
group

“Non-social” responder
group Rationale for the analysis Statistical comparisons for fMRI

ID of the analysis
used in figures and text

1 RANDOM MECHANICAL (Within
animation, between participant)

• Controls for low-level input
• Most ambiguous animation

Two-sample t test RANDOM MECH

2 COAXING BILLIARD • Likely similar decision times during animation (as estimated
from online RT experiment)

Paired t test COAXING-BILLIARD
(Between animation, within participant)

3 All “Social” All “Non-social” • Maximizes power by comparing all “Social” responses with all
“Non-social” responses within participants

One-sample t test after
averaging runwise estimates

ALL ANIMATIONS
Coded 1 (“Social”) and �1 (“Non-social”),
in runwise GLMs
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In the across all animations (ALL) analysis, we also performed a
more general comparison between brain activity associated with “Social”
versus “Non-social” responses by identifying regions that showed a
mean run-level regression coefficient that was different from zero per a
one-sample t test (for details on how the run-wise regressor was estimated,
see section, GLM-based regression). To minimize biases because of missed
responses, we used only participants who had given all 10 responses and
had complete fMRI data from both runs (n = 814).

Finally, we identified brain regions that were significant in all three
of the above comparisons and showed changes in the same direction (ei-
ther “Social” greater than “Non-social” in all three comparisons or vice
versa) at a corrected threshold [false-discovery rate (FDR) q, 0.05, cor-
rected for 268 comparisons (parcels)]. Hereafter, we refer to this proce-
dure as the “intersection analysis” and the resultant parcels as “robust
social perception regions.”

Comparison between using observer responses and experimenter-
assigned labels. To evaluate whether observer responses actually
explain more variance in the fMRI data than experimenter-assigned
labels, we also ran two LMEMs for each brain parcel. The dependent
variable was the trial-level regression coefficient (b ) with run-nor-
malized BOLD data (see above, Data acquisition and preprocessing),
and both models included subject ID and animation as random
effects. The fixed effect in the first model was the observer responses
ðb ¼ f ðresponse; random intercepts : participant; animationÞ; response =
{“Social”, “Non-social”}), and in the second model, it was the experi-
menter-assigned labels ðb ¼ f ðstimLabel; random intercepts : participant;
animationÞ; stimLabel = {Mental, Random}). These models are referred to
in subscripts as Obs (observer response-based) and Exp (experimenter
label-based), respectively. We then assessed which label type explained
more variance in the data by taking a difference between the Akaike infor-
mation criteria (AIC) for each model. Lower AICs indicate better model
fits, so AICObs , AICExp indicates that the response-based model is better
and vice versa. We identified parcels for which models differed in their AIC
fits by at least 10, which corresponds to a relative likelihood of 99.32% for
the model with the better fit (Wagenmakers and Farrell, 2004).

“Social” versus “Unsure” versus “Non-social”. We also leveraged the
“Unsure” responses to identify brain regions that responded parametri-
cally to the level of perceived socialness. We predicted that the neural
response in such regions during animations ultimately marked “Unsure”
would be intermediate to that of “Social” and “Non-social” responses.
However, intermediate does not necessarily mean halfway, and hence we
performed conjunction analyses, that is, we identified brain regions
showing “Social” greater than “Unsure” and “Unsure” greater than “Non-
social” (or vice versa) and took the intersection of these. We performed this
analysis across all the animations using an LMEM of the form
beta ¼ f ðresponse; random intercept : participantÞ; which was performed
separately for “Social” versus “Unsure” (LMEM 1) and “Unsure” versus
“Non-social” (LMEM 2). In each LMEM, responsewas a categorical variable
that had the values “Social” and “Unsure” in LMEM 1 (baseline “Unsure”),
and “Unsure” and “Non-social” in LMEM 2 (baseline “Non-social”). Thus,
a positive LMEM estimate for response would indicate a higher neural
response corresponding to a higher perceived socialness. From this, we
identified parcels that showed the same directionality for LMEM 1 and 2 at
the multiple-comparisons-corrected threshold and that were also in the set
of robust social perception regions from the GLM analysis described above.

To probe whether similar parametric patterns that were seen across
all animations also emerge when controlled for visual input, we again
leveraged the most ambiguous animation (RANDOMMECH). We plot-
ted the time courses for a subset of the parcels in which “Unsure” was
the closest to the halfway point between “Social” and “Non-social” both
in terms of the mean regression coefficient and the magnitude of activity
at the end of the stimulus presentation period (20 s) for each parcel and
response, the rationale being that the signal during the final time points
of the animation should most closely reflect a participant’s ultimately
reported percept.

fMRI time course analysis. To identify the brain regions where the
earliest differences in activity between “Social” and “Non-social” per-
cepts emerged, we performed paired t-tests (within participant) for each
time point (TR) between BOLD responses corresponding to a pair of

“Social” and “Non-social” animations (COAXING and BILLIARD,
respectively). This pair of animations was chosen because decisions on
whether the animation was social or non-social were likely made at com-
parable times while watching them as explained earlier (see above,
“Social” versus “Non-social”) To ensure that the differences in BOLD ac-
tivity between COAXING and BILLIARD were not because of differen-
ces in basic visual input between the two animations, we performed
these comparisons on the residual time courses obtained after regressing
out two low-level visual features—total optic flow and mean brightness.
We first estimated these two features for each animation frame using the
pliers software package (McNamara et al., 2017), then down-sampled the
resulting time courses to match the temporal resolution of the fMRI data
(i.e., the TR), z-normalized them, and convolved them with an HRF. We
then performed a linear regression on each participant’s trial time course
(including 14 TRs flanking the stimulus duration on either end, the
same procedure as the slope regressors described earlier) to regress out
the changes in BOLD activity related to these features. We then used the
resultant residual time courses for COAXING and BILLIARD for the
time course analysis. We compared these at each time point (TR) and for
each parcel using paired t tests (within participant). For each parcel, we thus
identified the earliest time point at which BOLD activity begins to diverge
(i.e., p , 0.05). As additional consistency checks, we (1) only performed
this analysis in the robust social perception regions from the GLM intersec-
tion analysis and (2) selected a TR t as the divergence point only if the dif-
ference between “Social” and “Non-social” timecourses at t 1 1 was also
significantly different (p, 0.05) in the same direction.

Note that this analysis does not factor in the hemodynamic lag. This is
because although the HRF peaks a few seconds after an event (in our
case, the animation onset), the neural responses—and correspond-
ing start of the BOLD response—should have begun nearly instantly
on stimulus presentation (Friston et al., 1994), so here we investi-
gated where these earliest changes could be observed. Further, in
using the median decision times from the online RT experiment for
COAXING and BILLIARD as the expected decision time for the
HCP dataset, we did not factor in the motor response delay (i.e.,
time taken after a decision has been made to press a button) in the
online RT experiment. Hence, it is possible that some of the predeci-
sional processes closer to the decision time may have in fact been
postdecisional. Although we cannot exclude this possibility, this was
unlikely because motor responses on arriving at a decision are typi-
cally quicker than the TR used in the HCP task (0.72 s).

We also did not multiple-comparisons correct across time points in
this analysis as the primary goal was to identify the earliest differences in
activity, and to infer this correctly, false negatives are undesirable. Still,
in identifying the earliest time points, we only selected a region if the
subsequent time point was also significant (p, 0.05 uncorrected), limit-
ing the odds of a false positive further by 95%.

We also did not perform this analysis within the same animation
(RANDOM MECH) and across all animations like in the GLM analysis
(see above, “Social” versus “Non-social”) because of the heterogeneity in
decision times for RANDOM MECH and across animations (Fig. 2c).
This heterogeneity means that the neural processes at each time point
could have been vastly different between individuals and animations,
thus clouding any potential interpretations from these comparisons.

Correlations among traits, behavior, and neural activity
Past work has shown that within the neurotypical population, social per-
ception covaries with traits like loneliness, anxiety, psychopathy, and au-
tism-like phenotypes (Sacco et al., 2016; Lessard and Juvonen, 2018;
Desai et al., 2019; Abassi and Papeo, 2022; Lisøy et al., 2022; Williams
and Chakrabarti, 2022). In particular, individuals high on internalizing
traits such as loneliness and anxiety are more sensitive to social cues
(Gardner et al., 2005), tend to form illusory social connections by
anthropomorphizing inanimate objects (Epley et al., 2008; Powers et al.,
2014), and show smaller gray matter volumes in a brain region typically
associated with social processing, the posterior STS (pSTS; Kanai et al.,
2012). Here, we probed whether internalizing traits affect behavior and/
or brain activity associated with social perception using the internalizing
T score provided by the HCP (Barch et al., 2013). This score is based on
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participants’ responses to the internalizing dimension questions from
the Achenbach Adult Self-Report questionnaire (ASR; Achenbach et al.,
2017). Internalizing symptoms refer to symptoms like anxiety, depres-
sion, and withdrawal, and are typically contrasted with externalizing
behaviors such as rule breaking and aggression. The ASR was designed
to assess behavioral, emotional, and social functioning across a wide
spectrum of the population, so it is sensitive to individual differences
(i.e., produces a range of scores) even in healthy/subclinical populations.
Specifically, we used the participant-level internalizing T score (labeled
ASR_Intn_T in the HCP dataset), which is normalized for age and sex
(mean = 48.72, STD =10.75, range = 30–97; see Fig. 7a–c for full distri-
bution) and sums across the three ASR scales Anxious/Depressed,
Withdrawn, and Somatic Complaints.

To assess whether the internalizing score relates to a behavioral bias
toward “Social” percepts, we compared participants’ internalizing scores
with the following behavioral variables: (1) the difference between the
percentage of “Social” and the percentage of “Non-social” responses (cal-
culated as percentages to control for missing data; Spearman’s rank cor-
relation, rs); (2) responses to the most ambiguous animation, RANDOM
MECH, specifically comparing “Non-social” to “Social” or “Unsure” res-
ponders (two-sample t test); and (3) the percentage of “Unsure” responses on
Mental versus Random trials (Spearman’s correlation).We tested the specific-
ity of these correlations by additionally performing correlations with external-
izing scores (ASR_Extn_T in the HCP dataset) and comparing the strength
of the relationships using the CorrelationStats package (https://github.com/
psinger/CorrelationStats). For RANDOM MECH, we used the LMEM
traitScore;f ðrespGroup; traitType; respGroup�traitType interaction; ran-
dom intercept: participant) to study how the internalizing and externalizing
trait scores [dependent variable traitScore; factor traitType with two levels
(internalizing, externalizing)] vary for each response group [factor
respGroup with two levels (“Non-social”, “Social”/“Unsure”)] and with
participant as a random effect.

To quantify whether and where internalizing traits relate to brain ac-
tivity while scanning animations for social information, for each parcel
we performed an LME analysis where the dependent variable was the
trial-level slope regression coefficient, the fixed factor was internalizing
score, and the random factor was animation. This yields brain regions
that respond proportionately to internalizing score in that individual
across animations and parcels.

Finally, to check for interactions among social percepts, internalizing
symptoms, and neural activity, we tested how much the difference
between neural responses to “Social” and “Non-social” trials depended
on internalizing symptoms. For this, we fitted regression coefficients
from the GLM analysis across all animations (ALL), which represents
the contrast between activity to “Social” versus “Non-social” responses
(one estimate per participant; see above, GLM-based regression and
“Social” versus “Non-social”), to the internalizing symptom scores (also
on estimate per participant) in a linear regression.

Data availability
All the code for analyzing data from both the HCP and online RT experi-
ment, as well as the anonymized data from the online RT experiment is
available at https://github.com/rvarrier/HCP_socialtask_analysis.

Results
In this study, we used behavioral and fMRI data from the HCP
social cognition task to characterize the behavioral and neural
processes underlying conscious perception of social interactions.
We started by evaluating the behavioral data for any response
bias, that is, are people more inclined to declare information
“Social” (as opposed to “Non-social”)? We next identified
brain regions that robustly differentiated between “Social” and
“Non-social” percepts, including a subset that showed a paramet-
ric response pattern to degrees of perceived socialness, and
showed that observer responses explain more variance than ex-
perimenter-assigned labels in activity levels of many regions.
Next, we used a time-point-by-time-point analysis to identify

where and when brain activity begins to diverge according to
whether social information is subjectively perceived. Finally, we
studied the relationship between internalizing behavior scores,
tendency toward social percepts, and brain activity while scanning
for social information. As a reminder, here, we use the terms
“Mental” and “Random” to refer to experimenter-assigned stimu-
lus labels, and “Social” and “Non-social” to refer to observers’
actual reported percepts of those stimuli.

Some animations are more ambiguous than others
First, we examined the degree to which participants’ percepts of
“Social” versus “Non-social” information agreed with one
another as well as the intended stimulus category. In the HCP
social cognition task, participants passively watched 10 anima-
tions, 20 s long, of geometric shapes (Heider–Simmel-like;
Castelli et al., 2000; see above, Materials and Methods, Stimuli)
and then made a behavioral response—“Social”, “Non-social”, or
“Unsure”—to indicate whether they perceived a social interac-
tion in the animation. Five animations were intended to evoke
social interactions (experimenter-assigned Mental) and five were
not (experimenter-assigned Random). Although on average, par-
ticipants’ percepts aligned with experimenter labels, the degree
to which animations were perceived as “Social” and “Non-social”
varied considerably. This was true in both the HCP behavioral
data and the secondary online dataset (online RT experiment)
we collected to study the time taken for individuals to arrive at
decisions while watching each animation (Figs. 1a, 2a).
Although animations like DRIFTING and BILLIARD were
seen almost unanimously as “Non-social”, animations like
RANDOM MECH and FISHING had a higher percentage of
the nondominant percept as well as “Unsure” responses. This
underscores the need to use participants’ own percepts to cat-
egorize what is or is not “Social” rather than experimenter-
assigned labels. In later analyses, we leveraged this ambiguity
by comparing neural activity corresponding to “Social” and
“Non-social” responses within the most variably perceived
animation (RANDOM MECH), thereby isolating activity
associated with a conscious social percept while controlling
for visual input.

Responses are biased toward “Social”
Next, we used behaviorally reported percepts to determine
whether there was a response bias toward “Social”. We hypothe-
sized that evolutionarily, there may be a bias toward perceiving
information as social because the cost of a false positive (i.e., mis-
takenly thinking someone is trying to engage you in a social
interaction) is less than that of a false negative (i.e., missing out
on social cues that are important for group dynamics, reproduc-
tion, and survival). We predicted that this bias would manifest as
a higher “Social” response rate, shorter response times for
“Social” percepts, and more “Unsure” responses to anima-
tions labeled Random by experimenters (because of a reluc-
tance to declare something entirely non-social). Our
findings are described next.

“Social” responses are more frequent
Comparing the frequency of “Social” and “Non-social” percepts
for each participant (limited to trials where participants were
sure of their response, that is, excluding “Unsure” trials) showed
that the percentage of “Social” responses was higher (mean =
52.9%, SE = 0.29%) than that of “Non-social” responses (mean =
47.1%, SE = 0.29%; paired t test, t = 9.96, p, 10�21; Fig. 1b).
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The response criterion further shows a bias toward “Social”
Next, we computed criterion (c), a metric from signal detec-
tion theory that quantifies response biases. If the mean c is sig-
nificantly different from zero, this suggests a bias in responses
toward “Social” (�c , 0) or “Non-social” (�c. 0). We found that
criterion was significantly negative at the population level
(mean = –0.05, SE = 0.01; Wilcoxon test, test statistic = 26813,
p, 10�17; Fig. 1c), further confirming the response bias toward
“Social”. In this computation, we used the experimenter-
assigned labels to show that although the experimenters aimed
to create a balanced set of five Mental and five Random ani-
mations, actual observer reports indicate that individuals
ended up perceiving more animations as “Social”. Thus,
percepts did not fully conform to the expectations of the
experimenters.

Responders may have been quicker to declare something as
“Social” than “Non-social”
Next, to get at a more subconscious measure of perceptual deci-
sion-making for social information, we compared response times
between “Social” (mean = 0.87 s, SE = 0.009 s) and “Non-social”

(mean = 0.9 s, SE = 0.012 s) responses
(Fig. 1d) and found that “Social” responses
were overall faster (Wilcoxon test, test sta-
tistic = 144885, p , 10�3). As response
times could differ by animation because
of their heterogeneity, we additionally
performed an LME analysis with response
[“Social” or “Non-social” (baseline)] as the
fixed effect, and both animation and par-
ticipant as random effects. We observed
a trend toward shorter RTs for “Social”
responses, but this did not reach signifi-
cance (LMEM estimate = –0.04, p = 0.1).

“Unsure” responses were more common
for animations intended as Random
compared to those intended as Mental
We compared the distribution of “Unsure”
responses between animations that were
intended to be “Social” (Mental) or “Non-
social” (Random) and noted a higher
percentage of “Unsure” responses in the
animations intended as Random (mean =
9.4%, SE = 0.5%; Fig. 1e) compared to
those intended as Mental (mean = 2.7%,
SE = 0.3%). This indicated that people
were more hesitant to label something
“Non-social” (as opposed to “Social”)
when their confidence is low. In other
words, they err on the side of false alarms
rather than misses; this fits with the idea
that misses are likely costlier than false
alarms. We formally compared the fre-
quency of “Unsure” responses using lo-
gistic regression with Mental (coded 1)
and Random (coded 0) labels as two levels
of the fixed effect term stimType, and
participant and animation as random
effects. Results showed higher uncertainty
on Random trials even after accounting
for the differences in animations (Est. =
�1.61, p = 0.005).

To summarize, the behavioral data overall showed a bias to-
ward “Social” responses based on frequency of each response
type, response times, and degree of uncertainty.

Decision time on whether an animation is social varies
widely between individuals and animations
In the HCP study, participants had to wait until the end of each
animation (lasting 20 s) to make a behavioral response. However,
the decision on whether an animation was “Social” or “Non-
social” was presumably made sometime during passive viewing,
although the decision time could have varied widely across anima-
tions and participants. This variability, in turn, might influence
the time course of brain activity (e.g., visual attention for the same
animation may be different when a participant makes a deci-
sion 2 s into the animation vs 15 s into it). Hence, getting in-
formation on when decisions could likely have been made
during each animation was critical to modeling and inter-
preting neuroimaging data. To this end, we performed an in-
dependent online behavioral study using the same animations
where participants (final n = 90) were instructed to indicate

Figure 1. Behavioral data from the HCP participants (n = 823) show a bias toward “Social” responses. a, Number of
responses per type (“Social”, “Unsure”, “Non-social”) for each animation (sorted from most to least “Social”). b, Percentages
of “Social” and “Non-social” responses. “Social” responses were more frequent (t = 9.96, p, 10�21, paired t test). c, Signal
detection theory metric criterion c across participants based on experimenter-assigned labels. Mean criterion was negative
(�c = –0.05, Wilcoxon signed-rank test statistic, 26813; p, 10�17), indicating a bias toward false alarms (i.e., declaring an
animation labeled Random by experimenters as “Social”). d, Response time for “Social” and “Non-social” responses. “Social”
responses tended to be quicker (Wilcoxon signed-rank test statistic, 144885; p , 10�3). e, “Unsure” responses for anima-
tions labeled Mental and Random by experimenters. There was a higher percentage of “Unsure” responses for Random ani-
mations (LMEM, Est. = –2.15, p, . 005); **p, 0.001, ***p, 0.0001.
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their percepts as soon as they had
arrived at a decision (the during phase).
To compare the results with the HCP
study, participants were also instructed
to respond at the end of each trial (the
after phase).

The consensus across participants of
which animations were generally “Social”
versus “Non-social” in the online sample
was comparable to that of the HCP sam-
ple (compare Fig. 2a with Fig. 1a). As a
corollary to this, the animations with
high variability in decision times in the
online RT experiment also tended to
have less consensus across participants in
the HCP study, the latter operationalized
as (1) the lower absolute value of the dif-
ference between the percentage of
“Social” and percentage of “Non-social”
animations (Fig. 2b, left) and (2) the
higher number of “Unsure” responses
(Fig. 2b, right). The reaction time data
from the during phase (Fig. 2c) showed
that although most responses were made
in the earlier half of the 20 s animations,
there was a high variability in decision
time both within and across animations.
This means that the brain activity corre-
sponding to an especially ambiguous an-
imation (e.g., SCARING, RANDOM
MECH) could have been vastly different
even among participants who reported
the same percept for these, depending
on when each participant made their de-
cision and how this affected their atten-
tion before and after the decision.
Hence, we identified two animations
with the most comparable decision
times, namely, COAXING (median =
3.45 s, SE = 0.27 s), a predominantly
“Social” animation, and BILLIARD (me-
dian = 3.7 s, SE = 0.25 s), a predomi-
nantly “Non-social” animation, whose
decision times were not significantly
different (Wilcoxon signed-rank test
paired, t = 1619, p = 0.57). These ani-
mations also did not differ (McNemar
test statistic = 0, p = 1, exact correc-
tion done) in their proportion of
dominant (“Social” and “Non-social”
for COAXING and BILLIARD, respec-
tively) and nondominant responses (“Non-
social” and “Social” for COAXING and
BILLIARD, respectively; see above,
Materials and Methods, “Social” ver-
sus “Non-social”). This was the case
with the HCP dataset too (McNemar
test statistic = 3.7, p = 0.055, continuity correction done),
although the differences in proportions was close to significance
despite a large proportion of the participants (n = 870) reporting
the dominant percepts to COAXING and BILLIARD. Therefore,
we used this pair of animations in later analyses as a control for
stimulus difficulty/ambiguity.

Much of the brain responds more strongly to what is
perceived as social information
In the next set of analyses spanning this and the next two
sections, we used the HCP fMRI data to understand where
and when the brain distinguishes social from non-social in-
formation. For all fMRI analyses, whole-brain data were
parcellated into 268 regions covering the cortex, subcortex,

Figure 2. Results of the online RT experiment to characterize decision time for each animation. a, Number of “Social”,
“Non-social”, and “Unsure” responses per animation made during (lighter shades) and after (darker shades) each animation.
Order of animations on the y-axis is the same as for the HCP data in Figure 1a. The degree to which animations were reported
“Social” is comparable to the HCP behavioral data in Figure 1a. b, SD of response time while watching each animation (in sec-
onds, x-axis) versus two indicators of uncertainty from the HCP behavioral data on the y-axes (left, absolute difference between
number of “Social” and “Non-social” responses, an indicator of how definitive responses for this animation were across partici-
pants; right, percentage of “Unsure” responses). Spearman (rank) correlation shows a trend (p � 0.1, marked1) for the ani-
mations with higher variation in response times in the online RT experiment x-axes to also have a less definitive response (left)
and a higher percentage of “Unsure” responses (right) in the HCP behavioral data. Dots are colored according to each anima-
tions’s average perceived socialness (average response from a). c, Distribution of response times for “Social” and “Non-social”
responses while watching each animation (in seconds). As seen in b, decision times varied more for some animations than
others. Note that COAXING (dominantly “Social”) and BILLIARD (dominantly “Non-social”) had similar mean decision times that
were both relatively early in the animation.
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and cerebellum using the Shen et al. (2013) atlas to ease the
computational burden of voxelwise analyses.

In the first fMRI analysis, we focused on the question
of where by comparing overall neural responsiveness
while viewing animations ultimately deemed “Social” versus
“Non-social”. In addition to regions along the STS that
are known to be involved in animacy and interaction per-
ception, we hypothesized that differences might emerge as
early as visual regions. We compared “Social” and “Non-
social” responses using a GLM approach, again using the
participant’s reported percept rather than the experimenter-
assigned label as input to the model, in three separate con-
trasts to ensure results were robust to different confounding
factors: (1) within the single most ambiguous animation
(RANDOM MECH), which controls for visual input (as all
participants saw the same animation, but reported different
percepts; across participants); (2) between two animations
with similar decision times (COAXING versus BILLIARD),

to control for the effect of when the decision was likely
made on the time course of brain activity during passive
viewing (within participants); and (3) across all 10 ani-
mations, to maximize power and ensure generalizability
(within participants). We then took the intersection of
the regions showing a significant difference in all three
analyses.

In total, 70 parcels showed a higher activity for “Social” com-
pared to “Non-social” (FDR q , 0.05, black contours in Fig. 3,
Table 3) consistently across all three comparisons. (No parcel
showed a higher activity for “Non-social” compared to “Social”
across analyses, although there were some results in this direction
in the uncorrected analyses; Fig. 3b–c). Of these, 66 parcels showed
positive (i.e., above baseline) activations for both the “Social”
(b “Social” . 0) and “Non-social” (b “Non-social” . 0) responses for
both RANDOM MECH and COAXING–BILLIARD, suggesting
that on the whole, much of the brain showed higher activation
and not lower deactivation to “Social” compared with “Non-social”.

Figure 3. Regions showing differential activity between “Social” and “Non-social” percepts. a–c, Mean differences between GLM regression coefficients (b ) for (a)
RANDOM MECH [mean (RANDOM MECH “Social”) � mean (RANDOM MECH “Non-social”)], (b) COAXING–BILLIARD [mean (COAXING “Social” – BILLIARD “Non-social”)], and
(c) ALL (estimated from run-level regressors, see Materials and Methods). Colored regions are significant at an uncorrected threshold (p , 0.05) in each of the three anal-
yses, whereas black contours in a–c show the robust social perception regions significant after correction for multiple comparisons (FDR q , 0.05) in all three analyses.
Color bar ranges are different among the three subplots as each was estimated separately using different analyses, and, hence, the values should not be directly
compared.

Table 3. List of the robust social perception regions (parcels) identified from the intersection analysis (compare black contours in Fig. 3), together with their
Montreal Neurological Institute (MNI) coordinates

Lobe Shen parcels (MNI [x, y, z] coordinates)

Occipital • Bilateral lateral occipital cortex ([41, –75, 28], [30, –83, 20], [45, –74, 3], [–32, –87, 13], [–43, –70, –14], [–48, –67, 1], [–36, –84, –4]).
• Bilateral Occipital pole ([31, –92, –11], [–22, –97, –10]).
• Bilateral occipital fusiform gyrus ([37, –69, –17], [18, –83, –11], [–26, –63, –12], [–15, –84, –13]).

Temporo–occipital • Bilateral middle and inferior temporal gyrus ([47, –60, –15], [55, –56, –5], [61, –43, –18], [42, –46, –23], [–60, –50, –14],
[–47, –40, –24], [–43, –52, –17]).

• Bilateral posterior superior temporal gyrus ([49, –58, 14], [59, –44, 9], [–58, –46, 6]).
Parietal • Right precuneus ([6, –57, 38]).

• Bilateral occipito-parietal ([32, –61, 49], [48, –62, 35], [–28, –62, 40]).
Frontal • Bilateral middle and inferior frontal gyrus ([41, 15, 48], [54, 25, 1], [48, 36, 15], [40, 18, 29], [–46, 28, 27], [–39, 17, 47], [–53, 18, 11]).

• Bilateral lateral precentral gyrus ([40, 4, 34], [–46, 8, 29]).
• Bilateral frontal operculum ([37, 21, 6], [–32, 22, 6]).
• Bilateral frontal pole ([29, 51, 19], [9, 53, 24], [–10, 56, 30]).
• Bilateral anterior insula ([37, 21, 6], [–32, 20, –16], [–32, 22, 6]).
• Right superior frontal gyrus ([15, 37, 49], [24, 31, 36], [14, 6, 65], [25, 12, 49]).
• Left frontal orbital cortex ([–46, 28, –7], [–32, 20, –16].

Sub–cortical • Bilateral cerebellum (large parts of it) ([32, –78, –40], [39, –75, –30], [23, –36, –43], [7, –68, –38], [46, –46, –43], [16, –47, –53],
[12, –84, –35], [20, –73, –50], [37, –57, –33], [23, –72, –29], [42, –64, –49], [7, –54, –34], [30, –36, –31], [–6, –66, –38],
[–21, –70, –49], [–40, –75, –29], [–30, –80, –40], [–43, –64, –46], [–10, –82, –32], [–46, –47, –43], [–26, –70, –31], [–24,–38, –44]).

• Right thalamus ([6, –10, 5]).

MNI, Montreal Neurological Institute.
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These parcels spanned the occipitotemporal cortex, the prefrontal
cortex, the cerebellum, and some subcortical regions (Table 3).
Hereafter, we refer to this set of 70 parcels as the “robust social per-
ception regions” as they show both specific (after controlling for vis-
ual input and decision time) and generalizable activation associated
with the subjective experience of a social percept.

Subjective percepts better explain brain activity in robust
social perception regions
Next, we tested whether observer response-based labels (“Social”,
“Non-social”) explained more variance in the neural data than
experimenter-assigned labels (Mental, Random) by comparing
models based on each label type. Overall, across all 268 parcels,
response labels better explained brain activity AICObs-Exp, mean =
–2.23, SE = 0.47; one-sample t test, t = –4.77, p , 10�5). Of
these, 44 parcels were better fit by the observer-based model
(AICObs-Exp . 10) and 11 parcels were better fit by the experi-
menter-based model (AICObs-Exp , –10). Observer-based labels
better fit the neural activity in bilateral occipitotemporal
regions, left prefrontal cortex, and the cerebellum (Fig. 4, pink-
colored parcels), several of them overlapping with the robust
social perception regions identified in the GLM analysis above
(Fig. 4, black contours), whereas experimenter-assigned
labels better fit the neural activity in the right temporal cor-
tex (Fig. 4, green-colored parcels). Overall, this suggests
that activity in the robust social perception regions reflect
the conscious perception of social information rather than
merely incoming visual input.

Some brain regions show parametric responses to degree of
perceived socialness
The previous analysis identified social-information-processing
regions that robustly showed a higher response to information
ultimately reported as “Social”. By leveraging “Unsure” responses
as an intermediate level of perceived socialness between “Social”
and “Non-social”, we further probed the neural correlates of con-
scious social perception; that is, an “Unsure” response would
indicate that some evidence for a social interaction was detected
but not enough to be fully confident in a “Social” response.

Specifically, we identified regions showing parametric responses,
that is, b “Social” . b “Unsure” . b “Non-social” [condition “Social” (S)
. “Unsure” (U) . “Non-social” (NS)] or b “Social” , b “Unsure” ,
b “Non-social” (condition S , U , NS) using conjunction analyses
across all animations (see,Materials and Methods). We further lim-
ited this analysis to the robust social perception regions (black con-
tours in Fig. 3).

Several parcels showed a consistent S. U . NS response pat-
tern (Fig. 5a–c). These were located in posterior and inferior parts
of the temporal cortex including parts of the motion-processing
region V5/MT (with more parcels in the right hemisphere), middle
and inferior frontal gyrus, precuneus, right thalamus, and postero-
lateral parts of the cerebellum. Other regions that showed a differ-
ential response to “Social” compared with “Non-social” but do not
show up here, such as the superior temporal and occipital regions,
posterior parietal regions, and superior frontal regions, likely have
more dichotomous responses to any amount of social content
[(“Social”, “Unsure”) . “Non-social”)] or only a high level of evi-
dence in favor of “Social” [“Social”. (“Unsure”, “Non-social”)].

To verify that similar parametric patterns emerge when con-
trolling for visual input, we plotted the time courses for each
response type for a subset of the parcels showing parametric
responses pattern to the most ambiguous animation (RANDOM
MECH; Fig. 5d; see above, Materials and Methods for how these
parcels were chosen). Visualizing these time courses confirmed
that these regions show parametric neural responses to degrees
of reported socialness, albeit with large error bars for the smaller
groups (“Social” and “Unsure”).

Thus, it appears that many regions, predominantly in tempo-
ral, occipital, and subcortical areas, show a graded response to
degree of social information. This result further underscores how
using observer-based labels can increase sensitivity and specific-
ity in linking brain activity to conscious experience.

Processing of social versus non-social information diverges
early in time and in the cortical hierarchy
The previous analyses showed that several regions spanning the
whole brain are more responsive to information that is ultimately
reported as social (vs non-social). However, given that these analy-
ses modeled the entire 20 s animations, any differences, especially
in early visual regions, could reflect (1) the accumulation of evi-
dence that led to the perception of an animation as “Social”, (2)
the consequence of having perceived an animation as “Social” (i.e.,
top-down attention effects on sensory regions), or (3) a combina-
tion of both. To gain a better understanding of the dynamics of
evidence accumulation leading to a “Social” percept, we compared
BOLD activity at each time point (TR) after stimulus onset to
determine the time point of earliest divergence between “Social”
and “Non-social” percepts.

To ensure that the differences observed at each time point are
comparable in terms of the underlying cognitive processes (i.e.,
evidence accumulation vs decision-making versus postdecisional
processes), we performed this analysis on the animation pair that
had the most comparable decision times in our auxiliary behav-
ioral experiment, namely COAXING and BILLIARD. Decision
times for these animations were both early and close in time (see
above, Materials and Methods, “Social” versus “Non-social” and
Results, Decision time on whether an animation is social varies
widely between individuals and animations; Fig. 2c). These ani-
mations were similar visually with the same two triangular agents
on the screen (Table 1); nevertheless, they did vary in their tem-
poral dynamics and some low-level visual features. To minimize
the effect of these on the BOLD activity, we regressed two low-

Figure 4. Models based on observer reports, compared with experimenter labels, better
explain brain activity in robust social perception regions. Comparison between two linear
mixed-effects models fitting trial-level GLM regression coefficients (b ) as a function of either
(1) observer responses (“Social” vs “Non-social”) or (2) experimenter labels (Mental vs
Random). Parcels are colored by the difference in AIC between the two models and were
thresholded at 10 (i.e., parcels with |AIC|, 10 are not plotted); parcels colored pink (differ-
ence in AIC , �10) indicate a better fit for the observer response-based model, and those
colored green (difference in AIC. 10) indicate a better fit for the experimenter label-based
model. Both models included participant and animation as random effects. Black contours
correspond to the robust social perception regions identified in Figure 3, and these largely
overlap with parcels that show better fits for the observer-based models (pink).
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level visual features (total optic flow and mean brightness) from
the BOLD responses of each animation and participant and com-
pared the residual COAXING and BILLIARD time courses at
each TR. To guard against spurious fluctuations early in the ani-
mations, we again limited our analysis to the robust social per-
ception regions (compare Fig. 3, black contours).

In many regions, differences in brain activity between
“Social” and “Non-social” percepts emerged early, that is, in
TRs 1–3 after stimulus onset (Fig. 6a). These early differen-
ces were seen in both hemispheres in posterior regions such
as the fusiform gyrus, lateral occipital cortex, pSTS; posterior
parts of the cerebellum; and in frontal areas such as the lat-
eral precentral gyrus, posterior parts of the middle and infe-
rior frontal gyrus (IFG), the orbitofrontal cortex in the left
hemisphere, and the IFG and supplementary motor area in
the right hemisphere. Later TRs, which are more likely to
reflect postdecisional activity, showed divergences in the
bilateral inferior and superior frontal regions, the right pre-
cuneus, bilateral intraparietal sulcus, and bilateral posterior
cerebellum.

To visualize the earliest differences in
the posterior regions and to understand
how generalizable these dynamics are, we
plotted (Fig. 6b) the residual BOLD time
courses for COAXING–BILLIARD (left
column, our main analysis) alongside the
averaged “Social” and “Non-social” time
courses across all the other animations (all
except COAXING–BILLIARD, middle
column) and within the most ambiguous
animation (RANDOM MECH, right col-
umn). The two latter analyses are not as
well suited to pinpointing when differen-
ces emerged because decision times were
likely more variable across individuals
and animations (per our online RT
experiment), thus making time courses
noisier and less comparable. Despite
this, we see similar relative trends in
these posterior regions (each row in
Fig. 6b) on when and how they distin-
guish between “Social” and “Non-social”
reports. Responses emerged much later
for the all except COAXING–BILLIARD
condition in line with the later and more
variable decision times for most anima-
tions; Fig. 2c). When comparing within
the same animation (RANDOM MECH),
we see trends emerging early, although
the magnitudes are smaller, and the errors
for the “Social” responder group are large,
possibly because of the smaller group size
(n = 107) compared with the majority
percept of “Non-social” (n = 670). Note
that the latter two time courses are plotted
only for visual examination and that we
did not perform statistical analyses here.
Also note that the directionality of the
difference between “Social” and “Non-
social” should not be strongly interpreted
especially in the case of COAXING–
BILLIARD as despite our attempts to
normalize activity at the trial level
(see, Materials and Methods, GLM-

based regression), order effects (COAXING was always the
first stimulus in the first run, immediately followed by
BILLIARD), and/or the shape of the hemodynamic response
(i.e., presence of initial dip) could have affected the BOLD
response between trials.

To summarize, while watching an animation that was even-
tually reported as “Social”, differences in brain activity emerged
early across much of the brain, involving both ventral visual
processing regions and occipitotemporal regions involved in
action and animacy detection as well as social cognition. The
early reactivity in these regions is in line with the recently sug-
gested third visual pathway, which projects directly from early
visual cortex to the superior temporal sulcus and is specialized for
social perception (Pitcher and Ungerleider, 2021).

Individual differences in behavior and brain activity while
viewing animations covary with internalizing symptoms
Finally, we explored whether individual differences in behavioral
and neural responses to social animations covaried with trait-level

Figure 5. Brain regions showing parametric responses to social content. a, b, Colored parcels show mean differences (FDR
q , 0.05) in slope regression coefficients (“Social”–“Unsure” and “Unsure”–“Non-social”) within the robust social perception
regions (compare black contours in Fig. 3). c, Black contours and the dark red regions in c highlight the 35 parcels that showed
a graded response to perceived socialness (“Social” greater than “Unsure” greater than “Non-social” or vice versa; in other
words, the intersection of a and b). d, Time courses for the most ambiguous animation (RANDOM MECH) in a subset of 10 of
the parcels from a, confirming that activity associated with “Unsure” percepts is intermediate to “Non-social” percepts even
when controlling for visual input.
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measures. Specifically, we focused on inter-
nalizing symptoms from the Achenbach
Adult Self-Report Scale, because past work
has shown that certain internalizing traits
(e.g., loneliness, anxiety) are associated
with a stronger tendency to perceive visual
cues as socially salient. We hypothesized
that individuals with higher internalizing
scores would show stronger behavioral
and neural reactivity to potentially social
information.

Using the behavioral data, we tested
whether the response bias toward “Social”
(compare Fig. 1a) was even stronger
for individuals higher on internalizing
symptoms. Indeed, there was a positive
relationship between the bias toward
“Social” responses and internalizing score
(Spearman’s rank correlation rs = 0.10,
p = 0.003, Fig. 7a). We tested the specific-
ity of this relationship by contrasting it to
the correlation with externalizing trait
scores, which index more acting out
behaviors like rule breaking and aggres-
sion, and have not been linked to social
perception tendencies (though note that
internalizing and externalizing symptoms
were correlated, rs = 0.51, p , 10�55).
The correlation with externalizing symp-
toms was not significant (rs = 0.06, p =
0.096), although the two correlations
were not significantly different (t = 1.3,
p = 0.094). Furthermore, individuals
with higher internalizing scores were more
likely to give a “Social” or “Unsure” (as
opposed to “Non-social”) response to the
most ambiguous animation, RANDOM
MECH (“Social” or “Unsure”, mean =
49.3, SE = 0.69; “Non-social”, mean = 47.7,
SE = 0.45; unpaired t test, t = 2.05, p =
0.04; Fig. 7b). Mean externalizing symp-
toms were also higher for the “Social” or
“Unsure” group (mean = 49.3, SE = 0.57)
compared with the “Non-social” group
(mean = 47.9, SE = 0.38). Although the
difference in externalizing symptoms
was smaller (unpaired t test, t = 1.95,
p = 0.051), it was not significantly different
from the internalizing symptoms [interac-
tion between response and score type
(internalizing vs externalizing), p = 0.63].

Finally, individuals with higher inter-
nalizing scores were also more likely to
give an “Unsure” response to animations
intended as Random (rs = 0.098, p =
0.005) but not to animations intended as
Mental (rs = –0.024, p = 0.49), indicating a
preference for false alarms over misses
when it comes to detecting social informa-
tion (difference between correlations, t = 2.47, p = 0.007; Fig. 7c).
Percentage of “Unsure” responses did not correlate with externaliz-
ing symptoms for either Random (rs = 0.048, p = 0.17) or Mental (rs
= 0.01, p = 0.75) animations. Together, these analyses support a link

between internalizing symptoms and a greater tendency to perceive
information as social, perhaps driven by a homeostatic drive to seek
social connections.

To understand whether overall neural activity while watching
animations and scanning for social information also covaried

Figure 6. Time course analysis showing when and where differences between “Social” and “Non-social” percepts emerge. a,
Brain map of the earliest time point at which brain activity diverges between “Social” and “Non-social” responses for the
COAXING and BILLIARD animations, respectively (within-participant analysis). Analysis was limited to the robust social perception
regions (compare Fig. 3, black contours), and BOLD signal time courses were residualized with respect to the visual features of
brightness and optic flow to minimize the effects of any differences in low-level sensory information between the two anima-
tions. Colors show how early (purple-blue) or late (yellow-green) activity diverged. b, BOLD signal time courses in the left poste-
rior regions illustrating how “Social” and “Non-social” activity diverge in the predecisional period for COAXING and BILLIARD.
Regions are sorted in rows by the earliest divergence TR and then from posterior to anterior. Left, Time courses for the two ani-
mations matched for approximate decision time, COAXING (“Social”) and BILLIARD (“Non-social”). Middle and right, Time courses
from the same regions from two supporting analyses, across all animations except COAXING–BILLIARD (“Social” vs “Non-social”
response trials; middle); and for the most ambiguous animation, RANDOM MECH (“Social” vs “Non-social” responders), right.
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with internalizing symptoms, we related trialwise brain activity
estimates to internalizing symptom scores in an LMEM (fixed
effect, internalizing score; random effect, animation). In a whole-
brain analysis, 18 parcels showed a significant relationship (FDR
q, 0.05, Fig. 7d) between internalizing score and neural respon-
siveness. In all of these, the LME estimates were negative, that is,
as internalizing scores increased, brain activity decreased,
although all 18 parcels showed above-baseline activity as evi-
denced by the positive regression coefficients (b . 0 for all par-
cels). Thus, although individuals with higher internalizing scores
showed positive activity in these regions when scanning anima-
tions for social information, the magnitude of this activity was
lower than in individuals with lower internalizing scores. These
relationships were seen in the right angular gyrus, the bilateral
superior parietal lobule, left supramarginal gyrus, regions along
the dorsal midline, and anterior parts of the cerebellum (Fig. 7d,
blue).

Interestingly, the lateral occipital parcels from the set of ro-
bust social perception regions (Fig. 7d, black contours) were not
as prominent here, showing only a partial overlap (five par-
cels) with the parcels showing trait effects. In the overlap-
ping parcels, which comprised bilateral occipitotemporal
parcels and the cerebellum, individuals high on internaliz-
ing traits showed overall less reactivity in many brain
regions while scanning the environment for social interac-
tions. To reconcile this decrease in neural reactivity (Fig.
7d) with the observed increase in behavioral sensitivity
(Fig. 7a–c), one interpretation is that these individuals have

a lower threshold for the amount of neural activity required
to declare something “Social”. Yet another interpretation,
based on the decrease in neural activity with internalizing
symptoms in all trait-sensitive parcels and the observation
that 72% of the trait-sensitive regions (13 parcels) lie outside
the previously identified robust social perception regions, is
that this reflects a general decrease in neural responsiveness
with more internalizing symptoms.

Finally, we probed whether the difference in neural reactivity
to information ultimately perceived as “Social” showed any trait
dependence. No parcel showed a significant relationship between
internalizing scores and the subject-level “Social” – “Non-social”
b estimates at the corrected threshold across all 268 parcels
(FDR q , 0.05). At the uncorrected threshold (p , 0.05), how-
ever, we found several parcels (most notably in the right occipi-
totemporal parcels; Fig. 7e) showing a positive relationship
in that individuals with higher internalizing symptoms
showed a relatively higher responsiveness in this parcel to
information eventually declared “Social” (b traits . 0).
Together with the overall effect of traits on brain activity,
these results may suggest that individuals exhibiting higher
internalizing symptoms show lower brain activity when
scanning for social content but that the magnitude of this
dip may be lower when viewing social content. However,
this potential relationship should be further tested in data-
sets with more—and ideally more ambiguous—stimuli to
allow for more variation in both behavioral and neural
responses.

Figure 7. Relationship between internalizing trait scores, behavior, and brain activity. a, Response bias (percentage difference between “Social” and “Non-social” responses per par-
ticipant) correlates positively with internalizing symptom score (Spearman’s correlation coefficient, rs = 0.1, p = 0.003). b, Internalizing scores among individuals who reported
some degree of socialness (“Social” or “Unsure” responses) to the most ambiguous animation, RANDOM MECH, were higher than those for individuals who reported this animation
“Non-social”; *p , 0.05. c, Internalizing score correlates positively with the percentage of “Unsure” responses per participant for the generally non-social animations (Random,
left, rs = 0.098, p = 0.005) but not for the generally social animations (Mental, right, rs = –0.024, p = 0.49). These correlation magnitudes were significantly different (t = 2.47,
p = 0.007). d, Relationship between neural responsiveness during the task and internalizing scores. Colored parcels showed a significant positive (red) or negative (blue) relationship (FDR
q , 0.05) with internalizing score. The robust social perception regions from the GLM analysis (compare Fig. 3) are shown in black. All regions show a negative relationship
between activation magnitude and internalizing symptoms, and there is only a partial overlap with the robust social perception regions. e, Parcels in which the difference
between activity to “Social” and “Non-social” percepts (compare Fig. 3c) may be modulated by internalizing symptoms (p , 0.05, uncorrected). Red indicates that at higher
internalizing symptoms, “Social” trials show a relatively higher response than “Non-social”, and blue indicates that at higher internalizing symptoms, “Social” trials show a rela-
tively lower response than “Non-social” (blue).
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Discussion
In this study, we investigated behavioral and neural signatures of
social signal detection using a large dataset of neurotypical young
adults. Behavioral responses showed a subtle but consistent bias
toward perceiving information as social (as opposed to non-
social), which manifested as a higher number of “Social” responses
and a hesitation to report information as “Non-social”. We then
used observers’ own responses to label fMRI data and found that
widespread patterns of brain activity differentiate conscious social
percepts, even when controlling for visual input (RANDOM
MECH) and decision time (COAXING–BILLIARD). Overall, ob-
server responses explained more variance in activity than experi-
menter-assigned labels. Several regions also showed parametric
responses to degrees of perceived socialness (“Social” greater than
“Unsure” greater than “Non-social” responses). Further, brain ac-
tivity for information ultimately deemed “Social” diverged from
“Non-social” early both in time and in the cortical hierarchy.
Finally, we found that a trait-level measure of internalizing symp-
toms (e.g., loneliness, anxiety) could explain some of the variability
in percepts and brain activity.

Humans are an obligate social species predisposed toward
social interactions (Epley et al., 2007; Rutherford and Kuhlmeier,
2013), and socially relevant content is processed more efficiently
(Rothkirch et al., 2015; Papeo et al., 2017). The response bias to-
ward “Social” in the current study, and its covariation with inter-
nalizing symptoms, supports the idea of a homeostatic drive to
seek social connection (Tomova et al., 2020). This is in line with
previous studies reporting that lonely people tend to form illu-
sory social connections (Epley et al., 2008), overattribute ani-
macy to faces (Powers et al., 2014), and have greater attention
and memory for social cues (Gardner et al., 2005). It is also
possible that the response bias observed here could have been
partially because of the task structure, including contextual
effects, instructions, or the very presence of multiple agents,
which can induce expectations for social content (Piejka et al.,
2022). However, it is unlikely that these factors fully account
for our results. Despite their fixed order, trials were pseudor-
andomized with respect to experimenter-assigned labels, mean-
ing that trial order should not have induced a systematic bias in
responses. Furthermore, all animations (i.e., not just Mental
ones) contained at least two agents, and the Mental and Random
animations were largely matched in terms of the number and
type of agents (Table 1).

Animated shapes have been used extensively in fMRI studies
to characterize brain activity involved in social perception. Past
work has converged on a canonical set of regions including bilat-
eral pSTS, lateral occipital cortex, angular gyrus, superior parietal
lobule, and medial prefrontal cortex (Castelli et al., 2000; Tavares
et al., 2008; Osaka et al., 2012). However, nearly all this work has
used stimuli generated by experimenters to be seen as obviously
social or obviously non-social, then characterized participants’
“accuracy” with respect to these labels. There are two major limi-
tations to this approach; one, differences in neural responses to
social content may be confounded by differences in low-level vis-
ual features (e.g., higher speed for animations labeled social), and
two, the idea that experimenter labels represent the ground truth
is likely unrealistic given that real-world social scenarios are fre-
quently ambiguous, and interpretations vary across individuals.
Here, we extended the social perception literature in an impor-
tant way: we eschewed experimenter-assigned labels and charac-
terized brain activity according to participants’ own reported
percepts, which allowed us to identify regions that are sensitive

to the subjective (or conscious) perception of a social interaction
over and above sensory inputs. Several of these regions also
showed parametric responses to degrees of perceived socialness,
suggesting an even tighter link between activity in these regions
and conscious perceptual experiences.

Because the animations used here and in and past work are
typically relatively long in duration (20–40 s), another open
question is to what extent the observed brain activity reflects dis-
tinct cognitive processes over the course of each trial. For exam-
ple, early in animations, participants are likely accumulating
evidence in favor of each alternative (i.e., “Social” or “Non-
social”) until a decision is reached. Following this, postdecisional
processes likely come into play, which could include maintaining
the decision in working memory and monitoring for any coun-
terevidence. Animations that have been deemed “Social” may
enjoy higher levels of attention and engagement through the re-
mainder of the trial, which could partially explain current and
past observations (Tavares et al., 2008) of stronger neural
responses to social content. Although the heterogeneity in deci-
sion times across individuals and animations (compare Fig. 2c)
makes it challenging to disambiguate these processes, by leverag-
ing stimuli with comparable decision times, we showed that sev-
eral occipitotemporal regions start responding differently to
information ultimately perceived as “Social” even before partici-
pants had likely arrived at a decision, suggesting that this activity
may reflect predecisional evidence accumulation. This is further
supported by the results of our parametric analysis, as well as
recent EEG work showing a temporal hierarchy in action percep-
tion from encoding visual to social features (Dima et al., 2022).
Early differences also emerged in the pSTS, an area critical to the
third visual stream hypothesis (Pitcher and Ungerleider, 2021),
and lateral parts of the precentral gyrus and the supplementary
motor area. Recent electrophysiological studies (Isik et al., 2020;
Dima et al., 2022) have shown that neural responses to social
interactions occur at 300ms and that socioaffective features best
predict neural responses at ;418ms, that is, on a timescale
congruent with top-down processing. Thus, early activity in
frontal regions may reflect feedback mechanisms that direct
attentional resources in sensory cortex to prioritize process-
ing social information.

In our trait-dependent analyses, we found that brain activity
during the task was lower for individuals with high internalizing
scores in regions including parts of the default mode network
(angular gyrus and precuneus) and some of our previously iden-
tified robust social perception regions (occipitotemporal, frontal,
cerebellar). Although this may reflect a decrease in neural reac-
tivity while scanning the environment specifically for social in-
formation, we cannot rule out that it may also reflect change in
neural activity to any task in these individuals. The apparent dis-
crepancy whereby individuals with higher internalizing scores
show increased behavioral sensitivity but decreased neural ac-
tivity to potentially social content could indicate that these
individuals have a lower neural threshold for declaring some-
thing “Social”. However, we found only weak evidence for
interactions between internalizing scores, neural responses,
and reported percepts. Future work might return to this ques-
tion using more ambiguous stimuli that evoke more variability
in both neural and behavioral responses across people.

One limitation of this dataset is that the stimulus set consisted
of only 10 animations that were not counterbalanced in order
across participants nor controlled in terms of their visual fea-
tures. These animations were also not optimal to study ambigu-
ous perception because all did have dominant percepts, although
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the large sample size still allowed us to leverage nondominant
percepts to separate conscious social percepts from sensory input
(i.e., RANDOMMECH analysis). Future studies should replicate
and extend these results using stimuli that are better controlled
and also more ambiguous (i.e., evoke more balanced responses).

Another limitation is that participants were limited to three
discrete response options, when perceptual certainty may have
varied even within each response type. Furthermore, even for the
same animation, individuals who perceive a social interaction do
not necessarily perceive the same type of social interaction, and
different interpretations could have muddied group-level effects.
Future experiments can overcome this limitation by using richer
behavioral characterizations of percepts.

In summary, we describe behavioral and neural processes
that underlie how people arrive at conscious percepts of social
information. Together, our results compel a more nuanced view
of social perception in which socialness is in the eye of the
beholder.
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